Global stability for an SEIR epidemiological model with varying infectivity and infinite delay

  • Received: 01 September 2008 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : 34K20, 92D30.

  • A recent paper (Math. Biosci. and Eng. (2008) 5:389-402) presented an SEIR model using an infinite delay to account for varying infectivity. The analysis in that paper did not resolve the global dynamics for R0 >1. Here, we show that the endemic equilibrium is globally stable for R0 >1. The proof uses a Lyapunov functional that includes an integral over all previous states.

    Citation: C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 603-610. doi: 10.3934/mbe.2009.6.603

    Related Papers:

    [1] Gergely Röst, Jianhong Wu . SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences and Engineering, 2008, 5(2): 389-402. doi: 10.3934/mbe.2008.5.389
    [2] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [3] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [4] Jinliang Wang, Gang Huang, Yasuhiro Takeuchi, Shengqiang Liu . Sveir epidemiological model with varying infectivity and distributed delays. Mathematical Biosciences and Engineering, 2011, 8(3): 875-888. doi: 10.3934/mbe.2011.8.875
    [5] Jiaxin Nan, Wanbiao Ma . Stability and persistence analysis of a microorganism flocculation model with infinite delay. Mathematical Biosciences and Engineering, 2023, 20(6): 10815-10827. doi: 10.3934/mbe.2023480
    [6] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [7] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [8] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [9] Cruz Vargas-De-León, Alberto d'Onofrio . Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences and Engineering, 2017, 14(4): 1019-1033. doi: 10.3934/mbe.2017053
    [10] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
  • A recent paper (Math. Biosci. and Eng. (2008) 5:389-402) presented an SEIR model using an infinite delay to account for varying infectivity. The analysis in that paper did not resolve the global dynamics for R0 >1. Here, we show that the endemic equilibrium is globally stable for R0 >1. The proof uses a Lyapunov functional that includes an integral over all previous states.


  • This article has been cited by:

