In this paper, we study the global stability and persistence of a microorganism flocculation model with infinite delay. First, we make a complete theoretical analysis on the local stability of the boundary equilibrium (microorganism-free equilibrium) and the positive equilibrium (microorganism co-existent equilibrium), and give a sufficient condition for the global stability of the boundary equilibrium (applicable to the forward bifurcation and the backward bifurcation). Then, for the persistence of the model, we present an explicit estimate of the eventual lower bound of any positive solution for which only the parameter threshold R0>1 is required. The obtained results extend some of the conclusions of the existing literatures on the case of discrete time delay.
Citation: Jiaxin Nan, Wanbiao Ma. Stability and persistence analysis of a microorganism flocculation model with infinite delay[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10815-10827. doi: 10.3934/mbe.2023480
[1] | Daniel Maxin, Fabio Augusto Milner . The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences and Engineering, 2007, 4(3): 505-522. doi: 10.3934/mbe.2007.4.505 |
[2] | Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610 |
[3] | Asma Alshehri, John Ford, Rachel Leander . The impact of maturation time distributions on the structure and growth of cellular populations. Mathematical Biosciences and Engineering, 2020, 17(2): 1855-1888. doi: 10.3934/mbe.2020098 |
[4] | Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001 |
[5] | Brandy Rapatski, James Yorke . Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences and Engineering, 2009, 6(1): 135-143. doi: 10.3934/mbe.2009.6.135 |
[6] | Ping Yan, Gerardo Chowell . Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach. Mathematical Biosciences and Engineering, 2024, 21(10): 7278-7296. doi: 10.3934/mbe.2024321 |
[7] | Hao Wang, Yang Kuang . Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99. doi: 10.3934/mbe.2007.4.85 |
[8] | Hisashi Inaba . The Malthusian parameter and R0 for heterogeneous populations in periodic environments. Mathematical Biosciences and Engineering, 2012, 9(2): 313-346. doi: 10.3934/mbe.2012.9.313 |
[9] | Jim M. Cushing . The evolutionarydynamics of a population model with a strong Allee effect. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643 |
[10] | Jie Bai, Xiunan Wang, Jin Wang . An epidemic-economic model for COVID-19. Mathematical Biosciences and Engineering, 2022, 19(9): 9658-9696. doi: 10.3934/mbe.2022449 |
In this paper, we study the global stability and persistence of a microorganism flocculation model with infinite delay. First, we make a complete theoretical analysis on the local stability of the boundary equilibrium (microorganism-free equilibrium) and the positive equilibrium (microorganism co-existent equilibrium), and give a sufficient condition for the global stability of the boundary equilibrium (applicable to the forward bifurcation and the backward bifurcation). Then, for the persistence of the model, we present an explicit estimate of the eventual lower bound of any positive solution for which only the parameter threshold R0>1 is required. The obtained results extend some of the conclusions of the existing literatures on the case of discrete time delay.
In this paper, we study the coupled chemotaxis-fluid models with the initial-bounary conditions
{nt+u⋅∇n=Δn−∇⋅(n∇c)+γn−μn2,in Q≡(0,T)×Ω,ct+u⋅∇c=Δc−c+n+f,in Q,ut+u⋅∇u=Δu−∇π+n∇φ,in Q,∇⋅u=0,in Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω, | (1.1) |
where
In order to understand the development of system (1.1), let us mention some previous contributions in this direction. Jin [11] dealed with the time periodic problem of (1.1) in spatial dimension
Espejo and Suzuki [6] discussed the chemotaxis-fluid model
nt+u⋅∇n=Δn−∇⋅(n∇c)+n(γ−μn), | (1.2) |
ct+u⋅∇c=Δc−c+n, | (1.3) |
ut=Δu−∇π+n∇φ, | (1.4) |
∇⋅u=0, | (1.5) |
∂n∂ν=∂c∂ν=0,u=0. | (1.6) |
They proved the global existence of weak solution. Tao and Winkler [17] proved the existence of global classical solution and the uniform boundedness. Tao and Winkler [18] also obtained the global classical solution and uniform boundedness under the condition of
The optimal control problems governed by the coupled partial differential equations is important. Colli et al. [4] studied the distributed control problem for a phase-field system of conserved type with a possibly singular potential. Liu and Zhang [14] considered the optimal control of a new mechanochemical model with state constraint. Chen et al. [3] studied the distributed optimal control problem for the coupled Allen-Cahn/Cahn-Hilliard equations. Recently, Guillén-González et al. [9] studied a bilinear optimal control problem for the chemo-repulsion model with the linear production term. The existence, uniqueness and regularity of strong solutions of this model are deduced. They also derived the first-order optimality conditions by using a Lagrange multipliers theorem. Frigeri et al. [8] studied an optimal control problem for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential. Some other results can be found in [2,5,13,15,19].
In this paper, we discuss the optimal control problem for (1.1). We adjust the external source
In this section, we will construct the existence and some priori estimates of the linearized problem for the chemotaxis-Navier-Stokes system in a bounded domain
In the following lemmas we will state the Gagliardo-Nirenberg interpolation inequality [7].
Lemma 2.1. Let
1p−lN=a(1q−kN)+(1−a)1r. | (2.1) |
Then, for any
‖Dlu‖Lp⩽c1‖Dku‖aLq‖u‖1−aLr+c2‖u‖Lr |
with the following exception: If
The following log-interpolation inequality has been proved by [1].
Lemma 2.2. Let
‖u‖3L3(Ω)≤δ‖u‖2H1(Ω)‖(u+1)log(u+1)‖L1(Ω)+p(δ−1)‖u‖L1(Ω), |
where
We first consider the existence of solutions to the linear problem of system (1.1). Assume functions
{ut−Δu+ˆu⋅∇u=−∇π+ˆn∇φ,in Q,∇⋅u=0,in Q,u=0,on ∂Ω,u(x,0)=u0(x),in Ω. | (2.2) |
By using fixed point method, the existence of solutions can be easily obtained. Therefore, we ignore the process of proof and just give the regularity estimate.
Lemma 2.3. Let
Proof. Multiplying the first equation of (2.2) by
12ddt∫Ωu2dx+∫Ω|∇u|2dx+∫Ωu2dx=∫Ωˆn∇φ⋅udx+∫Ωu2dx≤‖ˆn‖L2‖u‖L2+‖u‖2L2≤C(‖ˆn‖2L2+‖u‖2L2). |
By Gronwall's inequality, we have
‖u‖2L2+∫T0‖u‖2H1dτ≤C(∫T0‖ˆn‖2L2dτ+‖u0‖2L2). |
Operating the Helmholtz projection operator
ut+Au+P(ˆu⋅∇u)=P(ˆn∇φ), |
where
12ddt∫Ω|∇u|2dx+∫Ω|Δu|2dx+∫Ω|∇u|2dx=∫ΩP(ˆu∇u)Δudx−∫ΩP(ˆn∇φ)Δudx+∫Ω|∇u|2dx. |
For the terms on the right, we have
∫ΩP(ˆu∇u)Δudx−∫ΩP(ˆn∇φ)Δudx+∫Ω|∇u|2dx≤‖ˆu‖L4‖∇u‖L4‖Δu‖L2+‖ˆn‖L2‖Δu‖L2+‖∇u‖2L2≤‖ˆu‖L4‖∇u‖1/2L2‖Δu‖3/2L2+‖ˆu‖L4‖∇u‖L2‖Δu‖L2+‖ˆn‖L2‖Δu‖L2+‖∇u‖2L2≤12‖Δu‖2L2+C(‖ˆu‖4L4+‖ˆu‖2L4+1)‖∇u‖2L2+‖ˆn‖2L2. |
Therefore, we get
ddt‖∇u‖2L2+‖∇u‖2H1≤C(‖ˆu‖4L4+‖ˆu‖2L4+1)‖∇u‖2L2+C‖ˆn‖2L2+C. |
By Gronwall's inequality, we derive
‖∇u‖2L2+∫T0‖∇u‖2H1dτ≤C. |
Multiplying the first equation of (2.2) by
∫T0∫Ω|ut|2dxdt≤C. |
Summing up, we complete the proof.
For the above solution
{ct−Δc+u⋅∇c+c=ˆn++f,in Q,∂c∂ν=0,on (0,T)×∂Ω,c(x,0)=c0(x),in Ω. | (2.3) |
Along with fixed point method, the existence of solutions can be easily obtained. Thus we omit the proof and only give the regularity estimate.
