Processing math: 100%

Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity

  • Received: 01 May 2007 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : 37N25, 34J60, 34G34.

  • The study of solitary wave solutions is of prime significance for nonlinear physical systems. The Peyrard-Bishop model for DNA dynamics is generalized specifically to include the difference among bases pairs and vis- cosity. The small amplitude dynamics of the model is studied analytically and reduced to a discrete complex Ginzburg-Landau (DCGL) equation. Ex- act solutions of the obtained wave equation are obtained by the mean of the extended Jacobian elliptic function approach. These amplitude solutions are made of bubble solitons. The propagation of a soliton-like excitation in a DNA is then investigated through numerical integration of the motion equations. We show that discreteness can drastically change the soliton shape. The impact of viscosity as well as elasticity on DNA dynamic is also presented. The profile of solitary wave structures as well as the energy which is initially evenly distributed over the lattice are displayed for some fixed parameters.

    Citation: Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 205-216. doi: 10.3934/mbe.2008.5.205

    Related Papers:

    [1] Abhyudai Singh, Roger M. Nisbet . Variation in risk in single-species discrete-time models. Mathematical Biosciences and Engineering, 2008, 5(4): 859-875. doi: 10.3934/mbe.2008.5.859
    [2] Xuan Zhang, Huiqin Jin, Zhuoqin Yang, Jinzhi Lei . Effects of elongation delay in transcription dynamics. Mathematical Biosciences and Engineering, 2014, 11(6): 1431-1448. doi: 10.3934/mbe.2014.11.1431
    [3] Gayathri Vivekanandhan, Hamid Reza Abdolmohammadi, Hayder Natiq, Karthikeyan Rajagopal, Sajad Jafari, Hamidreza Namazi . Dynamic analysis of the discrete fractional-order Rulkov neuron map. Mathematical Biosciences and Engineering, 2023, 20(3): 4760-4781. doi: 10.3934/mbe.2023220
    [4] Min Liu, Guodong Ye . A new DNA coding and hyperchaotic system based asymmetric image encryption algorithm. Mathematical Biosciences and Engineering, 2021, 18(4): 3887-3906. doi: 10.3934/mbe.2021194
    [5] Hong Lu, Linlin Wang, Mingji Zhang . Studies on invariant measures of fractional stochastic delay Ginzburg-Landau equations on Rn. Mathematical Biosciences and Engineering, 2024, 21(4): 5456-5498. doi: 10.3934/mbe.2024241
    [6] Thu-Ha Pham-Thi, Quang-Hai luong, Van-Dung Nguyen, Duc-Tan Tran, Huu-Tue Huynh . Two-dimensional complex shear modulus imaging of soft tissues by integration of Algebraic Helmoltz Inversion and LMS filter into dealing with noisy data: a simulation study. Mathematical Biosciences and Engineering, 2020, 17(1): 404-417. doi: 10.3934/mbe.2020022
    [7] J. Leonel Rocha, Sandra M. Aleixo . An extension of Gompertzian growth dynamics: Weibull and Fréchet models. Mathematical Biosciences and Engineering, 2013, 10(2): 379-398. doi: 10.3934/mbe.2013.10.379
    [8] Paulo Amorim, Bruno Telch, Luis M. Villada . A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing. Mathematical Biosciences and Engineering, 2019, 16(5): 5114-5145. doi: 10.3934/mbe.2019257
    [9] Bindu Kumari, Chandrashekhar Sakode, Raghavendran Lakshminarayanan, Prasun K. Roy . Computational systems biology approach for permanent tumor elimination and normal tissue protection using negative biasing: Experimental validation in malignant melanoma as case study. Mathematical Biosciences and Engineering, 2023, 20(5): 9572-9606. doi: 10.3934/mbe.2023420
    [10] Martha Garlick, James Powell, David Eyre, Thomas Robbins . Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences and Engineering, 2010, 7(2): 363-384. doi: 10.3934/mbe.2010.7.363
  • The study of solitary wave solutions is of prime significance for nonlinear physical systems. The Peyrard-Bishop model for DNA dynamics is generalized specifically to include the difference among bases pairs and vis- cosity. The small amplitude dynamics of the model is studied analytically and reduced to a discrete complex Ginzburg-Landau (DCGL) equation. Ex- act solutions of the obtained wave equation are obtained by the mean of the extended Jacobian elliptic function approach. These amplitude solutions are made of bubble solitons. The propagation of a soliton-like excitation in a DNA is then investigated through numerical integration of the motion equations. We show that discreteness can drastically change the soliton shape. The impact of viscosity as well as elasticity on DNA dynamic is also presented. The profile of solitary wave structures as well as the energy which is initially evenly distributed over the lattice are displayed for some fixed parameters.


