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ABSTRACT. The study of solitary wave solutions is of prime significance for
nonlinear physical systems. The Peyrard-Bishop model for DNA dynamics is
generalized specifically to include the difference among bases pairs and vis-
cosity. The small amplitude dynamics of the model is studied analytically
and reduced to a discrete complex Ginzburg-Landau (DCGL) equation. Ex-
act solutions of the obtained wave equation are obtained by the mean of the
extended Jacobian elliptic function approach. These amplitude solutions are
made of bubble solitons. The propagation of a soliton-like excitation in a DNA
is then investigated through numerical integration of the motion equations. We
show that discreteness can drastically change the soliton shape. The impact
of viscosity as well as elasticity on DNA dynamic is also presented. The pro-
file of solitary wave structures as well as the energy which is initially evenly
distributed over the lattice are displayed for some fixed parameters.

1. Introduction. The local opening of DNA is an intriguing phenomenon from a
statistical-physics point of view, but is also essential for its biological function. For
instance, the transcription and replication of our genetic code cannot take place
without the unwinding of the DNA double helix. Although these biological pro-
cesses are driven by protein, there might well be a relation between these biological
opening processes and the spontaneous bubble formation. The key problem in
DNA biophysics is how to relate functional properties of DNA with its structural
and physical dynamical characteristics. The local openings can be analytically
described as breather-like objects of small amplitude, which nevertheless have in-
teresting properties: as long as their amplitude is small enough, they can move
along the chain, collect energy and grow [1]. They can also be trapped by some
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local dishomogeneities [2], which suggests that the properties of breathers could al-
low the formation of the transcription bubble after the interaction with the bound
RNA-polymerase.

However, biological macromolecules undergo a complex dynamics, and the knowl-
edge of their motions provides insight into biological phenomena. Englander et al.
[3] suggested the presence and the functional role of solitonic excitation in the DNA
double chain. Discrete solitons in nonlinear lattices have been the focus of consid-
erable attention in diverse branches of science [4]. Discrete solitons are possible in
several physics fields, such as biological systems [5], atomic chains [6], solid state
physics [7], electrical lattices [8], Bose-Einstein condensate[9], and DNA molecules
[10]. Recently, attention has been focused on the dynamics of large amplitudes of
localized excitation in DNA, in which the double helix fluctuates between an open
state and its equilibrium structure. These oscillatory states, also called the breath-
ing mode [11] or fluctuational opening, are expected to be precursor states for the
local denaturation observed during DNA transcription or thermal denaturation.

Usually, the dynamic of such systems is modelled by the nonlinear Schrdinger
(NLS) equation or the complex Ginzburg-Landau (CGL) equation [12]. Hence,
their exact solution can be checked through different methods, such as the Darboux
transformation [13], various Tanh methods [14-16], the inverse scattering method
[17], the homogeneous balance method [18], the Painlev truncation expansion [19],
and the Jacobian elliptic functions approach [20, 21].

In this paper, we investigate nonlinear (NL) wave modulation as well as possible
stationary states in the form of localized structures of the PB model of DNA dy-
namics with viscosity. The paper is organized in the following fashion. In Section
2, we show that the modulation of the NL wave is described by DCGL equation.
Possible exact travelling solutions of the model understudy are obtained through
the Jacobian elliptic function approach in Section 3. The profile of different non-
linear excitations and energy are graphically exhibited in Section 4. A summary
and discussion of our work is contained in Section 5.

2. Modulated waves in the Peyrard-Bishop model of DNA dynamics.

2.1. Description of the Model. We consider a simplified geometry for the DNA
chain. The asymmetry of the base pairs is neglected, and each strand is represented
by an array of point masses which correspond to nucleotides. The chain consist of
two strands, S; and S;. We focus our attention only on transverse motions. The
displacement from equilibrium of the nth nucleotide in strand S7 is denoted by
Yn, and in strand Sy it is denoted by z,. The longitudinal displacements are not
considered, because their typical amplitudes are significantly smaller than the am-
plitudes of the transverse ones. Two neighboring nucleotides on the same strand
are assumed to interact through a harmonic potential, because the displacements
due to the bubbles change only gradually from one site to the next. On the other
hand, the bonds connecting the two bases belonging to different strands are ex-
tremely stretched when the double helix opens locally. The Morse potential is used
to describe not only the hydrogen bonds but the repulsive interaction between the
phosphate and surrounding solvent action. The Hamiltonian for the model is

N
1= S [Gm + 22) + Vi =2+ bl = v+ G = 2l ()
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The first term is the kinetic energy of the transverse vibrations, and the second
and third terms are respectively the potential energies of the transverse and longi-
tudinal connections. The on-site potential, announced to be the Morse, takes the
form V(yn — zn) = D[e™20n~2a) — 1]2_ where D is the dissociation energy and a
a parameter homogeneous to the inverse of a length, which sets the spatial scale of
the potential.

The Hamiltonian (1) gives the equations of motion for y,, and z,.

Min = kYnt1 + Yn—1 — 2yn) + 2aD(e”*Wr72n) — )emalun=zn) (2)
mi, = k(Zns1 + 2Zn1 — 22p) — 2aD(e"0Wn =) _ 1)emalyn =), (3)

To analyze motion of the two strands it is convenient to introduce the following
dependent variables,

= (Yo +2)/V2, @0 = (Yo — 2) V2. (4)

We have then,
miy, = k(rpe1 +rn—1—2r,) (5)
ma, = k(Tpt1 +Tpno1—2x,) + 2v/2aDe™*V2%n (e*aﬁ“ -1). (6)

The variables r, and x,, represent the in-phase and out-of-phase motion respec-
tively. Equation (5) is a linear differential-difference equation with the usual plane
wave solutions. On the other hand, equation (6) contains nonlinear terms. It is
interesting to relate our model to nonlinear excitations.

To deal with a more realistic description of DNA dynamics, which takes into
account the impact of the medium, surrounding a DNA molecule we would consider
the viscosity [22,23]. Recently, Peyrard [24] stressed the importance of hydrating
water for the biochemical activities of proteins and DNA. Since water molecules
are highly polar, they form an ordered network on the surface of a protein along
which protons can be transferred. The formation of this network with long-range
connecting has been detected as a percolation when the water content approaches
0.5 g per gram of protein [25]. The helicoidal spring constant may be suggested to
reflect the mediating role of the water molecules. Moreover, the helicoidal structure
itself arises as the result of optimization of the interplay between hydrogen bonding,
hydrophobicity and long-range connectivity. On the other hand, we must take into
account the fact that the solvating water does act as a viscous medium that damps
out DNA dynamic, favoring energy expenditure. It appears that a viscous force
proportional to the velocity of nucleotide oscillations does not affect the out-of-
phase base pair dynamics, so we took into consideration a viscous force of the
Newtonian kind, proportional to the square of the velocity. Here we start from
a probably more realistic and favorable approach, that viscous force can be taken
into consideration to express the effect of the medium [22,23]. Therefore the viscous
forces exerted on the bases within a pair n are —ag,, and —az,. It leads to the
effective damping force acting on the out-of-phase base pair motion as follows:
F, = —axy,. Now, the perturbed equation of motion can be written as follows

My + aip = k(Tpy1 + Tno1 — 22,) + +2\/§aDe_“‘/§”’“ (e_‘“/i””" -1, (7)

which becomes, in the dimensionless form

iy + Y0 = K1 (tpp1 + Un—1 — 2u,) —e %" 4 e~ 2un (8)



208 C. B. TABI, A. MOHAMADOU, T. C. KOFANE

k

where the dimensionless parameters are u, = ayv/2xn, t = wot, K1 = %, Q=/x

and v = %= with wd = %. Since we need to perform analytical calculation, it

is important to expand the terms exponentially until the third order, and we get

3 7
U4yt = K1 (Ung1 + Uno1 — 2Uyp) — Uy + §ui — éui 9)

Numerical experiment would be performed on equation(8).

2.2. The discrete complex Ginzburg-Landau equation to describe DNA
dynamics. Several methods for the study of the NL wave modulation have been
put forward in the past, following the general direction of distinguishing fast and
slow evolution scales in space and time. A priori, they all suggest a certain ap-
proximation, which might limit both the region of their validity and the accuracy
of the corresponding results. A common element in all of them is that they lead
to some equation which describes the evolution of the modulated amplitude of the
NL wave considered. Very often, the equation in question can take the form of
the NLS equation or the CGL equation. Two interesting aspects of the latter are
(a) that it exhibits the interesting phenomenon of modulational instability i.e., the
possibility of a plane wave’s bursting into a series of localized pulses (already widely
studied in optical fibers, for example); and (b) that it accepts solitary wave solu-
tions. The nonlinearity in the dynamics of the lattice might be imposed either by
the anharmonicity of the interaction between the atoms or by the existence of an
on-site potential. In the first case, it has been shown in a general manner that a
constant term (a non-oscillating NL wave) appears in the same order as the small
amplitude phonon considered (first order perturbation) and hints have been made
that its existence might influence the stability of the modulated envelope soliton
[26]. However, in the second case, the first constant contribution usually appears in
the second order in perturbation, together with a second harmonic term. Among
the methods developed to study the NLS wave modulation one can name: the
method developed by Newell et al., which consists in studying the continuum limit,
making no hypothesis for the form of the solutions. Another way to derive the
NLS equation is by studying the NL (amplitude dependent) dispersion relation ob-
tained by considering a phonon in the first order of perturbation, in the discrete
(or continuum) equation of motion. The next method consists of considering the
continuum limit only for the (slowly varying, anyway) amplitude, but treating the
phase exactly. To do so, however, one must suppose a specific form for the solution
[11,12]. Recently, Kivshar and Peyrard [27] have developed an interesting approach,
deriving the NLS equation in a Klein-Gordon chain. Along the same line, Ndzana
et al. [28] obtained the discrete complex Ginzburg-Landau (DCGL) equation in the
nonlinear electrical transmission line. Hence, we consider that the small-amplitude
solutions u, of the above expanded equation can be written in the form a Fourier
series as