Lemma 2.4. Let
Proof. Multiplying the first equation of (2.3) by
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx≤‖ˆn‖L2‖c‖L2+‖f‖L2‖c‖L2. |
Therefore, we have
‖c‖2L2+‖c‖2H1≤C(‖c0‖2L2+∫t0(‖ˆn‖2L2+‖f‖2L2)dτ). |
Multiplying the first equation of (2.3) by
12ddt∫Ω|∇c|2dx+∫Ω|Δc|2dx+∫Ω|∇c|2dx=∫Ωu∇cΔcdx−∫ΩΔcˆndx−∫ΩΔcfdx. |
Using the Young inequality and the Hölder inequality, we obtain
∫Ωu∇cΔcdx−∫ΩΔcˆndx−∫ΩΔcfdx≤‖u‖L4‖∇c‖L4‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2≤C‖u‖H1(‖∇c‖12L2‖Δc‖12L2+‖∇c‖L2)‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2=C‖u‖H1‖∇c‖12L2‖Δc‖32L2+C‖∇c‖L2‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2≤12‖Δc‖2L2+C‖u‖4H1‖∇c‖2L2+C(‖ˆn‖2L2+‖f‖2L2). |
Combining this and above inequalities, we conclude
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖u‖4H1‖∇c‖2L2+C(‖ˆn‖2L2+‖f‖2L2). |
We therefore verify that
‖∇c‖2L2+∫t0‖∇c‖2H1≤C(∫t0‖ˆn‖2L2dτ+∫t0‖f‖2L2dτ). |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=∫Ω∇(u∇c)∇Δcdx−∫Ω∇ˆn+∇Δcdx−∫Ω∇f∇Δcdx. |
For the terms on the right, we obtain
∫Ω∇(u∇c)∇Δcdx−∫Ω∇ˆn+∇Δcdx−∫Ω∇f∇Δcdx≤‖∇Δc‖L2(‖u‖L4‖Δc‖L4+‖∇u‖L4‖∇c‖L4)+‖∇ˆn‖L2‖∇Δc‖L2+‖∇f‖L2‖∇Δc‖L2≤‖∇Δc‖L2(‖u‖L4‖Δc‖12L2‖∇Δc‖12L2+‖u‖L4‖Δc‖L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖L2+‖∇u‖L2‖∇c‖L2)+‖∇ˆn‖L2‖∇Δc‖L2+‖∇f‖L2‖∇Δc‖L2≤12‖∇Δc‖2L2+C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇ˆn‖2L2+‖∇f‖2L2). |
Straightforward calculations yield
‖Δc‖2L2+∫t0‖Δc‖2H1dτ≤C(1+∫t0‖ˆn‖2H1dτ+∫t0‖f‖2H1dτ). |
Multiplying the first equation of (2.3) by
∫T0∫Ω|ct|2dxdt≤C, |
and thereby precisely arrive at the conclusion.
With above solutions
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+(1+γ)ˆn+−μˆn+n,in Q,∂n∂ν|∂Ω=0,n(x,0)=n0(x),in Ω. | (2.4) |
By a similar argument as the above two problems, the existence of solutions can be easily obtained. Therefore, we only give the regularity estimate.
Lemma 2.5. Suppose
Proof. Firstly, we verify the nonnegativity of
ddt∫A(t)ndx−∫∂A(t)∂n∂νds+∫A(t)ndx=(1+γ)∫A(t)ˆn+dx−μ∫A(t)ˆn+ndx. |
Since
∫A(t)ndxdτ+∫t0∫A(t)ndxdτ=0. |
Then, we get
Next, multiplying the first equation of (2.4) by
12ddt∫Ωn2dx+∫Ω(n2+|∇n|2)dx+μ∫Ωˆn+n2dx=∫Ωn∇c∇ndx+(1+γ)∫Ωnˆn+dx≤‖n‖L4‖∇c‖L4‖∇n‖L2+(1+γ)‖ˆn‖L2‖n‖L2≤C(‖n‖12L2‖∇n‖12L2+‖n‖L2)‖c‖H2‖∇n‖L2+(1+γ)‖ˆn‖L2‖n‖L2≤C(‖n‖2L2‖c‖4H2+‖n‖2L2‖c‖2H2+‖ˆn‖L2)+12‖n‖2H1. |
So, we derive that
‖n‖2L2+∫T0‖n‖2H1dt≤C(1+∫T0‖ˆn‖2L2dt). |
Multiplying the first equation of (2.4) by
12ddt∫Ω|∇n|2dx+∫Ω|Δn|2dx+∫Ω|∇n|2dx=∫Ωu∇nΔndx+∫Ω(∇⋅(n∇c)Δn−(1+γ)ˆn+Δn+μˆn+nΔn)dx≤‖u‖L4‖∇n‖L4‖Δn‖L2+‖n‖L4‖Δc‖L4‖Δn‖L2+‖∇n‖L4‖∇c‖L4‖Δn‖L2+(1+γ)‖ˆn‖L2‖Δn‖L2+μ‖n‖L4‖ˆn‖L4‖Δn‖L2≤C‖u‖H1(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)‖Δn‖L2+‖n‖L4(‖Δc‖12L2‖∇Δc‖12L2+‖Δc‖L2)‖Δn‖L2+μ‖n‖L4‖ˆn‖L4‖Δn‖L2+(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)‖∇c‖H1‖Δn‖L2+(1+γ)‖ˆn‖L2‖Δn‖L2≤12‖Δn‖2L2+C(‖∇n‖2L2+‖n‖4L4+‖Δc‖4L2+‖∇Δc‖2L2+‖ˆn‖2L2+‖ˆn‖4L4)≤12‖Δn‖2L2+C(1+‖∇n‖2L2+‖n‖4L2+‖n‖2L2‖∇n‖2L2+‖∇Δc‖2L2+‖ˆn‖2L2+‖ˆn‖4L4). |
Straightforward calculations yield
‖∇n‖2L2+∫T0∫Ω(|Δn|2+|∇n|2+ˆn+|∇n|2)dxdt≤C. |
Multiplying the first equation of (2.4) by
∫T0∫Ω|nt|2dxdt≤C. |
The proof is complete.
Introduce the spaces
Xu=L4(0,T;L4(Ω)),Xn=L4(0,T;L4(Ω))∩L2(0,T;H1(Ω)),Yu=L∞(0,T;H1(Ω))∩L2(0,T;H2(Ω)),Yn=L∞(0,T;H1(Ω))∩L2(0,T;H2(Ω)). |
Define a map
F:Xu×Xn→Xu×Xn,F(ˆu,ˆn)=(u,n), |
where the
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+(1+γ)ˆn+−μˆn+n,in (0,T)×Ω≡Q,ct−Δc+u⋅∇c+c=ˆn++f,in (0,T)×Ω≡Q,ut−Δu+ˆu⋅∇u=−∇π+ˆn∇φ,in (0,T)×Ω≡Q,∇⋅u=0,in (0,T)×Ω≡Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω. |
Next, we use fixed point method to prove the local existence of solutions of the problem (1.1).
Lemma 2.6. The map
Proof. Let
From Lemma 2.6,
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+α(1+γ)n−μn2,in Q,ct−Δc+u⋅∇c+c=n+αf,in Q,ut−Δu+u⋅∇u=−∇π+αn∇φ,in Q,∇⋅u=0,in Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω. | (3.1) |
In order to prove the existence of solution, we first give some a priori estimates.
Lemma 3.1. Let
‖n‖L1+∫t0(‖n‖L1+‖n‖L2)dτ≤C, | (3.2) |
‖∇u‖2L2+∫t0‖∇u‖2H1dτ≤C, | (3.3) |
‖∇c‖2L2+∫t0‖∇c‖2H1dτ≤C. | (3.4) |
Proof. With Lemma 2.5 in hand, we get
ddt∫Ωndx+∫Ωndx+μ∫Ωn2dx=α(1+γ)∫Ωndx≤μ2∫Ωn2dx+C. |
Solving this differential inequality, we obtain that
‖n‖L1+∫t0(‖n‖L1+‖n‖L2)dτ≤C. |
Multiplying the third equation of (3.1) by
12ddt∫Ωu2dx+∫Ω|∇u|2dx+∫Ωu2dx=α∫Ωn∇φ⋅udx+∫Ωu2dx≤‖n‖L2‖u‖L2+‖u‖2L2≤C(‖n‖2L2+‖u‖2L2). |
Therefore, we see that
‖u‖2L2+∫t0‖u‖H1dτ≤C. |
By the Gagliardo-Nirenberg interpolation inequality, we deduce that
∫t0‖u‖4L4dτ≤C∫t0(‖u‖2L2‖∇u‖2L2d+‖u‖2L2)τ≤‖u‖2L2∫t0‖∇u‖2L2dτ+∫t0‖u‖2L2dτ≤C. |
Multiplying the third equation of (3.1) by
ddt‖∇u‖2L2+‖∇u‖2H1≤C(‖u‖4L4+‖u‖2L4+1)‖∇u‖2L2+C‖n‖2L2+C. |
Thus, we know
‖∇u‖2L2+∫t0‖∇u‖2H1dτ≤C. |
Multiplying the second equation of (3.1) by
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx≤‖n‖L2‖c‖L2+α‖f‖L2‖c‖L2. |
Then, we have
‖c‖L2+∫t0‖c‖H1dτ≤C. |
Multiplying the second equation of (3.1) by
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖u‖4H1‖∇c‖2L2+C(‖n‖2L2+‖f‖2L2). |
Further, we have
‖∇c‖2L2+∫t0‖∇c‖2H1dτ≤C. |
The proof is complete.
Lemma 3.2. Let
‖(n+1)ln(n+1)‖L1+‖∇c‖2L2+‖∇c‖2H1≤C. | (3.5) |
Proof. We rewrite the first equation of (3.1) as
ddt(n+1)+u⋅∇(n+1)−Δ(n+1)=−∇⋅((n+1)⋅∇c)+Δc+α(1+γ)n−μn2. |
Multiplying the above equation by
ddt∫Ω(n+1)ln(n+1)dx+4∫Ω|∇√n+1|2dx≤∫Ω∇(n+1)⋅∇cdx+∫ΩΔcln(n+1)dx+α(1+γ)∫Ωnln(n+1)dx=I1+I2+I3. |
For
I1=−∫ΩnΔcdx≤‖n‖L2‖Δc‖L2≤δ‖Δc‖2L2+C‖n‖2L2. |
For the term
I2=∫ΩΔcln(n+1)dx≤δ‖Δc‖2L2+C‖ln(n+1)‖2L2≤δ‖Δc‖2L2+C∫Ω(n+1)ln(n+1)dx. |
For the rest term
I3=α(1+γ)∫Ωnln(n+1)dx≤(1+γ)∫Ω(n+1)ln(n+1)dx. |
Combining
ddt∫Ω(n+1)ln(n+1)dx+4∫Ω|∇√n+1|2dx≤δ‖Δc‖2L2+C∫Ω(n+1)ln(n+1)dx+C‖n‖2L2. | (3.6) |
Multiplying the second equation of (3.1) by
12ddt∫Ω|∇c|2dx+∫Ω|Δc|2dx+∫Ω|∇c|2dx=∫Ωu∇cΔcdx−∫ΩΔcndx−α∫ΩΔcfdx. |
Straightforward calculations yield
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖∇c‖2L2+C(‖n‖2L2+‖f‖2L2). | (3.7) |
Combing (3.6) and (3.7), it follows that
ddt∫Ω(n+1)ln(n+1)dx+ddt‖∇c‖2L2+(1−δ)‖∇c‖2H1+4∫Ω|∇√n+1|2dx≤C∫Ω(n+1)ln(n+1)dx+C(‖f‖2L2+‖n‖2L2). |
Taking
‖(n+1)ln(n+1)‖L1+‖∇c‖2L2+‖∇c‖2H1≤C. |
The proof is complete.
Lemma 3.3. Assume
‖n‖2L2+‖Δc‖2L2+∫t0‖n‖H1dτ+∫t0‖Δc‖H1dτ≤C. | (3.8) |
Proof. Taking the
12ddt∫Ωn2dx+∫Ω(n2+|∇n|2)dx+μ∫Ωn3dx=∫Ωn∇c∇ndx+α(1+γ)∫Ωn2dx=−12∫Ωn2Δcdx+α(1+γ)∫Ωn2dx. |
Here, we note that
|∫Ωn2Δcdx|≤‖n‖2L3‖Δc‖L3≤C‖n‖2L3(‖∇Δc‖23L2‖∇c‖13L2+‖∇c‖L2)≤C‖n‖2L3(‖∇Δc‖23L2+1). |
From Lemma 2.2 and (3.2), it follows that
−χ2∫Ωn2Δcdx≤C(δ‖n‖2H1‖(n+1)log(n+1)‖L1+p(δ−1)‖n‖L1)23(‖∇Δc‖23L2+1)≤C(δ‖n‖2H1+p(δ−1))23(‖∇Δc‖23L2+1)≤C(δ‖n‖43H1‖∇Δc‖23L2+δ‖n‖43H1+p23(δ−1)‖∇Δc‖23L2+p23(δ−1))≤δ‖∇Δc‖2L2+Cδ12‖n‖2H1+C−1/2δp(δ−1). |
As an immediate consequence
ddt‖n‖2L2+‖n‖2H1≤δ‖∇Δc‖2L2+Cδ12‖n‖2H1+C‖n‖2L2. | (3.9) |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=∫Ω∇(u∇c)∇Δcdx−∫Ω∇n∇Δcdx−∫Ω∇f∇Δcdx=I4+I5. |
For
I4=∫Ω∇(u∇c)∇Δcdx≤‖∇Δc‖L2(‖u‖L4‖Δc‖L4+‖∇u‖L4‖∇c‖L4)≤‖∇Δc‖L2(‖u‖L4‖Δc‖12L2‖∇Δc‖12L2+‖u‖L4‖Δc‖L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖L2+‖∇u‖L2‖∇c‖L2)≤14‖∇Δc‖2L2+C(1+‖Δc‖2L2+‖Δu‖2L2). |
For the term
I5=−∫Ω∇n∇Δcdx−∫Ω∇f∇Δcdx≤C(‖∇n‖2L2+‖∇f‖2L2)+14‖∇Δc‖2L2. |
Along with
ddt‖Δc‖2L2+‖∇Δc‖2L2+‖Δc‖2L2≤C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇n‖2L2+‖∇f‖2L2). | (3.10) |
Combining (3.9) and (3.10), it follows that
ddt(‖n‖2L2+‖Δc‖2L2)+‖Δc‖2L2+(1−Cδ12)‖n‖2H1+(1−δ)‖∇Δc‖2L2≤C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇n‖2L2+‖∇f‖2L2). |
By choosing
‖n‖2L2+‖Δc‖2L2+∫t0‖n‖H1dτ+∫t0‖Δc‖H1dτ≤C. |
The proof is complete.
Lemma 3.4. Assume
‖∇n‖2L2+∫t0‖n‖2H2dτ≤C. | (3.11) |
Proof. Taking the
12ddt∫Ω|∇n|2dx+∫Ω|Δn|2dx+∫Ω|∇n|2dx=∫Ωu∇nΔndx+∫Ω∇⋅(n∇c)Δndx+(1+γ)∫Ω|∇n|2dx+μ∫Ωn2Δndx=I6+I7+I8. |
For the term
I6=∫Ωu∇nΔndx=−12∫Ω∇u(∇n)2dx≤‖∇u‖L2‖∇n‖2L4≤‖∇u‖L2(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)2≤δ‖Δn‖2L2+C‖∇n‖2L2. |
For the term
I7=∫Ω∇⋅(n∇c)Δndx=∫Ω(∇n∇c+nΔc)Δndx≤‖Δn‖L2(‖∇n‖L3‖∇c‖L6+‖n‖C‖Δc‖L2)≤C‖Δn‖L2(‖∇n‖H13‖∇c‖H1+‖n‖H43‖Δc‖L2)≤C‖n‖H2‖n‖H43‖c‖H2≤C‖n‖53H2‖n‖13L2‖c‖H2≤δ‖n‖2H2+C(δ)‖n‖2L2‖c‖6H2≤δ‖n‖2H2+C. |
For the term
I8=(1+γ)∫Ω|∇n|2dx+μ∫Ωn2Δndx=(1+γ)∫Ω|∇n|2dx−2μ∫Ω|∇n|2ndx≤(1+γ)‖∇n‖2L2. |
Combine the estimates about
ddt‖∇n‖2L2+(1−4δ)‖n‖2H2≤C‖∇n‖2L2+C. |
By taking
‖∇n‖2L2+∫t0‖n‖2H2dτ≤C. |
Therefore, this proof is complete.
Lemma 3.5. The operator
Proof. Let
F(ˆnm,ˆum)→(ˆn,ˆu) weakly in Yu×Yn and strongly in Xu×Xn. |
Let
Theorem 3.1. Let
‖n‖L∞(0,T;H1(Ω))+‖n‖L2(0,T;H2(Ω))+‖nt‖L2(0,T;L2(Ω))+‖c‖L∞(0,T;H2(Ω))+‖c‖L2(0,T;H3(Ω))+‖ct‖L2(0,T;L2(Ω))+‖u‖L∞(0,T;H1(Ω))+‖u‖L2(0,T;H2(Ω))+‖ut‖L2(0,T;L2(Ω))≤C. | (3.12) |
Proof. From Lemmas 3.1, 3.3 and 3.4, it is easy to verify the existence of solution and (3.11). Therefore, we will prove the uniqueness of the solution in the following part. For convenience, we set
nt−Δn+u1⋅∇n+u∇n2=−∇⋅(n1∇c)−∇(n∇c2)+γn−μn(n1+n2),in (0,T)×Ω≡Q, | (3.13) |
ct−Δc+u1⋅∇c+u∇c2+c=n,in (0,T)×Ω≡Q, | (3.14) |
ut−Δu+u1⋅∇u+u⋅∇u2=n∇φ,in (0,T)×Ω≡Q, | (3.15) |
∇⋅u=0,in (0,T)×Ω≡Q, | (3.16) |
∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω, | (3.17) |
n0(x)=c0(x)=u0(x)=0,in Ω. | (3.18) |
Taking the
12ddt∫Ωn2dx+∫Ω|∇n|2dx+∫Ωn2dx≤−∫Ωu∇n2ndx+∫Ωn1∇c∇ndx+∫Ωn∇c2∇ndx+(1+γ)∫Ωn2dx=I9+I10+I11+I12. |
For the term
I9=−∫Ωu∇n2ndx≤‖∇n2‖L2‖u‖L4‖n‖L4≤C‖∇n2‖L2‖u‖H1(‖n‖12L2‖∇n‖12L2+‖n‖L2)≤δ3‖∇n‖2L2+C‖n‖2L2. |
For the term
I10=∫Ωn1∇c∇ndx≤‖∇n‖L2‖n1‖L4‖∇c‖L4≤C‖∇n‖L2‖n1‖H1‖∇c‖H1≤δ3‖∇n‖2L2+C. |
For the term
I11=∫Ωn∇c2∇ndx≤‖∇n‖L2‖∇c2‖L4‖n‖L4≤‖∇n‖L2‖∇c2‖H1‖n‖H1≤δ3‖∇n‖2L2+C. |
With the use of estimates
ddt‖n‖2L2+‖n‖H1≤δ‖∇n‖2L2+C‖n‖2L2+C. | (3.19) |
Taking the
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx=−∫Ωu1∇ccdx−∫Ωu∇c2cdx+∫Ωncdx≤‖c‖2L4‖∇u1‖L2+‖u‖L2‖∇c2‖L4‖c‖L4+‖n‖L2‖c‖L2≤C(‖c‖12L2‖∇c‖12L2+‖c‖L2)2‖∇u1‖L2+(‖c‖12L2‖∇c‖12L2+‖c‖L2)‖u‖L2‖∇c2‖H1+‖n‖L2‖c‖L2≤δ‖∇c‖2L2+C‖c‖2L2. |
Then, we get
ddt‖c‖2L2+‖c‖H1≤δ‖∇c‖2L2+C‖c‖2L2. | (3.20) |
Taking the
12∫Ωu2dx+∫Ω|∇u|2dx=∫Ωn∇φudx. |
Straightforward calculations yield
ddt‖u‖2L2+‖u‖H1≤C(‖u‖2L2+‖n‖2L2). | (3.21) |
Then, a combination of (3.19), (3.20) and (3.21) yields
ddt(‖n‖2L2+‖c‖2L2+‖u‖2L2)+(‖n‖H1+‖c‖H1+‖u‖H1)≤δ(‖∇n‖2L2+‖∇c‖2L2+‖∇u‖2L2)+(‖n‖2L2+‖c‖2L2+‖u‖2L2)+C. |
By choosing
ddt(‖n‖2L2+‖c‖2L2+‖u‖2L2)≤C(‖n‖2L2+‖c‖2L2+‖u‖2L2)+C. |
Applying Gronwall's lemma to the resulting differential inequality, we finally obtain the uniqueness of the solution.