  • This article has been cited by:

    1. H. Ngoubi, G. H. Ben-Bolie, T. C. Kofané, Charge transport in DNA model with vibrational and rotational coupling motions, 2017, 43, 0092-0606, 341, 10.1007/s10867-017-9455-6
    2. C.B. Tabi, T.G. Motsumi, C.D. Bansi Kamdem, A. Mohamadou, Nonlinear excitations of blood flow in large vessels under thermal radiations and uniform magnetic field, 2017, 49, 10075704, 1, 10.1016/j.cnsns.2017.01.024
    3. Slobodan Zdravković, Miljko V. Satarić, Ljupčo Hadžievski, DNA-RNA transcription as an impact of viscosity, 2010, 20, 1054-1500, 043141, 10.1063/1.3529360
    4. Dalibor Chevizovich, Davide Michieletto, Alain Mvogo, Farit Zakiryanov, Slobodan Zdravković, A review on nonlinear DNA physics, 2020, 7, 2054-5703, 200774, 10.1098/rsos.200774
    5. E S Shikhovtseva, V N Nazarov, Dynamics of conformational switchings of bistable quasi-one-dimensional macromolecules with nonlinear longitudinal stretching present, 2013, 46, 1751-8113, 225202, 10.1088/1751-8113/46/22/225202
    6. Armand Sylvin Etémé, Conrad Bertrand Tabi, Jean Felix Beyala Ateba, Henri Paul Fouda Ekobena, Alidou Mohamadou, Timoléon Crepin Kofane, Neuronal firing and DNA dynamics in a neural network, 2018, 2, 2399-6528, 125004, 10.1088/2399-6528/aaf3f7
    7. Joseph Brizar Okaly, Fabien II Ndzana, Rosalie Laure Woulaché, Timoléon Crépin Kofané, Solitary wavelike solutions in nonlinear dynamics of damped DNA systems, 2019, 134, 2190-5444, 10.1140/epjp/i2019-12992-3
    8. Joseph Brizar Okaly, Fabien II Ndzana, Rosalie Laure Woulaché, Conrad Bertrand Tabi, Timoléon Crépin Kofané, Base pairs opening and bubble transport in damped DNA dynamics with transport memory effects, 2019, 29, 1054-1500, 093103, 10.1063/1.5098341
    9. Armand S. Etémé, Conrad B. Tabi, Alidou Mohamadou, Synchronized nonlinear patterns in electrically coupled Hindmarsh–Rose neural networks with long-range diffusive interactions, 2017, 104, 09600779, 813, 10.1016/j.chaos.2017.09.037
    10. H. Ngoubi, G. H. Ben-Bolie, T. C. Kofané, Charge transport in a DNA model with solvent interaction, 2018, 44, 0092-0606, 483, 10.1007/s10867-018-9503-x
    11. Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané, Modulational instability and exact soliton solutions for a twist-opening model of DNA dynamics, 2009, 373, 03759601, 2476, 10.1016/j.physleta.2009.04.052
    12. Christel D. Bansi Kamdem, Conrad B. Tabi, Alidou Mohamadou, Dissipative Mayer’s waves in fluid-filled viscoelastic tubes, 2018, 109, 09600779, 170, 10.1016/j.chaos.2018.02.023
    13. C. B. Tabi, A. Mohamadou, T. C. Kofane, Modulational instability in the anharmonic Peyrard-Bishop model of DNA, 2010, 74, 1434-6028, 151, 10.1140/epjb/e2010-00062-1
    14. V. Vasumathi, M. Daniel, Base-pair opening and bubble transport in a DNA double helix induced by a protein molecule in a viscous medium, 2009, 80, 1539-3755, 10.1103/PhysRevE.80.061904
    15. Yulong Cao, Lei Gao, Stefan Wabnitz, Zhiqiang Wang, Qiang Wu, Lingdi Kong, Ziwei Li, Ligang Huang, Wei Huang, Tao Zhu, Experimental revealing of fiber laser soliton build-up activated by shaking-soliton triplets, 2022, 147, 00303992, 107677, 10.1016/j.optlastec.2021.107677
    16. A. Tripathy, S. Sahoo, New Dynamic Multiwave Solutions of the Fractional Peyrard–Bishop DNA Model, 2023, 18, 1555-1415, 10.1115/1.4063223
    17. Blaise P Edouma Biloa, Conrad B Tabi, Henri P Ekobena Fouda, Timoléon C Kofané, Nonlinear dissipative wave trains in a system of self-propelled particles, 2023, 98, 0031-8949, 115230, 10.1088/1402-4896/acfb46
    18. Issa Sali, Henock Ngoubi, Réné Essono, Henri P. Ekobena Fouda, Conrad B. Tabi, Inhomogeneity-induced multi-solitons in gyrotropic molecular chains, 2025, 197, 09600779, 116493, 10.1016/j.chaos.2025.116493
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2670) PDF downloads(537) Cited by(18)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog