[1]
|
Cutting GR (2005) Modifier genetics: cystic fibrosis. Annu Rev Genomics Hum Genet 6: 237-260. doi: 10.1146/annurev.genom.6.080604.162254
|
[2]
|
Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67-113. doi: 10.1146/annurev.cb.08.110192.000435
|
[3]
|
Riordan JR, Rommens JM, Kerem B, et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066-1073. doi: 10.1126/science.2475911
|
[4]
|
Gray MA, Winpenny JP, Verdon B, et al. (1995) Chloride channels and cystic fibrosis of the pancreas. Biosci Rep 15: 531-541. doi: 10.1007/BF01204355
|
[5]
|
McCarty NA (2000) Permeation through the CFTR chloride channel. J Exp Biol 203: 1947-1962.
|
[6]
|
Vankeerberghen A, Cuppens H, Cassiman JJ (2002) The cystic fibrosis transmembrane conductance regulator: an intriguing protein with pleiotropic functions. J Cyst Fibros 1: 13-29. doi: 10.1016/S1569-1993(01)00003-0
|
[7]
|
Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77: 701-726. doi: 10.1146/annurev.biochem.75.103004.142532
|
[8]
|
Loo MA, Jensen TJ, Cui L, et al. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17: 6879-6887. doi: 10.1093/emboj/17.23.6879
|
[9]
|
Lukacs GL, Chang XB, Bear C, et al. (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem 268: 21592-21598.
|
[10]
|
Lukacs GL, Segal G, Kartner N, et al. (1997) Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem J 328 ( Pt 2): 353-361.
|
[11]
|
O'Ryan L, Rimington T, Cant N, et al. (2012) Expression and purification of the cystic fibrosis transmembrane conductance regulator protein in Saccharomyces cerevisiae. J Vis Exp.
|
[12]
|
Huang P, Liu Q, Scarborough GA (1998) Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator. Anal Biochem 259: 89-97. doi: 10.1006/abio.1998.2633
|
[13]
|
Huang P, Stroffekova K, Cuppoletti J, et al. (1996) Functional expression of the cystic fibrosis transmembrane conductance regulator in yeast. Biochim Biophys Acta 1281: 80-90. doi: 10.1016/0005-2736(96)00032-6
|
[14]
|
Ketchum CJ, Rajendrakumar GV, Maloney PC (2004) Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator. Biochemistry 43: 1045-1053. doi: 10.1021/bi035382a
|
[15]
|
Krueger-Koplin RD, Sorgen PL, Krueger-Koplin ST, et al. (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28: 43-57. doi: 10.1023/B:JNMR.0000012875.80898.8f
|
[16]
|
Yang Z, Wang C, Zhou Q, et al. (2014) Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains. Protein Sci Public Protein Soci 23: 769-789. doi: 10.1002/pro.2460
|
[17]
|
Matar-Merheb R, Rhimi M, Leydier A, et al. (2011) Structuring detergents for extracting and stabilizing functional membrane proteins. PloS one 6: e18036. doi: 10.1371/journal.pone.0018036
|
[18]
|
Galian C, Manon F, Dezi M, et al. (2011) Optimized purification of a heterodimeric ABC transporter in a highly stable form amenable to 2-D crystallization. PloS one 6: e19677. doi: 10.1371/journal.pone.0019677
|
[19]
|
Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43: 65-158.
|
[20]
|
Guggino WB (2004) The cystic fibrosis transmembrane regulator forms macromolecular complexes with PDZ domain scaffold proteins. Proc Am Thorac Soc 1: 28-32. doi: 10.1513/pats.2306011
|
[21]
|
Karthikeyan S, Leung T, Birrane G, et al. (2001) Crystal structure of the PDZ1 domain of human Na(+)/H(+) exchanger regulatory factor provides insights into the mechanism of carboxyl-terminal leucine recognition by class I PDZ domains. J Mol Biol 308: 963-973. doi: 10.1006/jmbi.2001.4634
|
[22]
|
Karthikeyan S, Leung T, Ladias JA (2002) Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors. J Biol Chem 277: 18973-18978. doi: 10.1074/jbc.M201507200
|
[23]
|
Li C, Naren AP (2011) Analysis of CFTR interactome in the macromolecular complexes. Methods Mol Biol 741: 255-270. doi: 10.1007/978-1-61779-117-8_17
|
[24]
|
Li C, Roy K, Dandridge K, et al. (2004) Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. J Biol Chem 279: 24673-24684. doi: 10.1074/jbc.M400688200
|
[25]
|
Wang S, Yue H, Derin RB, et al. (2000) Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 103: 169-179. doi: 10.1016/S0092-8674(00)00096-9
|
[26]
|
Bozoky Z, Krzeminski M, Muhandiram R, et al. (2013) Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. Proc Natl Acad Sci U S A.
|
[27]
|
Guerra L, Favia M, Fanelli T, et al. (2004) Stimulation of Xenopus P2Y1 receptor activates CFTR in A6 cells. Pflugers Arch 449: 66-75. doi: 10.1007/s00424-004-1293-2
|
[28]
|
Bossard F, Robay A, Toumaniantz G, et al. (2007) NHE-RF1 protein rescues DeltaF508-CFTR function. Am J Physiol Lung Cell Mol Physiol 292: L1085-1094.
|
[29]
|
Zhang L, Aleksandrov LA, Riordan JR, et al. (2011) Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling. Biochim Biophys Acta 1808: 399-404.
|
[30]
|
Zhang L, Aleksandrov LA, Zhao ZF, et al. (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167: 242-251. doi: 10.1016/j.jsb.2009.06.004
|
[31]
|
Rosenberg MF, O'Ryan LP, Hughes G, et al. (2011) The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate. J Biol Chem 286: 42647-42654. doi: 10.1074/jbc.M111.292268
|
[32]
|
Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443: 180-185. doi: 10.1038/nature05155
|
[33]
|
Ward A, Reyes CL, Yu J, et al. (2007) Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci U S A 104: 19005-19010. doi: 10.1073/pnas.0709388104
|
[34]
|
Hildebrandt E, Zhang Q, Cant N, et al. (2014) A survey of detergents for the purification of stable, active human cystic fibrosis transmembrane conductance regulator (CFTR). Biochim Biophys Acta 1838: 2825-2837.
|
[35]
|
Al-Zahrani A (2014) Structural biology of Cystic Fibrosis Transmembrane Conductance Regulator, an ATP-binding cassette protein of medical importance. PhD Thesis, University of Manchester.
|
[36]
|
Pollock N, Cant N, Rimington T, et al. (2014) Purification of the cystic fibrosis transmembrane conductance regulator protein expressed in Saccharomyces cerevisiae. J Vis Exp: JoVE.
|
[37]
|
Chifflet S, Torriglia A, Chiesa R, et al. (1988) A method for the determination of inorganic-phosphate in the presence of labile organic phosphate and high-concentrations of protein- application to lens ATPases. Anal Biochem 168: 1-4. doi: 10.1016/0003-2697(88)90002-4
|
[38]
|
Rothnie A, Theron D, Soceneantu L, et al. (2001) The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Eur Biophys J Biophys Lett 30: 430-442. doi: 10.1007/s002490100156
|
[39]
|
Cant N, Pollock N, Rimington T, et al. (2014) Purification of the Cystic Fibrosis Transmembrane Conductance Regulator Protein Expressed in Saccharomyces cerevisiae. J Vis Exp 87.
|
[40]
|
Schultz BD, Bridges RJ, Frizzell RA (1996) Lack of conventional ATPase properties in CFTR chloride channel gating. J Membr Biol 151: 63-75. doi: 10.1007/s002329900058
|
[41]
|
Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128: 82-97. doi: 10.1006/jsbi.1999.4174
|
[42]
|
Zhang L, Aleksandrov LA, Riordan JR, et al. (2011) Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling. Biochim Biophys Acta 1808: 399-404. doi: 10.1016/j.bbamem.2010.08.012
|
[43]
|
Zhang L, Aleksandrov LA, Zhao Z, et al. (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol.
|
[44]
|
Henderson R, Sali A, Baker ML, et al. (2012) Outcome of the first electron microscopy validation task force meeting. Structure 20: 205-214. doi: 10.1016/j.str.2011.12.014
|
[45]
|
Srinivasan V, Pierik AJ, Lill R (2014) Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343: 1137-1140. doi: 10.1126/science.1246729
|
[46]
|
Claude JB, Suhre K, Notredame C, et al. (2004) CaspR: a web server for automated molecular replacement using homology modelling. Nucleic Acids Res 32: W606-609. doi: 10.1093/nar/gkh400
|
[47]
|
Eswar N, Webb B, Marti-Renom MA, et al. (2007) Comparative protein structure modeling using MODELLER. Current protocols in protein science/editorial board, John E Coligan Chapter 2: Unit 2 9.
|
[48]
|
Laskowski RA, Rullmannn JA, MacArthur MW, et al. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8: 477-486.
|
[49]
|
Yang Z, Lasker K, Schneidman-Duhovny D, et al. (2012) UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 179: 269-278.
|
[50]
|
Zhang L, Aleksandrov LA, Riordan JR, et al. (2010) Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling. Biochim Biophys Acta.
|
[51]
|
Zhang L, Aleksandrov LA, Zhao Z, et al. (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167: 242-251. doi: 10.1016/j.jsb.2009.06.004
|
[52]
|
Eckford PD, Li C, Ramjeesingh M, et al. (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 287: 36639-36649. doi: 10.1074/jbc.M112.393637
|
[53]
|
Venerando A, Franchin C, Cant N, et al. (2013) Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. PloS one 8: e74232. doi: 10.1371/journal.pone.0074232
|
[54]
|
Kogan I, Ramjeesingh M, Huan LJ, et al. (2001) Perturbation of the pore of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibits its atpase activity. J Biol Chem 276: 11575-11581. doi: 10.1074/jbc.M010403200
|
[55]
|
Aleksandrov AA, Kota P, Cui L, et al. (2012) Allosteric modulation balances thermodynamic stability and restores function of ΔF508 CFTR. J Mol Biol 419: 41-60. doi: 10.1016/j.jmb.2012.03.001
|
[56]
|
Alexandrov AI, Mileni M, Chien EY, et al. (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16: 351-359. doi: 10.1016/j.str.2008.02.004
|
[57]
|
Lysko KA, Carlson R, Taverna R, et al. (1981) Protein involvement in structural transition of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry 20: 5570-5576.
|
[58]
|
Soler G, Mattingly JR, Martinez-Carrion M (1984) Effects of heating on the ion-gating function and structural domains of the acetylcholine receptor. Biochemistry 23: 4630-4636. doi: 10.1021/bi00315a018
|
[59]
|
Al Zahrani A (2014) PhD Thesis, University of Manchester.
|
[60]
|
Karthikeyan S, Leung T, Birrane G, et al. (2001) Crystal structure of the PDZ1 domain of human Na(+)/H(+) exchanger regulatory factor provides insights into the mechanism of carboxyl-terminal leucine recognition by class I PDZ domains. J Mol Biol 308: 963-973.
|
[61]
|
Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774-797.
|
[62]
|
Karthikeyan S, Leung T, Ladias JA (2002) Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors. J Biol Chem 277: 18973-18978.
|
[63]
|
Karthikeyan S, Leung T, Ladias JA (2001) Structural basis of the Na+/H+ exchanger regulatory factor PDZ1 interaction with the carboxyl-terminal region of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 276: 19683-19686.
|
[64]
|
Zhang L, Aleksandrov LA, Zhao Z, et al. (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167: 242-251.
|
[65]
|
Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440: 477-483. doi: 10.1038/nature04712
|
[66]
|
Ma T, Thiagarajah JR, Yang H, et al. (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110: 1651-1658. doi: 10.1172/JCI0216112
|
[67]
|
Verkman AS (1990) Development and biological applications of chloride-sensitive fluorescent indicators. Am J Physiol 259: C375-388.
|
[68]
|
Wellhauser L, Kim Chiaw P, Pasyk S, et al. (2009) A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability. Mol Pharmacol 75: 1430-1438. doi: 10.1124/mol.109.055608
|
[69]
|
Laverty G, Anttila A, Carty J, et al. (2012) CFTR mediated chloride secretion in the avian renal proximal tubule. Comp Biochem Physiol A Mol Integr Physiol 161: 53-60.
|
[70]
|
Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Ann Rev Pharmacol Toxicol 54: 95-117.
|
[71]
|
Paumi CM, Chuk M, Snider J, et al. (2009) ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 73: 577-593. doi: 10.1128/MMBR.00020-09
|
[72]
|
Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4: 288-314. doi: 10.1016/j.arr.2005.02.005
|
[73]
|
Kogan I, Ramjeesingh M, Li C, et al. (2003) CFTR directly mediates nucleotide-regulated glutathione flux. Embo J 22: 1981-1989. doi: 10.1093/emboj/cdg194
|
[74]
|
Roum JH, Buhl R, McElvaney NG, et al. (1993) Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 75: 2419-2424.
|
[75]
|
Gao L, Kim KJ, Yankaskas JR, et al. (1999) Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 277: L113-118.
|
[76]
|
Marson FA, Bertuzzo CS, Ribeiro AF, et al. (2014) Polymorphisms in the glutathione pathway modulate cystic fibrosis severity: a cross-sectional study. BMC Med Genet 15: 27.
|
[77]
|
Rubera I, Duranton C, Melis N, et al. (2013) Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity. Cell Death Disease 4: e817.
|
[78]
|
Cui G, Song B, Turki HW, et al. (2012) Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers. Pflugers Arch: Eur J Physiol 463: 405-418. doi: 10.1007/s00424-011-1035-1
|
[79]
|
Bozoky Z, Krzeminski M, Muhandiram R, et al. (2013) Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. Proc Natl Acad Sci U S A 110: E4427-4436. doi: 10.1073/pnas.1315104110
|