In this section, we will prove the existence of the optimal solution of control problem. The method we use for treating this problem was inspired by some ideas of Guillén-González et al [9]. Assume
Minimize the cost functional
J(n,c,u,f)=β12‖n−nd‖2L2(Qd)+β22‖c−cd‖2L2(Qd)+β32‖u−ud‖2L2(Qd)+β42‖n(T)−nΩ‖2L2(Ωd)+β52‖c(T)−cΩ‖2L2(Ωd)+β62‖u(T)−uΩ‖2L2(Ωd)+β72‖f(x,t)‖2L2(Qc), | (4.1) |
subject to the system (1.1). Moreover, the nonnegative constants
nd∈L2(Qd),cd∈L2(Qd),ud∈L2(Qd),nΩ∈L2(Ωc),cΩ∈L2(Ωc),uΩ∈L2(Ωc),f∈U. |
The set of admissible solutions of optimal control problem (4.1) is defined by
Sad={s=(n,c,u,f)∈H:s is a strong solution of (1.1)}. |
The function space
H=Yn×Yc×Yu×U, |
where
Now, we prove the existence of a global optimal control for problem (1.1).
Theorem 4.1. Suppose
Proof. Along with Theorem 3.1, we conduct that
limm→+∞J(nm,cm,um,fm)=inf(n,c,u,f)∈SadJ(n,c,u,f). | (4.2) |
According to the definition of
{nmt+um⋅∇nm=Δnm−∇⋅(nm⋅∇cm)+γnm−μn2m,in Q,cmt+um⋅∇cm=Δcm−cm+nm+fm,in Q,umt+um⋅∇um=Δum−∇π+nm∇φ,in Q,∇⋅um=0,in Q,∂nm∂ν|∂Ω=∂cm∂ν|∂Ω=0,um|∂Ω=0,nm(0)=n0,cm(0)=c0,um(0)=u0,in Ω. | (4.3) |
Observing that
nm→ˉn, weakly in L2(0,T;H2(Ω)) and weakly* in L∞(0,T;H1(Ω)),cm→ˉc, weakly in L2(0,T;H3(Ω)) and weakly* in L∞(0,T;H2(Ω)),um→ˉu, weakly in L2(0,T;H2(Ω)) and weakly* in L∞(0,T;H1(Ω)),fm→ˉf, weakly in L2(0,T;H1(Ωc)), and ˜f∈U. |
According to the Aubin-Lions lemma [16] and the compact embedding theorems, we obtain
nm→ˉn, strongly in C([0,T];L2(Ω))∩L2(0,T;H1(Ω)),cm→ˉc, strongly in C([0,T];H1(Ω))∩L2(0,T;H2(Ω)),um→ˉu, strongly in C([0,T];L2(Ω))∩L2(0,T;H1(Ω)). |
Since
∇⋅(nm∇cm)→χ, weakly in L2(0,T;L2(Ω)). |
Recalling that
nm∇cm→ˉn∇ˉc, weakly in L∞(0,T;L2(Ω)). |
Therefore, we get that
limm→+∞J(nm,cm,um,fm)=inf(u,c,u,f)∈SadJ(u,c,u,f)≤J(ˉn,ˉc,ˉu,ˉf). |
On the other hand, we deduce from the weak lower semicontinuity of the cost functional
J(ˉn,ˉc,ˉu,ˉf)≤lim infm→+∞J(nm,cm,um,fm). |
Therefore, this implies that
In order to derive the first-order necessary optimality conditions for a local optimal solution of problem (4.1). To this end, we will use a result on existence of Lagrange multipliers in Banach spaces ([20]). First, we discuss the following problem
minJ(s) subject to s∈S={s∈H:G(s)∈N}, | (5.1) |
where
A+={ρ∈X′:⟨ρ,a⟩X′≥0,∀a∈A}. |
We consider the following Banach spaces
X=Vn×Vc×Vu×L2(0,T;H1(Ωc)),Y=L2(Q)×L2(0,T;H1(Ω))×L2(Q)×H1(Ω)×H2(Ω)×H1(Ω), |
where
Vn={n∈Yn:∂n∂ν on (0,T)×∂Ω},Vc={n∈Yc:∂c∂ν on (0,T)×∂Ω},Vu={n∈Yu:u=0 on (0,T)×∂Ω and ∇⋅u=0 in (0,T)×Ω} |
and the operator
G1:X→L2(Q),G2:X→L2(0,T;H1(Ω)),G3:X→L2(Q),G4:X→H1(Ω),G5:X→H2(Ω),G6:X→H1(Ω), |
which are defined at each point
{G1=nt+u⋅∇n−Δn+∇⋅(n⋅∇c)−γn+μn2,G2=ct+u⋅∇c−Δc+c−n−f,G3=ut+u⋅∇u−Δu+∇π−n∇φ,G4=n(0)−n0,G5=c(0)−c0,G6=u(0)−u0. | (5.2) |
The function spaces are given as follows
H=Vn×Vc×Vu×U. |
We see that
minJ(s) subject to s∈Sad={s∈H:G(s)=0}. | (5.3) |
Taking the differentiability of
Lemma 5.1. The functional
J′(ˉs)[r]=β1∫T0∫Ωd(ˉn−nd)˜ndxdt+β2∫T0∫Ωd(ˉc−cd)˜cdxdt+β3∫T0∫Ωd(ˉu−ud)˜u(T)dxdt+β4∫Ωd(ˉn(T)−nΩ)˜n(T)dx+β5∫Ωd(ˉc(T)−cΩ)˜cdx+β6∫Ωd(ˉu(T)−uΩ)˜u(T)dx+β7∫T0∫Ωdˉf˜fdxdt. | (5.4) |
Lemma 5.2. The operator
G′(ˉs)[r]=(G′1(ˉs)[r],G′2(ˉs)[r],G′3(ˉs)[r],G′4(ˉs)[r],G′5(ˉs)[r],G′6(ˉs)[r]) |
defined by
{G′1(ˉs)[r]=˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn,inQ,G′2(ˉs)[r]=˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˜n−˜f,inQ,G′3(ˉs)[r]=˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu−˜n∇φ,inQ,∇⋅˜u=0,inQ,∂˜n∂ν=∂˜c∂ν=0,˜u=0,on(0,T)×∂Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,inΩ. |
Lemma 5.3. Let
Proof. For any fixed
{˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn=gn,in Q,˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˜n=gc,in Q,˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu−˜n∇φ=gu,in Q,∇⋅˜u=0,in Q,∂˜n∂ν=∂˜c∂ν=0,˜u=0,on (0,T)×∂Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,in Ω. | (5.5) |
Next, we use Leray-Schauder's fixed point method to prove the existence of solutions of the problem (5.5), the operator
{˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˙nˉn=gn,in Q,˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˙n=gc,in Q,˜ut−Δ˜u+ˉu⋅∇˜u+˙u⋅∇ˉu−˙n∇φ=gu,in Q. | (5.6) |
The system (5.6) is complemented by the corresponding Neumann boundary and initial conditions. Similar to the proof of Lemmas 2.3, 2.4, 2.5 and 2.6, we conduct that operator
Similar to the proof of Theorem 3.1,
{˜nt−Δ˜n+˜n=−ˉu⋅∇˜n−˜u⋅∇ˉn−∇⋅(ˉn∇˜c)−∇(˜n∇ˉc)+α(γ+1)˜n−2μ˜nˉn+αgn,in Q,˜ct−Δ˜c+˜c=−ˉu⋅∇˜c−˜u⋅∇ˉc+α˜n+αgc,in Q,˜ut−Δ˜u=−ˉu⋅∇˜u−˜u⋅∇ˉu+α˜n∇φ+αgu,in Q, | (5.7) |
complemented by the corresponding Neumann boundary and initial conditions.
Taking the
12∫Ω˜u2dx+∫Ω|∇˜u|2dx=α∫Ω˜n∇φ˜udx+α∫Ω˜ugudx. |
By the Poincaré inequality and Young's inequality, we have
ddt‖˜u‖2L2+‖˜u‖2H1≤C(‖˜n‖2L2+‖gu‖2L2)+C‖˜u‖2L2. | (5.8) |
Taking the
12∫Ω˜c2dx+∫Ω|∇˜c|2dx+∫Ω˜c2dx=∫Ω˜u∇ˉc˜cdx+α∫Ω˜n˜cdx+α∫Ωgc˜cdx. |
With the Poincaré inequality and Young's inequality in hand, we see that
ddt‖˜c‖2L2+‖˜c‖2H1≤C(‖˜n‖2L2+‖gc‖2L2)+C‖˜c‖2L2. | (5.9) |
Taking the
12∫Ω|∇˜c|2dx+∫Ω|Δ˜c|2dx+∫Ω|∇˜c|2dx=∫Ω˜u∇ˉcΔ˜cdx+∫Ωˉu∇˜cΔ˜cdx−α∫Ω˜nΔ˜cdx−α∫ΩgcΔ˜cdx=J1+J2+J3. |
For the term
J1=∫Ω˜u∇ˉcΔ˜cdx≤‖Δ˜c‖L2‖∇ˉc‖L4‖˜u‖L4≤16‖Δ˜c‖2L2+C‖∇ˉc‖2H1‖˜u‖2H1. |
For the term
J2=∫Ωˉu∇˜cΔ˜cdx=−12∫Ω∇ˉu|∇˜c|2dx≤‖∇ˉu‖L2‖∇˜c‖2L4≤‖∇ˉu‖L2(‖∇˜c‖12L2‖Δ˜c‖12L2+‖∇˜c‖L2)≤16‖Δ˜c‖2L2+C‖∇˜c‖2L2. |
For the term
J3=−α∫Ω˜nΔ˜cdx−α∫ΩgcΔ˜cdx≤16‖Δ˜c‖2L2+C(‖˜n‖2L2+‖gc‖2L2). |
Therefore, combining
ddt‖∇˜c‖2L2+‖∇˜c‖2H1≤C‖∇˜c‖2L2+C(‖˜n‖2L2+‖gc‖2L2). | (5.10) |
Taking the
ddt∫Ω˜n2dx+∫Ω|∇˜n|2dx+∫Ω˜n2dx=−∫Ω˜u∇ˉn˜ndx+∫Ω∇˜nˉn∇˜cdx+∫Ω∇˜n˜n∇ˉcdx+α(γ+1)∫Ω˜n2dx+2μ∫Ωˉn˜n2dx+α∫Ω˜ngndx=J4+J5+J6+J7. |
For the term
J4=−∫Ω˜u∇ˉn˜ndx≤‖˜u‖L4‖∇ˉn‖L2‖˜n‖L4≤C(‖∇˜u‖12L2‖˜u‖12L2+‖˜u‖L2)‖∇ˉn‖L2‖˜n‖H1≤δ‖˜n‖2H1+C‖∇˜u‖L2‖˜u‖L2+C‖˜u‖2L2≤δ‖˜n‖2H1+δ‖∇˜u‖2L2+C‖˜u‖2L2. |
For the term
J5=∫Ω∇˜nˉn∇˜cdx≤‖∇˜n‖L2‖ˉn‖L4‖∇˜c‖L4≤‖∇˜n‖L2‖ˉn‖H1(‖∇˜c‖12L2‖Δ˜c‖12L2+‖∇˜c‖L2)≤δ‖∇˜n‖2L2+‖∇˜c‖L2‖Δ˜c‖L2+C‖∇˜c‖2L2≤δ‖∇˜n‖2L2+δ‖Δ˜c‖L2+C‖∇˜c‖2L2. |
For the term
J6=∫Ω∇˜n˜n∇ˉcdx≤‖˜n‖2L4‖Δˉc‖L2≤(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)‖Δˉc‖L2≤δ‖∇˜n‖2L2+C‖˜n‖2L2+C. |
For the term
J7=α(γ+1)∫Ω˜n2dx+2μ∫Ωˉn˜n2dx+α∫Ω˜ngndx≤(γ+1)‖˜n‖2L2+‖gn‖L2‖˜n‖L2+‖ˉn‖L2‖˜n‖2L4≤(γ+1)‖˜n‖2L2+‖gn‖L2‖˜n‖L2+‖ˉn‖L2(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)≤δ‖∇˜n‖L2+C‖˜n‖2L2+C‖gn‖2L2. |
Therefore, by choosing
ddt‖˜n‖2L2+‖˜n‖2H1≤C(‖˜n‖2L2+‖∇˜c‖2L2+‖˜u‖2L2)+δ‖Δ˜c‖L2+δ‖∇˜u‖2L2+C‖gn‖2L2. | (5.11) |
By choosing
ddt(‖˜n‖2L2+‖˜c‖2H1+‖˜u‖2L2)+‖˜n‖2H1+‖˜c‖2H2+‖˜u‖2H1≤C(‖gn‖2L2+‖gc‖2L2+‖gu‖2L2)+C(‖˜n‖2L2+‖˜c‖2H1+‖˜u‖2L2). |
Applying Gronwall's lemma to the resulting differential inequality, we obatin
‖˜n‖2L2+‖˜c‖2H1+‖˜u‖2L2+∫t0‖˜n‖2H1dτ+∫t0‖˜c‖2H2dτ+∫t0‖˜u‖2H1dτ≤C. | (5.12) |
Taking the
12ddt∫Ω|∇˜u|2dx+∫Ω|Δ˜u|2dx=∫Ωˉu⋅∇˜uΔ˜udx+∫Ω˜u⋅∇ˉuΔ˜udx−α∫Ω˜n∇φΔ˜udx−α∫ΩguΔ˜udx=J8+J9+J10. |
With the use of the Gagliardo-Nirenberg interpolation inequality, we derive
J8=∫Ωˉu⋅∇˜uΔ˜udx≤‖ˉu‖L4‖∇˜u‖L4‖Δ˜u‖L2≤‖ˉu‖H1(‖∇˜u‖12L2‖Δ˜u‖12L2+‖∇˜u‖L2)‖Δ˜u‖L2≤δ‖Δ˜u‖2L2+C‖∇˜u‖2L2 |
and
J9=∫Ω˜u⋅∇ˉuΔ˜udx≤‖Δ˜u‖L2‖∇ˉu‖L4‖˜u‖L4≤C‖Δ˜u‖L2‖∇ˉu‖H1(‖∇˜u‖12L2‖˜u‖12L2+‖˜u‖L2)≤δ‖Δ˜u‖2L2+C‖∇˜u‖2L2. |
For the term
J10=α∫Ω˜n∇φΔ˜udx−α∫ΩguΔ˜udx≤δ‖Δ˜u‖2L2+C(‖˜n‖2L2+‖gu‖2L2). |
By choosing
ddt‖∇˜u‖2L2+‖Δ˜u‖2L2≤C‖∇˜u‖2L2+C‖gu‖2L2. | (5.13) |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=−∫Ω∇(ˉu∇˜c)∇Δ˜cdx−∫Ω∇(˜u∇ˉc)∇Δ˜cdx+α∫Ω∇˜n∇Δ˜cdx+α∫Ω∇gc∇Δ˜cdx=J11+J12+J13. |
For the first term
J11=−∫Ω∇(ˉu∇˜c)∇Δ˜cdx=−∫Ω∇ˉu∇˜c∇Δ˜cdx−∫ΩˉuΔ˜c∇Δ˜cdx≤‖∇Δ˜c‖L2‖∇ˉu‖L4‖∇˜c‖L4+‖∇Δ˜c‖L2‖ˉu‖L4‖Δ˜c‖L4≤‖∇Δ˜c‖L2(‖∇ˉu‖12L2‖Δˉu‖12L2+‖∇ˉu‖L2)(‖∇ˉc‖12L2‖Δˉc‖12L2+‖∇ˉc‖L2)+‖∇Δ˜c‖L2‖ˉu‖H1(‖∇Δ˜c‖12L2‖Δ˜c‖12L2+‖Δ˜c‖L2)≤δ‖∇Δ˜c‖2L2+C‖Δˉu‖2L2+C‖Δ˜c‖2L2. |
Similarly, for the term
J12=−∫Ω∇(˜u∇ˉc)∇Δ˜cdx=−∫Ω∇˜u∇ˉc∇Δ˜cdx−∫Ω˜uΔˉc∇Δ˜cdx≤‖∇Δ˜c‖L2‖∇˜u‖L4‖∇ˉc‖L4+‖˜u‖L4‖Δˉc‖L4‖∇Δ˜c‖L2≤C‖∇Δ˜c‖L2(‖∇˜u‖12L2‖Δ˜u‖12L2+‖∇˜u‖L2)‖∇ˉc‖H1+(‖˜u‖12L2‖∇˜u‖12L2+‖˜u‖L2)(‖Δˉc‖12L2‖∇Δˉc‖12L2+‖Δˉc‖L2)‖∇Δ˜c‖L2≤δ‖∇Δ˜c‖2L2+δ‖Δ˜u‖2L2+C‖∇Δˉc‖2L2+C‖∇˜u‖2L2. |
For the rest term
J13=α∫Ω∇˜n∇Δ˜cdx+α∫Ω∇gc∇Δ˜cdx≤δ‖∇Δ˜c‖2L2+C(‖∇˜n‖2L2+‖∇gc‖2L2). |
By choosing
ddt‖Δ˜c‖2L2+‖Δ˜c‖2H1≤C(‖∇˜n‖2L2+‖Δ˜c‖2L2+‖∇˜u‖2L2)+C‖Δˉu‖2L2+δ‖Δ˜u‖2L2+C‖∇Δˉc‖2L2+C‖∇gc‖2L2. | (5.14) |
From (5.13) and (5.14), along with
ddt(‖∇˜u‖2L2+‖Δ˜c‖2L2)+‖Δ˜u‖2L2+‖Δ˜c‖2H1≤C(‖∇˜u‖2L2+‖Δ˜c‖2L2)+(‖∇˜n‖2L2+‖Δˉu‖2L2+‖∇Δˉc‖2L2+‖∇gc‖2L2)+C‖gu‖2L2. |
Applying Gronwall's lemma to the resulting differential inequality, we know
‖∇˜u‖2L2+‖Δ˜c‖2L2+∫t0‖Δ˜u‖2L2dτ+∫t0‖Δ˜c‖2H1dτ≤C. |
Taking the
12ddt∫Ω|∇˜n|2dx+∫Ω|Δ˜n|2dx+∫Ω|∇˜n|2dx=−∫Ωˉu⋅∇˜nΔ˜ndx−∫Ω˜u⋅∇ˉnΔ˜ndx−∫Ω∇(˜n∇ˉc)Δ˜ndx−∫Ω∇(ˉn∇˜c)Δ˜ndx−α(1+γ)∫Ω˜nΔ˜ndx+2μ∫Ω˜nˉnΔ˜ndx−α∫ΩgnΔ˜ndx=J14+J15+J16+J17+J18. |
With the Gagliardo-Nirenberg interpolation inequality in hand, we can estimate
\begin{align*} J_{14} = &-\int_{\Omega}\bar{u}\cdot \nabla\tilde{n} \Delta \tilde{n}d x\leq \|\bar{u}\|_{L^4}\|\nabla\tilde{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq &C\|\bar{u}\|_{H^1}(\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\nabla\tilde{n}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}. \end{align*} |
Similar to above estimates, we see
\begin{align*} J_{15} = &-\int_{\Omega}\tilde{u}\cdot \nabla\bar{n}\Delta \tilde{n}d x\leq \|\tilde{u}\|_{L^4}\|\nabla \bar{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq&C\|\tilde{u}\|_{H^1}\|\nabla \bar{n}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ \leq& \delta \|\Delta\tilde{n}\|_{L^2}+C\|\nabla \bar{n}\|^2_{H^1}. \end{align*} |
Similarly, we derive
\begin{align*} J_{16} = &-\int_{\Omega} \nabla(\tilde{n}\nabla \bar{c})\Delta\tilde{n} d x = -\int_{\Omega}\nabla\tilde{n}\nabla \bar{c}\Delta\tilde{n} d x-\int_{\Omega}\tilde{n}\Delta \bar{c}\Delta\tilde{n} d x \\ \leq &\|\nabla\tilde{n}\|_{L^4}\|\nabla\bar{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|\tilde{n}\|_{L^4}\|\Delta\bar{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq&(\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{n}\|^{\frac{1}{2}}_{L^2} +\|\nabla\tilde{n}\|_{L^2})\|\nabla\bar{c}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+(\|\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\tilde{n}\|_{L^2})(\|\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\bar{c}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq&\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}+C\|\nabla\Delta\bar{c}\|^{2}_{L^2}+C \end{align*} |
and
\begin{align*} J_{17} = &-\int_{\Omega} \nabla(\bar{n}\nabla \tilde{c})\Delta\tilde{n} d x = -\int_{\Omega} \nabla\bar{n}\nabla \tilde{c}\Delta\tilde{n} d x-\int_{\Omega} \nabla\bar{n}\Delta \tilde{c}\Delta\tilde{n} d x \\ \leq&\|\nabla\bar{n}\|_{L^4}\|\nabla\tilde{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|\bar{n}\|_{L^4}\|\Delta\tilde{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq &(\|\nabla\bar{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\bar{n}\|^{\frac{1}{2}}_{L^2}+\|\nabla\bar{n}\|_{L^2})\|\nabla \tilde{c}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+\|\bar{n}\|_{H^1}(\|\Delta\tilde{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\tilde{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\tilde{c}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\Delta\tilde{c}\|^{2}_{L^2}+C. \end{align*} |
For the rest terms, we know
\begin{align*} J_{18} = &-\alpha(1+\gamma)\int_{\Omega}\tilde{n}\Delta\tilde{n} d x+2\mu\int_{\Omega}\tilde{n}\bar{n} \Delta\tilde{n}d x-\alpha \int_{\Omega}g_n\Delta\tilde{n} d x \\ \leq&(1+\gamma)\|\tilde{n}\|_{L^2}\|\Delta\tilde{n}\|_{L^2}+2\mu\|\tilde{n}\|_{L^4}\|\bar{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|g_n\|_{L^2}\|\Delta\tilde{n}\|_{L^2} \\ \leq& (1+\gamma)\|\tilde{n}\|_{L^2}\|\Delta\tilde{n}\|_{L^2}+C(\|\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\tilde{n}\|_{L^2})\|\bar{n}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+\|g_n\|_{L^2}\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}+C\|g_n\|^2_{L^2}. \end{align*} |
Therefore, Taking
\begin{align*} &\frac{d}{d t}\|\nabla\tilde{n}\|^{2}_{L^2}+ \|\nabla\tilde{n}\|^{2}_{H^1} \\ \leq& C(\|\nabla\tilde{n}\|^{2}_{L^2} +\|\nabla \bar{n}\|^2_{H^1}+ \|\nabla\Delta\bar{c}\|^{2}_{L^2}+\|\nabla\Delta\tilde{c}\|^{2}_{L^2}+\|g_n\|^2_{L^2})+C. \end{align*} |
Applying Gronwall's lemma to the resulting differential inequality, we know
\begin{align*} \|\nabla\tilde{n}\|^{2}_{L^2}+\int_0^t \|\nabla\tilde{n}\|^{2}_{H^1}d\tau \leq C. \end{align*} |
Therefore, from Leray-Schauder theorem, we derive the existence of solution for (5.5). Along with the regularity of
Theorem 5.1. Assume that
\begin{align} &\beta_1\int_{0}^T\int_{\Omega_d} (\bar{n}-n_d)\tilde{n}d x d t + \beta_2\int_{0}^T\int_{\Omega_d} (\bar{c}-c_d)\tilde{c}d x d t + \beta_3\int_{0}^T\int_{\Omega_d} (\bar{u}-u_d)\tilde{u}d x d t \\ &+\beta_4\int_{\Omega_d} (\bar{n}(T)-n_{\Omega})\tilde{n}(T)d x +\beta_5\int_{\Omega_d} (\bar{c}(T)-c_{\Omega})\tilde{c}(T)d x \\ &-\int_{0}^T\int_{\Omega}(\tilde{n}_{t}-\Delta \tilde{n}+\bar{u} \cdot \nabla \tilde{n}+\tilde{u}\cdot\nabla \bar{n}+\nabla \cdot(\bar{n} \nabla \tilde{c}) +\nabla(\tilde{n}\nabla \bar{c})-\gamma \tilde{n} +2\mu \tilde{n}\bar{n})\lambda d x d t \\ &-\int_{0}^T\int_{\Omega}\left(\tilde{c}_{t}-\Delta \tilde{c}+\bar{u} \cdot \nabla \tilde{c}+\tilde{u}\cdot\nabla \bar{c}+\tilde{c}- \tilde{n}\right)\eta d x d t+\beta_7\int_{0}^T\int_{\Omega_d} \tilde{f}\bar{f}d x d t \\ &-\int_{0}^T\int_{\Omega}\left(\tilde{u}_{t}-\Delta \tilde{u}+\bar{u} \cdot \nabla \tilde{u}+\tilde{u}\cdot \nabla \bar{u}-\tilde{n} \nabla \varphi \right) \rho d x d t +\int_{\Omega}\tilde{n}(0)\xi d x+\int_{\Omega}\tilde{c}(0)\varphi d x \\ &+\int_{\Omega}\tilde{u}(0)\omega d x+\beta_6\int_{\Omega_d} (\bar{u}(T)-u_{\Omega})\tilde{u}(T)d x+\int_{0}^T\int_{\Omega}\tilde{f}\eta d x d t \geq 0, \end{align} | (5.15) |
where
Proof. With the Lemma 5.3 in hand, we get that
\begin{align*} &J^{\prime}(\bar{s})[r]-\langle G_1^{\prime}(\bar{s})[r],\lambda \rangle-\langle G_2^{\prime}(\bar{s})[r],\eta \rangle-\langle G_3^{\prime}(\bar{s})[r],\rho \rangle-\langle G_4^{\prime}(\bar{s})[r],\xi \rangle \\ &-\langle G_5^{\prime}(\bar{s})[r],\varphi \rangle -\langle G_6^{\prime}(\bar{s})[r],\omega \rangle \geq 0, \end{align*} |
for all
Corollary 5.1. Assume that
\begin{align} &\int_{0}^T\int_{\Omega}(\tilde{n}_{t}-\Delta \tilde{n}+\bar{u} \cdot \nabla \tilde{n} +\nabla(\tilde{n}\nabla \bar{c})-\gamma \tilde{n} +2\mu \tilde{n}\bar{n})\lambda d x d t -\int_{0}^T\int_{\Omega}\tilde{n}\eta d x d t \\ &-\int_{0}^T\int_{\Omega}\tilde{n} \nabla \varphi \rho d x d t = \beta_1\int_{0}^T\int_{\Omega_d}(\bar{n}-n_d)\tilde{n}d x d t, \end{align} | (5.16) |
\begin{align} &\int_{0}^T\int_{\Omega}\left(\tilde{c}_{t}-\Delta \tilde{c}+\bar{u} \cdot \nabla \tilde{c}+\tilde{c}\right)\eta d x d t+\int_{0}^T\int_{\Omega} \nabla \cdot(\bar{n} \nabla \tilde{c})\lambda d x d t \\ = &\beta_2\int_{0}^T\int_{\Omega_d} (\bar{c}-c_d)\tilde{c}d x d t, \end{align} | (5.17) |
\begin{align} &\int_{0}^T\int_{\Omega}\left(\tilde{u}_{t}-\Delta \tilde{u}+\bar{u} \cdot \nabla \tilde{u}+\tilde{u}\cdot \nabla \bar{u} \right) \rho d x d t + \int_{0}^T\int_{\Omega}\tilde{u}\nabla \bar{n} \lambda d x d t \\ &+\int_{0}^T\int_{\Omega} \tilde{u}\cdot\nabla \bar{c}\eta d x d t = \beta_3\int_{0}^T\int_{\Omega_d} (\bar{u}-u_d)\tilde{u}d x d t, \end{align} | (5.18) |
which corresponds to the linear system
\begin{align} \left\{\begin{aligned} &-\lambda_t-\Delta \lambda +\bar{u}\cdot\nabla \lambda -\nabla \lambda\nabla \bar{c}-\gamma \lambda +2\mu\lambda\bar{n}-\eta - \nabla\varphi\rho \\ & = \beta_1(\bar{n}-n_d), \\ &-\eta_t-\Delta \eta+\bar{u}\cdot\nabla\eta+\eta+\nabla(\bar{n}\nabla\lambda) = \beta_2 (\bar{c}-c_d), \\ &-\rho_t-\Delta \rho+(\bar{u}\cdot\nabla)\rho+(\rho\cdot\nabla^{T})\bar{u}+\lambda \nabla \bar{n}+\eta \nabla \bar{c} = \beta_3(\bar{u}-u_d), \end{aligned} \right. \end{align} | (5.19) |
subject to the following boundary and final conditions
\begin{align*} \left\{\begin{aligned} &\nabla\cdot \rho = 0, &&\mathit{\text{in}}\; Q, \\ &\frac{\partial \lambda }{\partial \nu} = \frac{\partial \eta }{\partial \nu}, \rho = 0,&& \mathit{\text{on}}\; (0,T)\times \partial\Omega, \\ &\lambda(T) = \beta_4(\bar{n}(T)-n_{\Omega}),\eta(T) = \beta_5 (\bar{c}(T)-c_{\Omega}), \\ &\rho(T) = \beta_5(\bar{c}(T)-c_{\Omega}),&& \mathit{\text{in}}\; \Omega, \end{aligned} \right. \end{align*} |
and the following identities hold
\begin{align} \int_{0}^T\int_{\Omega_d}(\beta_7\bar{f}+\eta)(f-\bar{f}) d x d t \geq 0, \;\forall f \in\mathcal{U}. \end{align} | (5.20) |
Proof. By taking
\begin{align*} \beta_7\int_{0}^{T}\tilde{f}\bar{f} d x d t+\int_{0}^{T}\tilde{f}\eta d x d t\geq 0, \quad \forall \tilde{f} \in \mathcal{C}(\bar{f}). \end{align*} |
By choosing
Theorem 5.2. Under the assumptions of Theorem 5.1, system (5.19) has a unique weak solution such that
\begin{align*} \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2}+\int_0^t\|\lambda\|^2_{H^2}d \tau +\int_0^t\|\eta\|^2_{H^1}d \tau+\int_0^t\|\rho\|^2_{H^1} d \tau \leq C. \end{align*} |
Proof. For convenience, we set