+oo
un(t) = > aPet, (10)
p=—00

Introducing equation(10) into equation(9) yields
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2a® da'® da'P) .
(o + 2ipu Zt —puga )t =y ST ipualp) e
P P
+Z n+1 +a(p) —2a{P)) — (P)]eiPeet (11)

(e = G5 e+ 0
p

We then consider the first harmonic p = 1, which leads us to DCGL equation

D dal)
ity T wial) = —y[—/— + iwpalV] + K (ay, (1) (1) —2a{D)

dt d (12)
= Tl

Rescaling the coefficients, the time-dependent amplitude can then be written in the
form

4 1—w?42K]

al (1) =\ e (13)
Introducing equation(13) into equat10n(12), we finally get the following DCGL
equation

dw .
W + p(wn-‘rl + 1%—1) + Q|wn|2¢n = wan, (14)
where p, q, and J are complex parameters; i.e, p = p1 + ip2, 4 = q1 + iqz and

6 = 01 + 162 with

2w, . 7K1
p1 = 4w5+727 b2 = 4w§+727
_ 4wy _ 2y
M= 3w 192) 2= 3w +2) (15)
5 — (1 +w? +2K7) 5 — Y2(1+w? +2K,)
1— = ) 2 — =

4w? 4 2 2wy (4w? + ~2)
Equation (14) is the so-called discrete cubic complex Ginzburg-Landau (DCGL)
equation. This equation is known to play a ubiquitous role in science. DGL models
have also been considered in the literatures [12,28-34]. These DGL lattices are quite
often used to describe a number of physical systems, such as Taylor and frustrated
vortices in hydrodynamics [29,30] and semiconductor laser arrays in optics [31-34].
In these latter studies, the DGL model has been predominantly used in connection
with spatiotemporal chaos, instabilities, and turbulence [29,30]. Soto-Crespo et al.
[33] studied a discrete CGL equation having several exact solutions. However, by
a numerical study, they found that the solitons are unstable in the model where
the highest nonlinearity is cubic. Efremidis and Christodoulides [34] also studied
another DCGL equation with all local nonlinear terms. They found that discrete
solitons of the DCGL equation have several features that have no counterparts
in either continuous limit or other conservative discrete models. The interest in
the dynamics of discrete systems comes from the diversity of their applications in
physical and biological sciences. The present study is also relevant because the
DCGL equation is recovered in the PB models of DNA dynamics.
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2.3. The soliton-solution of the DCGL equation. Several powerful methods
have been proposed to solve differential-difference equations and to obtain exact
solutions to nonlinear partial differential equation. One can think of the inverse
scattering method [17], the tanh method [14-16], the Jacobian elliptic function
method [20,21], the multilinear variable separation and so on. To obtain some
exact solutions of equation (14), we use the Jacobian elliptic function approach.
First, we make the transformations

Un=€on(&n), On=pn+aqt+¢, &n=kn+ct+x, (16)

replacing ¢y, in equation(9), and, separating the real from the imaginary part, we
get the following set of equations:

—q9n + P1(Pnt1 + Pn-1)cos(p) — p2(Pnt1 — Pn—1)sin(p) + 1) + 20, =0 (17)

), + p2(@ns1 + ©n-1)cos(p) + P1(Pn+1 — n—1)sin(p) + g2l — d1¢y = 0. (18)

With the properties of Jacobian elliptic function [20,21], it is possible to expand
and balance the linear term of the highest order with the highest nonlinear terms
in equations (17) and (18); i.e,

on(&n) = ao + arsn(&,) (19)
sn(&n)en(k)dn(k) 4 sn(k)en(§n)dn(én)

