Estimation and identification of parameters in a lumped cerebrovascular model

  • Received: 01 July 2008 Accepted: 29 June 2018 Published: 01 December 2008
  • MSC : Primary: 92C30, 92C35, 92C50, 65L09; Secondary: 93B40

  • This study shows how sensitivity analysis and subset selection can be employed in a cardiovascular model to estimate total systemic resistance, cerebrovascular resistance, arterial compliance, and time for peak systolic ventricular pressure for healthy young and elderly subjects. These quantities are parameters in a simple lumped parameter model that predicts pressure and flow in the systemic circulation. The model is combined with experimental measurements of blood flow velocity from the middle cerebral artery and arterial finger blood pressure. To estimate the model parameters we use nonlinear optimization combined with sensitivity analysis and subset selection. Sensitivity analysis allows us to rank model parameters from the most to the least sensitive with respect to the output states (cerebral blood flow velocity and arterial blood pressure). Subset selection allows us to identify a set of independent candidate parameters that can be estimated given limited data. Analyses of output from both methods allow us to identify five independent sensitive parameters that can be estimated given the data. Results show that with the advance of age total systemic and cerebral resistances increase, that time for peak systolic ventricular pressure is increases, and that arterial compliance is reduced. Thus, the method discussed in this study provides a new methodology to extract clinical markers that cannot easily be assessed noninvasively.

    Citation: Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumpedcerebrovascular model[J]. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93

    Related Papers:

    [1] Lingli Gan, Xiaoling Yin, Jiating Huang, Bin Jia . Transcranial Doppler analysis based on computer and artificial intelligence for acute cerebrovascular disease. Mathematical Biosciences and Engineering, 2023, 20(2): 1695-1715. doi: 10.3934/mbe.2023077
    [2] Hongtao Liu, Shuqin Liu, Xiaoxu Ma, Yunpeng Zhang . A numerical model applied to the simulation of cardiovascular hemodynamics and operating condition of continuous-flow left ventricular assist device. Mathematical Biosciences and Engineering, 2020, 17(6): 7519-7543. doi: 10.3934/mbe.2020384
    [3] R. A. Everett, Y. Zhao, K. B. Flores, Yang Kuang . Data and implication based comparison of two chronic myeloid leukemia models. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1501-1518. doi: 10.3934/mbe.2013.10.1501
    [4] Luca Dedè, Francesco Regazzoni, Christian Vergara, Paolo Zunino, Marco Guglielmo, Roberto Scrofani, Laura Fusini, Chiara Cogliati, Gianluca Pontone, Alfio Quarteroni . Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study. Mathematical Biosciences and Engineering, 2021, 18(4): 3364-3383. doi: 10.3934/mbe.2021168
    [5] Tianqi Song, Chuncheng Wang, Boping Tian . Mathematical models for within-host competition of malaria parasites. Mathematical Biosciences and Engineering, 2019, 16(6): 6623-6653. doi: 10.3934/mbe.2019330
    [6] Li Cai, Qian Zhong, Juan Xu, Yuan Huang, Hao Gao . A lumped parameter model for evaluating coronary artery blood supply capacity. Mathematical Biosciences and Engineering, 2024, 21(4): 5838-5862. doi: 10.3934/mbe.2024258
    [7] Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd . Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences and Engineering, 2012, 9(3): 553-576. doi: 10.3934/mbe.2012.9.553
    [8] H.T. Banks, S. Dediu, H.K. Nguyen . Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences and Engineering, 2007, 4(3): 403-430. doi: 10.3934/mbe.2007.4.403
    [9] H. T. Banks, Robert Baraldi, Karissa Cross, Kevin Flores, Christina McChesney, Laura Poag, Emma Thorpe . Uncertainty quantification in modeling HIV viral mechanics. Mathematical Biosciences and Engineering, 2015, 12(5): 937-964. doi: 10.3934/mbe.2015.12.937
    [10] Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers . A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences and Engineering, 2009, 6(3): 649-661. doi: 10.3934/mbe.2009.6.649
  • This study shows how sensitivity analysis and subset selection can be employed in a cardiovascular model to estimate total systemic resistance, cerebrovascular resistance, arterial compliance, and time for peak systolic ventricular pressure for healthy young and elderly subjects. These quantities are parameters in a simple lumped parameter model that predicts pressure and flow in the systemic circulation. The model is combined with experimental measurements of blood flow velocity from the middle cerebral artery and arterial finger blood pressure. To estimate the model parameters we use nonlinear optimization combined with sensitivity analysis and subset selection. Sensitivity analysis allows us to rank model parameters from the most to the least sensitive with respect to the output states (cerebral blood flow velocity and arterial blood pressure). Subset selection allows us to identify a set of independent candidate parameters that can be estimated given limited data. Analyses of output from both methods allow us to identify five independent sensitive parameters that can be estimated given the data. Results show that with the advance of age total systemic and cerebral resistances increase, that time for peak systolic ventricular pressure is increases, and that arterial compliance is reduced. Thus, the method discussed in this study provides a new methodology to extract clinical markers that cannot easily be assessed noninvasively.