\begin{align} \left\{\begin{aligned} &\lambda_t-\Delta \lambda +\bar{u}\cdot\nabla \lambda -\nabla \lambda\nabla \bar{c}-\gamma \lambda +2\mu\lambda\bar{n}-\eta - \nabla\varphi\rho \\ & = \beta_1(\bar{n}-n_d),&&\text{ in } Q, \\ &\eta_t-\Delta \eta+\bar{u}\cdot\nabla\eta+\eta+\nabla(\bar{n}\nabla\lambda) = \beta_2 (\bar{c}-c_d),&&\text{ in } Q, \\ &\rho_t-\Delta \rho+(\bar{u}\cdot\nabla)\rho+(\rho\cdot\nabla^{T})\bar{u}+\lambda \nabla \bar{n}+\eta \nabla \bar{c} = \beta_3(\bar{u}-u_d),&&\text{ in } Q, \end{aligned} \right. \end{align} | (5.21) |
subject to the following boundary and final conditions
\begin{align*} \left\{\begin{aligned} &\nabla\cdot \rho = 0, &&\text{ in } Q, \\ &\frac{\partial \lambda }{\partial \nu} = \frac{\partial \eta }{\partial \nu}, \rho = 0,&& \text{ on } (0,T)\times\partial \Omega, \\ &\lambda(0) = \beta_4(\bar{n}(T)-n_{\Omega}),\eta(0) = \beta_5 (\bar{c}(T)-c_{\Omega}), \\ &\rho(0) = \beta_5(\bar{c}(T)-c_{\Omega}),&& \text{ in } \Omega. \end{aligned} \right. \end{align*} |
Following an analogous reasoning as in the proof of Lemma 5.3, we omit the process and just give a number of a priori estimates as follows.
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\lambda^2 d x+ \int_{\Omega}|\nabla\lambda|^2 d x +2\mu\int_{\Omega}\lambda^2\bar{n} d x \\ = &\int_{\Omega} \nabla \lambda \nabla \bar{c}d x+\gamma\int_{\Omega}\lambda^2 d x +\int_{\Omega}\lambda \eta d x+\int_{\Omega}\lambda \nabla \varphi \rho d x+ \beta_1\int_{\Omega}(\bar{n}-n_d) \lambda d x \\ \leq &\|\nabla\lambda\|_{L^2}\|\nabla\bar{c}\|_{L^2}+\gamma\|\lambda\|^2_{L^2}+\|\lambda\|_{L^2}(\|\eta\|_{L^2}+\|\rho\|_{L^2})+\beta_1\|\bar{n}-n_d\|_{L^2}\|\lambda\|_{L^2} \\ \leq& \frac{1}{2}\|\nabla\lambda\|^2_{L^2}+C(\|\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align*} |
Then, we have
\begin{align} \frac{d}{d t}\|\lambda\|^2_{L^2}+\|\lambda\|^2_{H^1}\leq C(\|\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align} | (5.22) |
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}|\nabla\lambda|^2 d x + \int_{\Omega}|\Delta\lambda|^2 d x \\ = &\int_{\Omega}\bar{u}\cdot \nabla \lambda \Delta\lambda d x -\int_{\Omega}\nabla \lambda \nabla \bar{c}\Delta \lambda d x-\gamma \int_{\Omega}\lambda \Delta \lambda d x +2\mu \int_{\Omega}\lambda \bar{n}\Delta \lambda d x \\ &- \int_{\Omega}\eta \Delta \lambda d x-\int_{\Omega}\nabla \varphi \rho\Delta \lambda d x +\beta_1\int_{\Omega}(\bar{n}-n_d)\Delta\lambda d x \\ \leq&\|\bar{u}\|_{L^4}\|\nabla \lambda\|_{L^4}\|\Delta \lambda \|_{L^2} +\|\nabla \lambda\|_{L^4}\|\nabla \bar{c}\|_{L^4}\|\Delta \lambda \|_{L^2} +\gamma\|\nabla \lambda\|^2_{L^2} \\ &+\| \lambda\|_{L^4}\|\bar{n}\|_{L^4}\|\Delta \lambda \|_{L^2}+\|\eta\|_{L^2}\|\Delta \lambda \|_{L^2}+ \| \rho\|_{L^2} \|\Delta \lambda \|_{L^2} \\ &+\beta_1\|\Delta \lambda \|_{L^2}\|\bar{n}-n_d\|^2_{L^2} \\ \leq& \|\bar{u}\|_{H^1}(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\Delta \lambda\|_{L^2}+\gamma\|\nabla \lambda\|^2_{L^2} \\ &+(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\nabla\bar{c}\|_{H^1}\|\Delta \lambda\|_{L^2}+\|\eta\|_{L^2}\|\Delta \lambda \|_{L^2} \\ &+\| \rho\|_{L^2} \|\Delta \lambda \|_{L^2}+\beta_1\|\Delta \lambda \|_{L^2}\|\bar{n}-n_d\|^2_{L^2} \\ \leq&\frac{1}{2}\|\Delta \lambda\|^{2}_{L^2}+C(\|\nabla \lambda\|^{2}_{L^2}+\|\eta\|^2_{L^2}+\| \rho\|^2_{L^2} ). \end{align*} |
Thus, we get
\begin{align} \frac{d}{d t}\|\nabla\lambda\|^2_{L^2}+\|\nabla\lambda\|^2_{H^1}\leq C(\|\nabla\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align} | (5.23) |
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\eta^2 d x+ \int_{\Omega}|\nabla\eta|^2 d x+ \int_{\Omega}\eta^2 d x \\ = & \int_{\Omega}\bar{n}\nabla\lambda \nabla \eta d x+\beta_2 \int_{\Omega}\eta (\bar{c}-c_d) d x \\ \leq& \|\bar{n}\|_{L^{4}}\|\nabla \lambda\|_{L^4}\|\nabla \eta\|_{L^2}+\beta_2\|\eta \|_{L^2}\|\bar{c}-c_d\|_{L^2} \\ \leq&\|\bar{n}\|_{H^1}(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\nabla \eta\|_{L^2}+\beta_2\|\eta \|_{L^2}\|\bar{c}-c_d\|_{L^2} \\ \leq &\frac{1}{2}\|\nabla \eta\|^2_{L^2}+\delta\|\Delta \lambda\|^2_{L^2}+C\|\nabla \lambda\|_{L^2}+C\|\eta \|^2_{L^2}+C\|\bar{c}-c_d\|^2_{L^2}. \end{align*} |
As an immediate consequence, we obtain
\begin{align} \frac{d}{d t}\|\eta \|^2_{L^2}+\|\eta \|^2_{H^1} \leq \delta\|\Delta \lambda\|^2_{L^2}+C\|\nabla \lambda\|_{L^2}+C\|\eta \|^2_{L^2}+C\|\bar{c}-c_d\|^2_{L^2}. \end{align} | (5.24) |
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\rho^2 d x+ \int_{\Omega}|\nabla\rho|^2 d x \\ = &-\int_{\Omega} (\rho\cdot\nabla^{T})\bar{u} \rho d x-\lambda\int_{\Omega}\nabla \bar{n} \rho d x-\int_{\Omega}\eta \nabla \bar{c} \rho d x+\beta_3\int_{\Omega}(\bar{u}-u_d) \rho d x \\ \leq &\|\rho\|_{L^2}\|\nabla \bar{u}\|_{L^4}\|\rho\|_{L^4}+\lambda \|\nabla \bar{n}\|_{L^2}\|\rho\|_{L^2}+\|\eta \|_{L^2}\|\nabla \bar{c}\|_{L^4}\|\rho\|_{L^4} \\ &+\beta_3\|\rho\|_{L^2}\|\bar{u}-u_d\|_{L^2} \\ \leq& \|\rho\|_{L^2}\|\nabla \bar{u}\|_{H^1}(\|\rho\|^{\frac{1}{2}}_{L^2}\|\nabla\rho\|^{\frac{1}{2}}_{L^2}+\|\rho\|_{L^2})+\lambda \|\nabla \bar{n}\|_{L^2}\|\rho\|_{L^2} \\ &+\|\eta \|_{L^2}\|\nabla \bar{c}\|_{H^1}(\|\rho\|^{\frac{1}{2}}_{L^2}\|\nabla\rho\|^{\frac{1}{2}}_{L^2}+\|\rho\|_{L^2})+\beta_3\|\rho\|_{L^2}\|\bar{u}-u_d\|_{L^2} \\ \leq&\frac{1}{2}\|\nabla\rho\|^{2}_{L^2}+C\|\rho\|^2_{L^2}(\|\nabla \bar{u}\|^2_{H^1}+1)+C\|\eta \|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align*} |
Therefore, we see that
\begin{align} \frac{d}{d t}\|\rho\|^{2}_{L^2}+\|\rho\|^{2}_{H^1}\leq C\|\rho\|^2_{L^2}(\|\nabla \bar{u}\|^2_{H^1}+1)+C\|\eta \|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align} | (5.25) |
Combining (5.22)-(5.25) and taking
\begin{align*} &\frac{d}{ d t}(\|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+ \|\lambda\|^2_{H^2}+ \|\eta\|^2_{H^1} +\|\rho\|^2_{H^1} \\ \leq& C(\|\nabla \bar{u}\|^2_{H^1}+1)( \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2} \\ &+C\|\bar{c}-c_d\|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align*} |
Applying Gronwall's lemma to the resulting differential inequality, we know
\begin{align*} \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2}+\int_0^t\|\lambda\|^2_{H^2}d \tau +\int_0^t\|\eta\|^2_{H^1}d \tau+\int_0^t\|\rho\|^2_{H^1} d \tau \leq C. \end{align*} |
The proof is complete.
The authors would like to express their deep thanks to the referee's valuable suggestions for the revision and improvement of the manuscript.
[1] | H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511530043 |
[2] | X. Zhao, Dynamical Systems in Population Biology, 2^{nd} edition, Springer-Verlag, New York, 2017. https://doi.org/10.1007/978-3-319-56433-3 |
[3] | L. Chen, J. Chen, Nonlinear Biological Dynamical Systems (in Chinese), Science Press, Beijing, 1993. |
[4] | S. Ruan, The dynamics of chemostat models (in Chinese), J. Cent. China Norm. Univ., 31 (1997), 377–397. |
[5] | X. Tai, W. Ma, S. Guo, H. Yan, C. Yin, A class of dynamic delayed model describing flocculation of micoorganism and its theoretical analysis (in Chinese), Math. Pract. Theory, 45 (2015), 198–209. Available from: https://www.researchgate.net/publication/331590204. |
[6] |
S. Guo, W. Ma, Global dynamics of a microorganism flocculation model with time delay, Commun. Pur. Appl. Anal., 16 (2017), 1883–1891. https://doi.org/10.3934/cpaa.2017091 doi: 10.3934/cpaa.2017091
![]() |
[7] |
S. Guo, W. Ma, X. Zhao, Global dynamics of a time-delayed microorganism flocculation model with saturated functional responses, J. Dyn. Differ. Equations, 30 (2018), 1247–1271. https://doi.org/10.1007/s10884-017-9605-3 doi: 10.1007/s10884-017-9605-3
![]() |
[8] |
S. Guo, J. Cui, W. Ma, An analysis approach to permanence of a delay differential equations model of microorganism flocculation, Discrete Contin. Dyn. Syst. -B, 27 (2022), 3831–3844. https://doi.org/10.3934/dcdsb.2021208 doi: 10.3934/dcdsb.2021208
![]() |
[9] |
X. Mu, D. Jiang, A. Alsaedi, Dynamical behavior of a stochastic microorganism flocculation model with nonlinear perturbation, Qual. Theor. Dyn. Syst., 21 (2022), 1–19. https://doi.org/10.1007/s12346-022-00566-1 doi: 10.1007/s12346-022-00566-1
![]() |
[10] |
E. Beretta, G. I. Bischi, F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28 (1990), 99–111. https://doi.org/10.1007/BF00171521 doi: 10.1007/BF00171521
![]() |
[11] | E. Beretta, Y. Takeuchi, Qualitative properties of chemostat equations with time delays: boundedness, local and global asymptotic stability, Differ. Equations Dyn. Syst., 2 (1994), 19–40. Available from: https://www.researchgate.net/publication/256114891. |
[12] | E. Beretta, Y. Takeuchi, Qualitative properties of chemostat equations with time delays Ⅱ, Differ. Equations Dyn. Syst., 2 (1994), 263–288. Available from: https://www.researchgate.net/publication/255989412. |
[13] |
S. Ruan, The effect of delays on stability and persistence in Plankton models, Nonlinear Anal. Theory Methods Appl., 24 (1995), 575–585. https://doi.org/10.1016/0362-546X(95)93092-I doi: 10.1016/0362-546X(95)93092-I
![]() |
[14] |
X. He, S. Ruan, H. Xia, Global stability in chemostat-type equations with distributed delays, SIAM J. Math. Anal., 29 (1998), 681–696. https://doi.org/10.1137/S0036141096311101 doi: 10.1137/S0036141096311101
![]() |
[15] |
X. He, S. Ruan, Global stability in chemostat-type plankton models with delayed nutrient recycling, J. Math. Biol., 37 (1998), 253–271. https://doi.org/10.1007/s002850050128 doi: 10.1007/s002850050128
![]() |
[16] |
S. Ruan, G. S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay, J. Math. Anal. Appl., 204 (1996), 786–812. https://doi.org/10.1006/jmaa.1996.0468 doi: 10.1006/jmaa.1996.0468
![]() |
[17] |
G. S. K. Wolkowicz, H. Xia, S. Ruan, Competition in the chemostat: a distributed delay model and its global asymptotic behavior, SIAM J. Appl. Math., 57 (1997), 1281–1310. https://doi.org/10.1137/S0036139995289842 doi: 10.1137/S0036139995289842
![]() |
[18] |
G. S. K. Wolkowicz, H. Xia, J. Wu, Global dynamics of a chemostat competition model with distributed delay, J. Math. Biol., 38 (1999), 285–316. https://doi.org/10.1007/s002850050150 doi: 10.1007/s002850050150
![]() |
[19] |
B. Li, G. S. K. Wolkowicz, Y. Kuang, Global asymptotic behavior of a chemostat model with two perfecity complementary resources and distributed delay, SIAM J. Appl. Math., 60 (2000), 2058–2086. https://doi.org/10.1137/S0036139999359756 doi: 10.1137/S0036139999359756
![]() |
[20] | J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Springer-Verlag, Berlin, 1977. https://doi.org/10.1007/978-3-642-93073-7 |
[21] | N. MacDonald, Time Lags in Biological Models, Springer-Verlag, Berlin, 1978. https://doi.org/10.1007/978-3-642-93107-9 |
[22] | K. Gopalsamy, Stability and Oscillation in Delay Equation of Population Dynamics, Kluwer Academic Publishers, Dordrecht, 1992. https://doi.org/10.1007/978-94-015-7920-9 |
[23] | Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. Available from: https://www.researchgate.net/publication/243764052. |
[24] | L. Chen, Mathematical Ecological Models and Research Methods (in Chinese), 2^nd edition, Science Press, Beijing, 2017. |
[25] |
G. Röst, J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5 (2008), 389–402. https://doi.org/10.3934/mbe.2008.5.389 doi: 10.3934/mbe.2008.5.389
![]() |
[26] |
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603–610. https://doi.org/10.3934/mbe.2009.6.603 doi: 10.3934/mbe.2009.6.603
![]() |
[27] |
P. Nelson, A. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73–94. https://doi.org/10.1016/S0025-5564(02)00099-8 doi: 10.1016/S0025-5564(02)00099-8
![]() |
[28] |
X. Lai, X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmision, SIAM J. Appl. Math., 74 (2014), 898–917. https://doi.org/10.1137/130930145 doi: 10.1137/130930145
![]() |
[29] |
H. Shu, Y. Chen, L. Wang, Impacts of the cell-free and cell-to-cell infection modes on viral dynamics, J. Dyn. Diff. Equations, 30 (2018), 1817–1836. https://doi.org/10.1007/s10884-017-9622-2 doi: 10.1007/s10884-017-9622-2
![]() |
[30] | K. Wang, M. Fan, Phase Space Theory of Functional Differential Equations and its Applications (in Chinese), Science Press, Beijing, 2009. |
[31] | J. K. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11–41. |
[32] | F. V. Atkinson, J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31 (1988), 331–347. Available from: https://www.researchgate.net/publication/266003717. |
[33] | Y. Hino, S. Murakami, T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Springer-Verlag, New York, 1991. https://doi.org/10.1007/BFb0084432 |
[34] | J. K. Hale, S. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7 |
[35] | S. Zhang, Comparison theorems on boundedness, Funkcial. Ekvac., 31 (1988), 179–196. |
1. | Shenxing Li, Wenhe Li, Dynamical Behaviors of a Stochastic Susceptible-Infected-Treated-Recovered-Susceptible Cholera Model with Ornstein-Uhlenbeck Process, 2024, 12, 2227-7390, 2163, 10.3390/math12142163 |