1-— m23n2(£n)sn (k )
1-— m2sn2(§n)sn2(k)

Now, we substitute the above equations into equations(18) and (20). This leads us
to a set of algebraic equations with ag, a;, ¢, and q to be determined. We then
find after some calculations

Ont1(§n) = a0 + a1 (20)

Vn—1(&n) = a0+ a1 (21)

ap =0, a = :I:m\/cn Yeos(p)dn(k)sn(k) (22)
¢ = =2p1sn(k)sin(p), q= b2+ 2p1en(k)dn(k)cos(p)
When m — 1, the parameters take the form
ap =10
ay = :i:m\/ L sech?(k)cos(p) tanh(k)
= —2p1tanh(k:)sm(p)
(23)

q = 0y + 2p1sech®(k)cos(p)
0,, = pn + (02 + 2p1sech®(k)cos(p))t + ¢
& = kn— (2pitanh(k)sin(p))t + s,

and the function
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= :I:m\/—sech2 Jeos(p) tanh(k) tanh(k n — (2p1tanh(k)sin(p))t + <)

Uy = im\/—qusechQ(k:)cos(p) tanh(k) tanh(k n — (2pitanh(k)sin(p))t + <)
1

x exp (i(p n + (65 + 2p1sech?(k)cos(p))t + ¢))

(24)
a$11> can then be written, taking the + sign, as
4 2
aD(t) =my/ = b \/—plsec k)cos(p)
x tanh(k) tanh(k n — (2p1tanh(k)sin(p))t + <) (25)

1—wb+2K1

5 + 65 + 2pysech?(k)cos(p)]t + €)).
W

x exp (i(pn+ |

The general solution of equation (8), giving the displacement of the base pairs; i.e,
Uy, therefore take the form:

Up(t) = m\/—S?M)sechQ(kz)cos(p)
x tanh(k) tanh(k n — (2p1tanh(k)sin(p))t + <) (26)

1+w? +2K,
2(.«.)[,

Solution (26) is a dark soliton as displayed by figure 1. The static dark solitons
of the NLS equation can be classified under two broad classes. Bubbles are one-
, two-, and three-dimensional nontopological solitons arising typically in models
with competing interactions [35-37]. The second class includes topological solitons
of the Gross-Pitayevski equation and their one-dimensional counterparts, kinks.
The static bubbles are always unstable [35-39], and this property endows them
with a transparent physical interpretation as nuclei of the first-order transition
[40]. The above classification (topological vs. nontopological) is difficult to extend
to traveling dark solitons, which always have some topological properties (the phase
approaches different values at different spatial infinities). One-dimensional traveling
dark solitons have been experimentally observed in optical fibers [41,42]; it was
noticed that dark solitons are less influenced by noise, and their interaction is
weaker than that of bright solitons. These facts suggest the feasibility of the use of
dark solitons in optical communications [42]. In optics, much attention has been
devoted to spatial dark solitons. Here, we also find that dark solitons are possible
in DNA dynamics.

x exp (i(pn+| + 69 + 2p1sech?(k)cos(p)]t + €)).

3. Numerical results. Direct numerical simulations were run to determine the
outcome of the evolution of the exact solution derived in the previous section
through the system. We have integrated equation (8) using the fourth-order Runge-
Kutta scheme with a time step equal to 0.055. Most of simulations are made with
a set of 300-molecule base pairs with periodic boundary conditions. The initial
condition is the solution of (26):
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FIGURE 1. Profile of the exact bubble soliton solution for the pa-
rameters 0 = 0.5, Ky = 0.002, p = 0.06, £ = 0.3, m = 0.95.

unp(t =0) = m\/—SmwbsechQ(k)cos(p) tanh(k) tanh(kn + <) exp(i(pn + ¢)).
(27)

Now we launch solution (27) through the system. As a first remark, we note that
during the propagation, the initial bubble soliton solution is transformed in pulse
solitons. For the parameters § = 0.5, K1 = 0.02, p = 0.001, £ = 0.3, and m = 0.95,
we observe in figure 2(a) a train of pulse with an ultrashort width propagating
in the DNA chain. From the previous parameters, we increase the value of the
wavenumber p which is now equal to p = 0.008. Figure 2 (b) depicts this case. The
amplitude of the pulse has increased as well as its width. As we continue to increase
the value of p (p = 0.02, p = 0.04, and p = 0.06), one sees respectively, in figure 2(c)
through figure 2 (e), that the number of pulses in the chain drastically decreases.
As the number of pulses in the chain decreases, the width of these pulses increases.
But, the amplitude of the pulse fluctuates (the amplitude increases figure 2(b),
decreases figure 2(c), then increases figure 2(d) and again decreases). Because of
the discrete nature of the lattice, the difference in the shape of the pulse propagating
through the lattice strongly depends on the range of the values of the wavenumber
p-

Many physical phenomena involve some localization of energy in space. Forma-
tion of vortices in hydrodynamics, self-focusing in optics or plasma, the formation
of dislocations in solids under stress, and self-trapping of energy in proteins are well
known examples. Hence, since Benjamin and Feir [43] discovered the modulational
instability of Stokes waves in fluids, nonlinear energy localization in continuous
media has been extensively investigated but very little has been done in lattices
although it would be of wide interest for solids or macromolecules. Also, following
the original work by Anderson [44], disorder-induced localization has been widely
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FIGURE 2. Propagation of the initial solution in the chain for dif-
ferent value of the wavenumber p changes (a) 6 = 0.5, K; = 0.02,
p =0.001, £k =0.3, m =0.95 (b) 6 = 0.5, K; = 0.02, p = 0.008,
k=03 m=0095(c) 6 =05, K; =0.02, p=0.02, £k = 0.3,
m =0.95 (d) 6 = 0.5, K1 = 0.02, p =0.04, k = 0.3, m = 0.95 (e)
0=0.5, K1 =0.02, p=0.06, k = 0.3, m = 0.95

studied, but, more recently, attention has turned to the possibility of localized en-
ergy in a homogeneous system due to nonlinear effects. We have monitored the
energy along the DNA chain,

n= %(%)2+W(un,un+1)+W(un_1,un) + V(un). (28)
For the parameters § = 0.5, p = 0.04, £ = 0.3, and m = 0.95, we plot in figure 3 the
shape of the soliton solution as well as the energy of the system. As the elasticity
coefficient K increases, the amplitude of the pulse also increases (See Figures 3(a)
for K1 = 0.1 and figures 3(c) for K; = 0.4, respectively). The elastic coupling
constant K7 also influences the energy barrier of the DNA chain as plotted in Fig.
3(b) for K1 = 0.1 and in Fig. 3(d) for K; = 0.4. Figures 3(b) and 3(d) show
that energy is localized in our system. Many studies have pointed out that the
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FIGURE 3. Pulse pattern generated during the propagation and
time evolution of the density energy for the parameters § = 0.5,

p = 0.04, k = 0.3, m = 0.95 (a) Profile of the exact solution for
K; = 0.1 (b) The density energy for K; = 0.1 (¢) Profile of the
exact solution for K7 = 0.4 (d) The density energy for K; = 0.4

energy initially concentrated in one mode will finally flow to all available modes in
the Fourier space. Specifically, it has been demonstrated in computer simulation
that modulational instability can be used to generate intrinsic localized vibrational
modes in nonlinear lattices via optimal control scheme [45, 46]. Modulational in-
stability is usually observed in the same parameters region where bright and dark
solitons are observed. The previous results also confirm that localized excitation
can be generated in the DNA chain, as the energy density is distributed in real
space.

Next, for different value of the viscosity coefficient, we have plotted in figure 4 the
energy density of the chain. figures 4 (a) and (b) represent the propagation of
the pulse solution as well as the density energy of the system for the parameters
K, = 0.001, p = 0.02, Kk = 0.3, m = 0.95 and § = 0.05. figures 4 (c) and (d)
show the behavior of the system for 6 = 0.09. From figures 4 (b) and 4 (d), we see
that the density energy is only localized in one mode. As the viscosity coefficient
increases, we note that the amplitude of the exact solution decreases as can be
viewed in figures 4(a) and 4(d).

4. Conclusion. Our results, using the nonlinear DNA chain as an example, point
out the crucial role of discreteness on the DNA chain. First, the analytical approach
as shown that the propagation of nonlinear waves in the DNA chain is reduced to the
discrete complex Ginzburg-Landau equation. Using the elliptic function approach,
we have derived the exact solution of this system made of bubble solitons. From
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FIGURE 4. Pulse pattern generated during the propagation and
time evolution of the density energy for the parameters K; = 0.001,

p =0.02, £ = 0.3, m = 0.95 (a) Profile of the exact solution for

0 = 0.05 (b) density energy for 6 = 0.05 (c¢) Profile of the exact
solution § = 0.09 (d) density energy for § = 0.09

numerical simulations, we have seen that the initial bubble soliton is transformed
into pulse a soliton. The mechanism of discreteness-induced energy localization that
appears in a large variety of physical systems has also been shown in the nonlinear
model of DNA.
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