  • This article has been cited by:

    1. Christian Haargaard Olsen, Johnny T. Ottesen, Ralph C. Smith, Mette S. Olufsen, Parameter subset selection techniques for problems in mathematical biology, 2019, 113, 0340-1200, 121, 10.1007/s00422-018-0784-8
    2. I. C. F. Ipsen, C. T. Kelley, S. R. Pope, Rank-Deficient Nonlinear Least Squares Problems and Subset Selection, 2011, 49, 0036-1429, 1244, 10.1137/090780882
    3. Christopher J. Arthurs, Kevin D. Lau, Kaleab N. Asrress, Simon R. Redwood, C. Alberto Figueroa, A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise, 2016, 310, 0363-6135, H1242, 10.1152/ajpheart.00517.2015
    4. R. Gul, C. Schütte, S. Bernhard, Mathematical modeling and sensitivity analysis of arterial anastomosis in the arm, 2016, 40, 0307904X, 7724, 10.1016/j.apm.2016.03.041
    5. Sebastián Acosta, Daniel J. Penny, Ken M. Brady, Craig G. Rusin, An effective model of cerebrovascular pressure reactivity and blood flow autoregulation, 2018, 115, 00262862, 34, 10.1016/j.mvr.2017.08.006
    6. Fuyou Liang, Koichi Sughimoto, Kozo Matsuo, Hao Liu, Shu Takagi, Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation, 2014, 30, 20407939, 1000, 10.1002/cnm.2641
    7. C.A.D. Leguy, E.M.H. Bosboom, A.S.Z. Belloum, A.P.G. Hoeks, F.N. van de Vosse, Global sensitivity analysis of a wave propagation model for arm arteries, 2011, 33, 13504533, 1008, 10.1016/j.medengphy.2011.04.003
    8. Nicole M. Panza, Andrew A. Wright, James F. Selgrade, A delay differential equation model of follicle waves in women, 2016, 10, 1751-3758, 200, 10.1080/17513758.2015.1115564
    9. Maria-Veronica Ciocanel, Steffen S. Docken, Rebecca E. Gasper, Caron Dean, Brian E. Carlson, Mette S. Olufsen, Cardiovascular regulation in response to multiple hemorrhages: analysis and parameter estimation, 2019, 113, 0340-1200, 105, 10.1007/s00422-018-0781-y
    10. Brett Matzuka, Jesper Mehlsen, Hien Tran, Mette Sofie Olufsen, Using Kalman Filtering to Predict Time-Varying Parameters in a Model Predicting Baroreflex Regulation During Head-Up Tilt, 2015, 62, 0018-9294, 1992, 10.1109/TBME.2015.2409211
    11. Nakeya D. Williams, Renee Brady, Steven Gilmore, Pierre Gremaud, Hien T. Tran, Johnny T. Ottesen, Jesper Mehlsen, Mette S. Olufsen, Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models, 2019, 79, 0303-6812, 987, 10.1007/s00285-019-01386-9
    12. Mitchel J. Colebank, M. Umar Qureshi, Mette S. Olufsen, Sensitivity analysis and uncertainty quantification of 1‐D models of pulmonary hemodynamics in mice under control and hypertensive conditions, 2019, 2040-7939, 10.1002/cnm.3242
    13. Nitin A. Krishna, Hannah M. Pennington, Canaan D. Coppola, Marisa C. Eisenberg, Richard C. Schugart, Connecting Local and Global Sensitivities in a Mathematical Model for Wound Healing, 2015, 77, 0092-8240, 2294, 10.1007/s11538-015-0123-3
    14. Leszek Pstras, Karl Thomaseth, Jacek Waniewski, Italo Balzani, Federico Bellavere, Mathematical modelling of cardiovascular response to the Valsalva manoeuvre, 2016, 1477-8599, dqw008, 10.1093/imammb/dqw008
    15. Maxwell Lewis Neal, 2010, Chapter 5, 978-1-4419-6690-2, 81, 10.1007/978-1-4419-6691-9_5
    16. E. Benjamin Randall, Anna Billeschou, Louise S. Brinth, Jesper Mehlsen, Mette S. Olufsen, A model-based analysis of autonomic nervous function in response to the Valsalva maneuver, 2019, 127, 8750-7587, 1386, 10.1152/japplphysiol.00015.2019