    1. Xia Wang, Yuefen Chen, Shengqiang Liu, Xinyu Song, A class of delayed virus dynamics models with multiple target cells, 2013, 32, 0101-8205, 211, 10.1007/s40314-013-0004-z
    2. GLOBAL DYNAMICS IN A MULTI-GROUP EPIDEMIC MODEL FOR DISEASE WITH LATENCY SPREADING AND NONLINEAR TRANSMISSION RATE, 2016, 6, 2156-907X, 47, 10.11948/2016005
    3. Gang Huang, Jinliang Wang, Jian Zu, Global dynamics of multi-group dengue disease model with latency distributions, 2015, 38, 01704214, 2703, 10.1002/mma.3252
    4. Gang Huang, Yueping Dong, A note on global properties for a stage structured predator–prey model with mutual interference, 2018, 2018, 1687-1847, 10.1186/s13662-018-1767-8
    5. Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, 2016, 284, 00963003, 47, 10.1016/j.amc.2016.02.058
    6. Zhisheng Shuai, Joseph H. Tien, P. van den Driessche, Cholera Models with Hyperinfectivity and Temporary Immunity, 2012, 74, 0092-8240, 2423, 10.1007/s11538-012-9759-4
    7. Gang Huang, Anping Liu, A note on global stability for a heroin epidemic model with distributed delay, 2013, 26, 08939659, 687, 10.1016/j.aml.2013.01.010
    8. Sveir epidemiological model with varying infectivity and distributed delays, 2011, 8, 1551-0018, 875, 10.3934/mbe.2011.8.875
    9. Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145
    10. Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for multistrain models with infinite delay, 2017, 22, 1553-524X, 507, 10.3934/dcdsb.2017025
    11. Hongying Shu, Yuming Chen, Lin Wang, Impacts of the Cell-Free and Cell-to-Cell Infection Modes on Viral Dynamics, 2018, 30, 1040-7294, 1817, 10.1007/s10884-017-9622-2
    12. Xichao Duan, Sanling Yuan, Zhipeng Qiu, Junling Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, 2014, 68, 08981221, 288, 10.1016/j.camwa.2014.06.002
    13. C. Connell McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, 2010, 11, 14681218, 3106, 10.1016/j.nonrwa.2009.11.005
    14. Haitao Song, Shengqiang Liu, Weihua Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, 2016, 01704214, 10.1002/mma.4130
    15. Mingwang Shen, Yanni Xiao, Global Stability of a Multi-group SVEIR Epidemiological Model with the Vaccination Age and Infection Age, 2016, 144, 0167-8019, 137, 10.1007/s10440-016-0044-7
    16. Kasia A. Pawelek, Shengqiang Liu, Faranak Pahlevani, Libin Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, 2012, 235, 00255564, 98, 10.1016/j.mbs.2011.11.002
    17. Shifei Wang, Dingyu Zou, Global stability of in-host viral models with humoral immunity and intracellular delays, 2012, 36, 0307904X, 1313, 10.1016/j.apm.2011.07.086
    18. 培译 栾, Lyapunov Functions for Higher-Dimensional Epidemiological Models, 2020, 09, 2324-7991, 2222, 10.12677/AAM.2020.912259
    19. Paul Georgescu, Hong Zhang, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, 2013, 219, 00963003, 8496, 10.1016/j.amc.2013.02.044
    20. Haitao Song, Weihua Jiang, Shengqiang Liu, Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays, 2016, 09, 1793-5245, 1650046, 10.1142/S1793524516500467
    21. Lili Liu, Xianning Liu, Jinliang Wang, Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations, 2016, 21, 1531-3492, 2615, 10.3934/dcdsb.2016064
    22. Lei Wang, Zhidong Teng, Long Zhang, Global Behaviors of a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate, 2014, 2014, 1085-3375, 1, 10.1155/2014/249623
    23. Shengqiang Liu, Xinxin Wang, Lin Wang, Haitao Song, Competitive Exclusion in Delayed Chemostat Models with Differential Removal Rates, 2014, 74, 0036-1399, 634, 10.1137/130921386
    24. Xinxin Wang, Shengqiang Liu, An epidemic model with different distributed latencies and nonlinear incidence rate, 2014, 241, 00963003, 259, 10.1016/j.amc.2014.05.032
    25. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    26. Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility, 2013, 10, 1551-0018, 369, 10.3934/mbe.2013.10.369
    27. Marco Ferrante, Elisabetta Ferraris, Carles Rovira, On a stochastic epidemic SEIHR model and its diffusion approximation, 2016, 25, 1133-0686, 482, 10.1007/s11749-015-0465-z
    28. Rui Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, 2011, 375, 0022247X, 75, 10.1016/j.jmaa.2010.08.055
    29. Gang Huang, Yasuhiro Takeuchi, Wanbiao Ma, Lyapunov Functionals for Delay Differential Equations Model of Viral Infections, 2010, 70, 0036-1399, 2693, 10.1137/090780821
    30. Haitao Song, Shengqiang Liu, Weihua Jiang, Jinliang Wang, Global stability and periodic oscillations for an SIV infection model with immune response and intracellular delays, 2014, 38, 0307904X, 6108, 10.1016/j.apm.2014.05.017
    31. Jinliang Wang, Shengqiang Liu, The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression, 2015, 20, 10075704, 263, 10.1016/j.cnsns.2014.04.027
    32. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 4, 978-3-319-53206-6, 83, 10.1007/978-3-319-53208-0_4
    33. Michael Y. Li, Hongying Shu, Global Dynamics of an In-host Viral Model with Intracellular Delay, 2010, 72, 0092-8240, 1492, 10.1007/s11538-010-9503-x
    34. Pierre Magal, Connell McCluskey, Two-Group Infection Age Model Including an Application to Nosocomial Infection, 2013, 73, 0036-1399, 1058, 10.1137/120882056
    35. Lili Liu, Rui Xu, Zhen Jin, Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion, 2020, 82, 0307904X, 150, 10.1016/j.apm.2020.01.035
    36. Li-Ming Cai, Bao-Zhu Guo, Xue-Zhi Li, Global stability for a delayed HIV-1 infection model with nonlinear incidence of infection, 2012, 219, 00963003, 617, 10.1016/j.amc.2012.06.051
    37. Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635
    38. Chuncheng Wang, Dejun Fan, Ling Xia, Xiaoyu Yi, Global stability for a multi-group SVIR model with age of vaccination, 2018, 11, 1793-5245, 1850068, 10.1142/S1793524518500687
    39. Gang Huang, Yasuhiro Takeuchi, Wanbiao Ma, Daijun Wei, Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate, 2010, 72, 0092-8240, 1192, 10.1007/s11538-009-9487-6
    40. Michael Y. Li, Hongying Shu, Impact of Intracellular Delays and Target-Cell Dynamics on In Vivo Viral Infections, 2010, 70, 0036-1399, 2434, 10.1137/090779322
    41. JINLIANG WANG, JIAN ZU, XIANNING LIU, GANG HUANG, JIMIN ZHANG, GLOBAL DYNAMICS OF A MULTI-GROUP EPIDEMIC MODEL WITH GENERAL RELAPSE DISTRIBUTION AND NONLINEAR INCIDENCE RATE, 2012, 20, 0218-3390, 235, 10.1142/S021833901250009X
    42. Ying Lv, Zhixing Hu, Fucheng Liao, The stability and Hopf bifurcation for an HIV model with saturated infection rate and double delays, 2018, 11, 1793-5245, 1850040, 10.1142/S1793524518500407
    43. Gang Huang, Yasuhiro Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, 2011, 63, 0303-6812, 125, 10.1007/s00285-010-0368-2
    44. Impact of heterogeneity on the dynamics of an SEIR epidemic model, 2012, 9, 1551-0018, 393, 10.3934/mbe.2012.9.393
    45. JINLIANG WANG, YASUHIRO TAKEUCHI, SHENGQIANG LIU, A MULTI-GROUP SVEIR EPIDEMIC MODEL WITH DISTRIBUTED DELAY AND VACCINATION, 2012, 05, 1793-5245, 1260001, 10.1142/S1793524512600017
    46. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages, 2012, 9, 1551-0018, 685, 10.3934/mbe.2012.9.685
    47. O. Sharomi, A.B. Gumel, Dynamical analysis of a sex-structured Chlamydia trachomatis transmission model with time delay, 2011, 12, 14681218, 837, 10.1016/j.nonrwa.2010.08.010
    48. Yan Li, Wan-Tong Li, Fei-Ying Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, 2014, 247, 00963003, 723, 10.1016/j.amc.2014.09.072
    49. Yuming Chen, Junyuan Yang, Fengqin Zhang, The global stability of an SIRS model with infection age, 2014, 11, 1551-0018, 449, 10.3934/mbe.2014.11.449
    50. C. Connell McCluskey, Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations, 2015, 14, 1536-0040, 1, 10.1137/140971683
    51. Leonid Shaikhet, Andrei Korobeinikov, Stability of a stochastic model for HIV-1 dynamics within a host, 2016, 95, 0003-6811, 1228, 10.1080/00036811.2015.1058363
    52. Bedr'Eddine Ainseba, Houssein Ayoub, Michel Langlais, An Age-Structured Model for T Cell Homeostasis in Vivo, 2014, 74, 0036-1399, 1463, 10.1137/130949610
    53. Paul Georgescu, Daniel Maxin, Hong Zhang, Global stability results for models of commensalism, 2017, 10, 1793-5245, 1750037, 10.1142/S1793524517500371
    54. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, 2017, 11, 1751-3758, 427, 10.1080/17513758.2016.1226436
    55. Michael T. Meehan, Daniel G. Cocks, Johannes Müller, Emma S. McBryde, Global stability properties of a class of renewal epidemic models, 2019, 78, 0303-6812, 1713, 10.1007/s00285-018-01324-1
    56. Horst R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, 2011, 250, 00220396, 3772, 10.1016/j.jde.2011.01.007
    57. B. G. Sampath Aruna Pradeep, Wanbiao Ma, Wei Wang, Stability and Hopf bifurcation analysis of an SEIR model with nonlinear incidence rate and relapse, 2017, 20, 0972-0510, 483, 10.1080/09720510.2016.1228321
    58. Bentout Soufiane, Tarik Mohammed Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates, 2016, 434, 0022247X, 1211, 10.1016/j.jmaa.2015.09.066
    59. Tianhu Yu, Dengqing Cao, Shengqiang Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, 2018, 61, 10075704, 54, 10.1016/j.cnsns.2018.01.011
    60. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, 2010, 89, 0003-6811, 1109, 10.1080/00036810903208122
    61. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, 2012, 9, 1551-0018, 819, 10.3934/mbe.2012.9.819
    62. Quentin Richard, Jacek Banasiak, Global stability in a competitive infection-age structured model, 2020, 15, 0973-5348, 54, 10.1051/mmnp/2020007
    63. Mohamed Nor Frioui, Sofiane El-hadi Miri, Tarik Mohamed Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, 2018, 58, 1598-5865, 47, 10.1007/s12190-017-1133-0
    64. Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for virus-immune models with infinite delay, 2015, 20, 1531-3492, 3093, 10.3934/dcdsb.2015.20.3093
    65. Xavier Bardina, Marco Ferrante, Carles Rovira, Stochastic Epidemic SEIRS Models with a Constant Latency Period, 2017, 14, 1660-5446, 10.1007/s00009-017-0977-8
    66. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases, 2011, 8, 1551-0018, 1019, 10.3934/mbe.2011.8.1019
    67. Jinliang Wang, Jingmei Pang, Xianning Liu, Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model, 2014, 8, 1751-3758, 99, 10.1080/17513758.2014.912682
    68. Michael Y. Li, Zhisheng Shuai, Chuncheng Wang, Global stability of multi-group epidemic models with distributed delays, 2010, 361, 0022247X, 38, 10.1016/j.jmaa.2009.09.017
    69. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039
    70. A note for the global stability of a delay differential equation of hepatitis B virus infection, 2011, 8, 1551-0018, 689, 10.3934/mbe.2011.8.689
    71. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, 2015, 9, 1751-3758, 73, 10.1080/17513758.2015.1006696
    72. Michael Y. Li, Hongying Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, 2012, 13, 14681218, 1080, 10.1016/j.nonrwa.2011.02.026
    73. Salih Djilali, Tarik Mohammed Touaoula, Sofiane El-Hadi Miri, A Heroin Epidemic Model: Very General Non Linear Incidence, Treat-Age, and Global Stability, 2017, 152, 0167-8019, 171, 10.1007/s10440-017-0117-2
    74. Shengqiang Liu, Shaokai Wang, Lin Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, 2011, 12, 14681218, 119, 10.1016/j.nonrwa.2010.06.001
    75. Liming Cai, Bin Fang, Xuezhi Li, A note of a staged progression HIV model with imperfect vaccine, 2014, 234, 00963003, 412, 10.1016/j.amc.2014.01.179
    76. Yasin Ucakan, Seda Gulen, Kevser Koklu, Analysing of Tuberculosis in Turkey through SIR, SEIR and BSEIR Mathematical Models, 2021, 27, 1387-3954, 179, 10.1080/13873954.2021.1881560
    77. Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula, Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01466-0
    78. Chunyue Wang, Jinliang Wang, Ran Zhang, Global analysis on an age‐space structured vaccination model with Neumann boundary condition, 2022, 45, 0170-4214, 1640, 10.1002/mma.7879
    79. Vijay Pal Bajiya, Jai Prakash Tripathi, Vipul Kakkar, Jinshan Wang, Guiquan Sun, Global Dynamics of a Multi-group SEIR Epidemic Model with Infection Age, 2021, 42, 0252-9599, 833, 10.1007/s11401-021-0294-1
    80. Qianqian Cui, Jiabo Xu, Qiang Zhang, Kai Wang, An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy, 2014, 2014, 1687-1847, 10.1186/1687-1847-2014-172
    81. S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, A mathematical model with numerical simulations for malaria transmission dynamics with differential susceptibility and partial immunity, 2023, 3, 27724425, 100165, 10.1016/j.health.2023.100165
    82. Jiaxin Nan, Wanbiao Ma, Stability and persistence analysis of a microorganism flocculation model with infinite delay, 2023, 20, 1551-0018, 10815, 10.3934/mbe.2023480
    83. Aboudramane Guiro, Dramane Ouedraogo, Harouna Ouedraogo, 2023, Chapter 10, 978-3-031-27660-6, 259, 10.1007/978-3-031-27661-3_10
    84. Ying He, Junlong Tao, Bo Bi, Stationary distribution for a three-dimensional stochastic viral infection model with general distributed delay, 2023, 20, 1551-0018, 18018, 10.3934/mbe.2023800
    85. F. Najm, R. Yafia, M. A. Aziz Alaoui, A. Aghriche, A. Moussaoui, A survey on constructing Lyapunov functions for reaction-diffusion systems with delay and their application in biology, 2023, 10, 23129794, 965, 10.23939/mmc2023.03.965
    86. Abderrazak NABTi, Dynamical analysis of an age-structured SEIR model with relapse, 2024, 75, 0044-2275, 10.1007/s00033-024-02227-6
    87. Jinxiang Zhan, Yongchang Wei, Dynamical behavior of a stochastic non-autonomous distributed delay heroin epidemic model with regime-switching, 2024, 184, 09600779, 115024, 10.1016/j.chaos.2024.115024
    88. Narges M. Shahtori, S. Farokh Atashzar, Temporal Dynamics and Interplay of Transmission Rate, Vaccination, and Mutation in Epidemic Modeling: A Poisson Point Process Approach, 2024, 11, 2327-4697, 5023, 10.1109/TNSE.2024.3421308
    89. Isam Al‐Darabsah, Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay, 2025, 0170-4214, 10.1002/mma.11021
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3855) PDF downloads(786) Cited by(89)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog