Citation: Tatyana S. Turova. Structural phase transitions in neural networks[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 139-148. doi: 10.3934/mbe.2014.11.139
[1] | Guowei Wang, Yan Fu . Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels. Mathematical Biosciences and Engineering, 2023, 20(2): 3944-3969. doi: 10.3934/mbe.2023184 |
[2] | Kyle Wendling, Cheng Ly . Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity. Mathematical Biosciences and Engineering, 2019, 16(4): 2023-2048. doi: 10.3934/mbe.2019099 |
[3] | Karim El Laithy, Martin Bogdan . Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences and Engineering, 2014, 11(2): 233-256. doi: 10.3934/mbe.2014.11.233 |
[4] | Anna Cattani . FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences and Engineering, 2014, 11(2): 203-215. doi: 10.3934/mbe.2014.11.203 |
[5] | Zulin Xu . An intelligent fault detection approach for digital integrated circuits through graph neural networks. Mathematical Biosciences and Engineering, 2023, 20(6): 9992-10006. doi: 10.3934/mbe.2023438 |
[6] | Mengya Zhang, Qing Wu, Zezhou Xu . Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235 |
[7] | Diego Fasoli, Stefano Panzeri . Mathematical studies of the dynamics of finite-size binary neural networks: A review of recent progress. Mathematical Biosciences and Engineering, 2019, 16(6): 8025-8059. doi: 10.3934/mbe.2019404 |
[8] | Ravi Agarwal, Snezhana Hristova, Donal O’Regan, Radoslava Terzieva . Stability properties of neural networks with non-instantaneous impulses. Mathematical Biosciences and Engineering, 2019, 16(3): 1210-1227. doi: 10.3934/mbe.2019058 |
[9] | Hongqiang Zhu . A graph neural network-enhanced knowledge graph framework for intelligent analysis of policing cases. Mathematical Biosciences and Engineering, 2023, 20(7): 11585-11604. doi: 10.3934/mbe.2023514 |
[10] | Paula Mercurio, Di Liu . Identifying transition states of chemical kinetic systems using network embedding techniques. Mathematical Biosciences and Engineering, 2021, 18(1): 868-887. doi: 10.3934/mbe.2021046 |
[1] | Studies of Brain Function, Springer-Verlag, Berlin-Heidelberg-New York, 1982. |
[2] | First edition, Cambridge University Press, Cambridge, 1991. |
[3] | J. Neurosci., 30 (2010), 11232-11245. |
[4] | Network, 6 (1995), 179-224. |
[5] | Front. Comput. Neurosci., 4 (2010), 132. |
[6] | Neuron., 65 (2010), 563-576. |
[7] | Academic Press, New York-San Francisco-London, 1975. |
[8] | Die Grundlehren der Mathematischen Wissenschaften, Bd. 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. |
[9] | Nature, 419 (2002), 65-70. |
[10] | Network, 7 (1996), 357-363. |
[11] | Int. J. Neural Syst., 18 (2008), 267-277. |
[12] | Biosystems, 89 (2007), 287-293. |
[13] | Annals of Applied Probability, 22 (2012), 1989-2047. |
[14] | Biol. Cybernet., 92 (2005), 367-379. |
[15] | Frontiers in Computational Neuroscience, 4 (2011). |
[16] | J. Neurosci., 25 (2005), 1952-1964. |
[17] | Science, 319 (2008), 1543-1546. |
[18] | Trends in Neurosciences, 27 (2004), 744-750. |
[19] | J. Neurophysiol., 79 (1998), 2857-2874. |
[20] | Complexity, 10 (2005), 42-50. |
[21] | Progress in Neurobiology, 95 (2011), 448-490. |
[22] | Oxford University Press, Oxford, 2008. |
[23] | J. Comput. Neurosci., 34 (2012), 185-209. |
[24] | Brain Research, 1434 (2012), 277-284. |
[25] | BioSystems, 89 (2007), 280-286. |
[26] | Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 1106-1111. |
[27] | Frontiers in computational Neuroscience, 6 (2012). |
1. | Jérémie Cabessa, Alessandro E. P. Villa, 2015, Chapter 1, 978-3-319-09902-6, 1, 10.1007/978-3-319-09903-3_1 | |
2. | Fioralba Ajazi, George M. Napolitano, Tatyana Turova, Izbassar Zaurbek, Structure of a randomly grown 2-d network, 2015, 136, 03032647, 105, 10.1016/j.biosystems.2015.09.002 |