    17. A quasi-lumped model for the peripheral distortion of the arterial pulse, 2012, 9, 1551-0018, 175, 10.3934/mbe.2012.9.175
    18. Antoine Pironet, Thomas Desaive, J. Geoffrey Chase, Philippe Morimont, Pierre C. Dauby, Model-Based Computation of Total Stressed Blood Volume from a Preload Reduction Experiment, 2014, 47, 14746670, 5641, 10.3182/20140824-6-ZA-1003.00548
    19. Gregory Arbia, Chiara Corsini, Catriona Baker, Giancarlo Pennati, Tain-Yen Hsia, Irene E. Vignon-Clementel, Pulmonary Hemodynamics Simulations Before Stage 2 Single Ventricle Surgery: Patient-Specific Parameter Identification and Clinical Data Assessment, 2015, 6, 1869-408X, 268, 10.1007/s13239-015-0212-3
    20. R. Lal, F. Nicoud, E. Le Bars, J. Deverdun, F. Molino, V. Costalat, B. Mohammadi, Non Invasive Blood Flow Features Estimation in Cerebral Arteries from Uncertain Medical Data, 2017, 45, 0090-6964, 2574, 10.1007/s10439-017-1904-7
    21. Adam Mahdi, Jacob Sturdy, Johnny T. Ottesen, Mette S. Olufsen, Julia C. Arciero, Modeling the Afferent Dynamics of the Baroreflex Control System, 2013, 9, 1553-7358, e1003384, 10.1371/journal.pcbi.1003384
    22. Aurelio A. de los Reyes, Eunok Jung, Franz Kappel, Stabilizing Control for a Pulsatile Cardiovascular Mathematical Model, 2014, 76, 0092-8240, 1306, 10.1007/s11538-014-9958-2
    23. Desmond Dillon-Murphy, Alia Noorani, David Nordsletten, C. Alberto Figueroa, Multi-modality image-based computational analysis of haemodynamics in aortic dissection, 2016, 15, 1617-7959, 857, 10.1007/s10237-015-0729-2
    24. Helen Moore, How to mathematically optimize drug regimens using optimal control, 2018, 45, 1567-567X, 127, 10.1007/s10928-018-9568-y
    25. Johnny T. Ottesen, Vera Novak, Mette S. Olufsen, 2013, Chapter 10, 978-3-642-32881-7, 177, 10.1007/978-3-642-32882-4_10
    26. Amanda L. Colunga, Karam G. Kim, N. Payton Woodall, Todd F. Dardas, John H. Gennari, Mette S. Olufsen, Brian E. Carlson, Deep phenotyping of cardiac function in heart transplant patients using cardiovascular system models, 2020, 598, 0022-3751, 3203, 10.1113/JP279393
    27. G. Mulder, A. Marzo, A. C. B. Bogaerds, S. C. Coley, P. Rongen, D. R. Hose, F. N. van de Vosse, Patient-Specific Modeling of Cerebral Blood Flow: Geometrical Variations in a 1D Model, 2011, 2, 1869-408X, 334, 10.1007/s13239-011-0060-8
    28. Salwa Mansour, Édouard Canot, Mohamad Muhieddine, Identification of the Thermophysical Properties of the Soil by Inverse Problem, 2016, 138, 0022-1481, 10.1115/1.4032947
    29. M. S. Olufsen, B. Smith, J. Mehlsen, J. Ottesen, 2011, The impact of gravity during head-up tilt, 978-1-4577-1589-1, 2399, 10.1109/IEMBS.2011.6090669
    30. George Qian, Adam Mahdi, Sensitivity analysis methods in the biomedical sciences, 2020, 323, 00255564, 108306, 10.1016/j.mbs.2020.108306
    31. F. Kappel, Modeling the Dynamics of the Cardiovascular-respiratory System (CVRS) in Humans, a Survey, 2012, 7, 0973-5348, 65, 10.1051/mmnp/20127506
    32. Andrew D. Marquis, Andrea Arnold, Caron Dean-Bernhoft, Brian E. Carlson, Mette S. Olufsen, Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model, 2018, 304, 00255564, 9, 10.1016/j.mbs.2018.07.001
    33. Mette S. Olufsen, Johnny T. Ottesen, A practical approach to parameter estimation applied to model predicting heart rate regulation, 2013, 67, 0303-6812, 39, 10.1007/s00285-012-0535-8
    34. Mikio C. Aoi, C.T. Kelley, Vera Novak, Mette S. Olufsen, Optimization of a Mathematical Model of Cerebral Autoregulation Using Patient Data, 2009, 42, 14746670, 181, 10.3182/20090812-3-DK-2006.0088
    35. Kevin D. Lau, C. Alberto Figueroa, Simulation of short-term pressure regulation during the tilt test in a coupled 3D–0D closed-loop model of the circulation, 2015, 14, 1617-7959, 915, 10.1007/s10237-014-0645-x
    36. Antoine Pironet, Thomas Desaive, J. Geoffrey Chase, Philippe Morimont, Pierre C. Dauby, Model-based computation of total stressed blood volume from a preload reduction manoeuvre, 2015, 265, 00255564, 28, 10.1016/j.mbs.2015.03.015
    37. Xiaoyun Li, Ling Wang, Chi Zhang, Shuyu Li, Fang Pu, Yubo Fan, Deyu Li, Why Is ABI Effective in Detecting Vascular Stenosis? Investigation Based on Multibranch Hemodynamic Model, 2013, 2013, 1537-744X, 1, 10.1155/2013/185691
    38. M. Keith Sharp, Jerry Joseph Batzel, Jean-Pierre Montani, Space physiology IV: mathematical modeling of the cardiovascular system in space exploration, 2013, 113, 1439-6319, 1919, 10.1007/s00421-013-2623-x
    39. Sébastien de Bournonville, Antoine Pironet, Chris Pretty, J. Geoffrey Chase, Thomas Desaive, Parameter estimation in a minimal model of cardio-pulmonary interactions, 2019, 313, 00255564, 81, 10.1016/j.mbs.2019.05.003
    40. Christopher J. Arthurs, C. Alberto Figueroa, 2016, Chapter 14, 978-3-319-28327-2, 155, 10.1007/978-3-319-28329-6_14
    41. Jill Gallaher, Kamila Larripa, Marissa Renardy, Blerta Shtylla, Nessy Tania, Diana White, Karen Wood, Li Zhu, Chaitali Passey, Michael Robbins, Natalie Bezman, Suresh Shelat, Hearn Jay Cho, Helen Moore, Methods for determining key components in a mathematical model for tumor–immune dynamics in multiple myeloma, 2018, 458, 00225193, 31, 10.1016/j.jtbi.2018.08.037
    42. J. J. Batzel, L. Ellwein, M. S. Olufsen, 2011, Modeling cardio-respiratory system response to inhaled CO2 in patients with congestive heart failure, 978-1-4577-1589-1, 2418, 10.1109/IEMBS.2011.6090673
    43. Johnny T. Ottesen, Jesper Mehlsen, Mette S. Olufsen, Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation, 2014, 257, 00255564, 50, 10.1016/j.mbs.2014.07.003
    44. Mahdi Esmaily Moghadam, Irene E. Vignon-Clementel, Richard Figliola, Alison L. Marsden, A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations, 2013, 244, 00219991, 63, 10.1016/j.jcp.2012.07.035
    45. Feng Huang, Shunv Ying, Antonio Cannatà, On-line parameter identification of the lumped arterial system model: A simulation study, 2020, 15, 1932-6203, e0236012, 10.1371/journal.pone.0236012
    46. L.M. Ellwein, S.R. Pope, A. Xie, J.J. Batzel, C.T. Kelley, M.S. Olufsen, Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia, 2013, 241, 00255564, 56, 10.1016/j.mbs.2012.09.003
    47. Marcella Torres, Jing Wang, Paul J. Yannie, Shobha Ghosh, Rebecca A. Segal, Angela M. Reynolds, Frederick R. Adler, Identifying important parameters in the inflammatory process with a mathematical model of immune cell influx and macrophage polarization, 2019, 15, 1553-7358, e1007172, 10.1371/journal.pcbi.1007172
    48. Somayeh Fouladi, Mohammad Kohandel, Brydon Eastman, A comparison and calibration of integer and fractional-order models of COVID-19 with stratified public response, 2022, 19, 1551-0018, 12792, 10.3934/mbe.2022597
    49. E. Benjamin Randall, Nicholas Z. Randolph, Alen Alexanderian, Mette S. Olufsen, Global sensitivity analysis informed model reduction and selection applied to a Valsalva maneuver model, 2021, 526, 00225193, 110759, 10.1016/j.jtbi.2021.110759
    50. Amanda L. Colunga, Mitchel J. Colebank, Mette S. Olufsen, Parameter inference in a computational model of haemodynamics in pulmonary hypertension, 2023, 20, 1742-5662, 10.1098/rsif.2022.0735
    51. Selim Bozkurt, Waleed Paracha, Kaushiki Bakaya, Silvia Schievano, Patient-Specific Modelling and Parameter Optimisation to Simulate Dilated Cardiomyopathy in Children, 2022, 13, 1869-408X, 712, 10.1007/s13239-022-00611-9
    52. Luciano Curcio, Laura D'Orsi, Andrea De Gaetano, Andrei Korobeinikov, Seven Mathematical Models of Hemorrhagic Shock, 2021, 2021, 1748-6718, 1, 10.1155/2021/6640638
    53. Carlos A. Sarmiento, Leidy Y. Serna, Alher M. Hernández, Miguel Á. Mañanas, A Novel Strategy to Fit and Validate Physiological Models: A Case Study of a Cardiorespiratory Model for Simulation of Incremental Aerobic Exercise, 2023, 13, 2075-4418, 908, 10.3390/diagnostics13050908
    54. Harry Saxton, Torsten Schenkel, Ian Halliday, Xu Xu, Personalised parameter estimation of the cardiovascular system: Leveraging data assimilation and sensitivity analysis, 2023, 74, 18777503, 102158, 10.1016/j.jocs.2023.102158
    55. Jana Korte, Ehlar Sophie Klopp, Philipp Berg, Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review, 2024, 11, 2306-5354, 72, 10.3390/bioengineering11010072
    56. Kristen A. Windoloski, Susanne Janum, Ronan M. G. Berg, Mette S. Olufsen, Characterization of differences in immune responses during bolus and continuous infusion endotoxin challenges using mathematical modelling, 2024, 0958-0670, 10.1113/EP091552
    57. Carlos A. Sarmiento, Alher M. Hernández, Miguel Á. Mañanas, Leidy Y. Serna, A Dynamic Fitting Strategy for Physiological Models: A Case Study of a Cardiorespiratory Model for the Simulation of Incremental Aerobic Exercise, 2024, 14, 2075-4426, 406, 10.3390/jpm14040406
    58. Tao Wang, JianKang Wu, Fei Qin, Hong Jiang, Xiang Xiao, ZhiPei Huang, Computational modeling for the quantitative assessment of cardiac autonomic response to orthostatic stress, 2024, 45, 0967-3334, 075009, 10.1088/1361-6579/ad63ee
    59. Martin Miranda Hurtado, Rafael Kaempfer, Justen Geddes, Mette S. Olufsen, Maria Rodriguez-Fernandez, Unraveling autonomic cardiovascular control complexity during orthostatic stress: Insights from a mathematical model, 2024, 00255564, 109306, 10.1016/j.mbs.2024.109306
    60. Marat R. Kamaltdinov, Alex G. Kuchumov, 2024, 3246, 0094-243X, 060001, 10.1063/5.0224404
    61. Alyssa M. Taylor-LaPole, L. Mihaela Paun, Dan Lior, Justin D. Weigand, Charles Puelz, Mette S. Olufsen, Parameter selection and optimization of a computational network model of blood flow in single-ventricle patients, 2025, 22, 1742-5662, 10.1098/rsif.2024.0663
    62. Richard Foster, Laura Ellwein Fix, Practical parameter identifiability of respiratory mechanics in the extremely preterm infant, 2025, 383, 1364-503X, 10.1098/rsta.2024.0226
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4165) PDF downloads(696) Cited by(62)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog