SEIR epidemiological model with varying infectivity and infinite delay

  • Received: 01 August 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : Primary 34K60, 92D30.

  • A new SEIR model with distributed infinite delay is derived when the infectivity depends on the age of infection. The basic reproduction number R0, which is a threshold quantity for the stability of equilibria, is calculated. If < 1, then the disease-free equilibrium is globally asymptotically stable and this is the only equilibrium. On the contrary, if > 1, then an endemic equilibrium appears which is locally asymptotically stable. Applying a perma- nence theorem for infinite dimensional systems, we obtain that the disease is always present when > 1.

    Citation: Gergely Röst, Jianhong Wu. SEIR epidemiological model with varying infectivity and infinite delay[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 389-402. doi: 10.3934/mbe.2008.5.389

    Related Papers:

    [1] C. Connell McCluskey . Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences and Engineering, 2009, 6(3): 603-610. doi: 10.3934/mbe.2009.6.603
    [2] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [3] Rongjian Lv, Hua Li, Qiubai Sun, Bowen Li . Model of strategy control for delayed panic spread in emergencies. Mathematical Biosciences and Engineering, 2024, 21(1): 75-95. doi: 10.3934/mbe.2024004
    [4] Jinliang Wang, Gang Huang, Yasuhiro Takeuchi, Shengqiang Liu . Sveir epidemiological model with varying infectivity and distributed delays. Mathematical Biosciences and Engineering, 2011, 8(3): 875-888. doi: 10.3934/mbe.2011.8.875
    [5] Cruz Vargas-De-León, Alberto d'Onofrio . Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences and Engineering, 2017, 14(4): 1019-1033. doi: 10.3934/mbe.2017053
    [6] Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362
    [7] Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469
    [8] Haoyu Wang, Xihe Qiu, Jinghan Yang, Qiong Li, Xiaoyu Tan, Jingjing Huang . Neural-SEIR: A flexible data-driven framework for precise prediction of epidemic disease. Mathematical Biosciences and Engineering, 2023, 20(9): 16807-16823. doi: 10.3934/mbe.2023749
    [9] Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295
    [10] Edoardo Beretta, Dimitri Breda . An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences and Engineering, 2011, 8(4): 931-952. doi: 10.3934/mbe.2011.8.931
  • A new SEIR model with distributed infinite delay is derived when the infectivity depends on the age of infection. The basic reproduction number R0, which is a threshold quantity for the stability of equilibria, is calculated. If < 1, then the disease-free equilibrium is globally asymptotically stable and this is the only equilibrium. On the contrary, if > 1, then an endemic equilibrium appears which is locally asymptotically stable. Applying a perma- nence theorem for infinite dimensional systems, we obtain that the disease is always present when > 1.


  • This article has been cited by:

    1. Carlos M. Hernandez-Suarez, David Hiebeler, Modeling species dispersal with occupancy urn models, 2012, 5, 1874-1738, 555, 10.1007/s12080-011-0147-8
    2. N. Zoroa, E. Lesigne, M. J. Fernández-Sáez, P. Zoroa, J. Casas, The coupon collector urn model with unequal probabilities in ecology and evolution, 2017, 14, 1742-5689, 20160643, 10.1098/rsif.2016.0643
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3530) PDF downloads(729) Cited by(82)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog