Optimal design for parameter estimation in EEG problems in a 3D multilayered domain

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : 62F12, 62K05, 65M32.

  • The fundamental problem of collecting data in the ``best way'' in order to assure statistically efficient estimation of parameters is known as Optimal Experimental Design. Many inverse problems consist in selecting best parameter values of a given mathematical model based on fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data.We consider an electromagnetic interrogation problem, specifically one arising in an electroencephalography (EEG) problem, of finding optimal number and locations for sensors for source identification in a 3D unit sphere from data on its boundary. In this effort we compare the use of the classical $D$-optimal criterion for observation points as opposed to that for a uniform observation mesh. We consider location and best number of sensors and report results based on statistical uncertainty analysis of the resulting estimated parameters.

    Citation: H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 739-760. doi: 10.3934/mbe.2015.12.739

    Related Papers:

    [1] Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel . EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences and Engineering, 2018, 15(4): 905-932. doi: 10.3934/mbe.2018041
    [2] Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi . Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947
    [3] Cuicui Cai, Maosheng Fu, Xianmeng Meng, Chaochuan Jia, Mingjing Pei . Indoor high-precision visible light positioning system using Jaya algorithm. Mathematical Biosciences and Engineering, 2023, 20(6): 10358-10375. doi: 10.3934/mbe.2023454
    [4] Zhaohai Liu, Houguang Liu, Jie Wang, Jianhua Yang, Jingbin Hao, Shanguo Yang . Analysis of design parameters of round-window stimulating type electromagnetic transducer by a nonlinear lumped parameter model of implanted human ear. Mathematical Biosciences and Engineering, 2022, 19(3): 2453-2470. doi: 10.3934/mbe.2022113
    [5] Ming Meng, Luyang Dai, Qingshan She, Yuliang Ma, Wanzeng Kong . Crossing time windows optimization based on mutual information for hybrid BCI. Mathematical Biosciences and Engineering, 2021, 18(6): 7919-7935. doi: 10.3934/mbe.2021392
    [6] Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks . The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences and Engineering, 2009, 6(2): 261-282. doi: 10.3934/mbe.2009.6.261
    [7] Zizhuo Wu, Qingshan She, Zhelong Hou, Zhenyu Li, Kun Tian, Yuliang Ma . Multi-source online transfer algorithm based on source domain selection for EEG classification. Mathematical Biosciences and Engineering, 2023, 20(3): 4560-4573. doi: 10.3934/mbe.2023211
    [8] Bei Liu, Hongzi Bai, Wei Chen, Huaquan Chen, Zhen Zhang . Automatic detection method of epileptic seizures based on IRCMDE and PSO-SVM. Mathematical Biosciences and Engineering, 2023, 20(5): 9349-9363. doi: 10.3934/mbe.2023410
    [9] Yanghan Ou, Siqin Sun, Haitao Gan, Ran Zhou, Zhi Yang . An improved self-supervised learning for EEG classification. Mathematical Biosciences and Engineering, 2022, 19(7): 6907-6922. doi: 10.3934/mbe.2022325
    [10] Sakorn Mekruksavanich, Wikanda Phaphan, Anuchit Jitpattanakul . Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism. Mathematical Biosciences and Engineering, 2025, 22(1): 73-105. doi: 10.3934/mbe.2025004
  • The fundamental problem of collecting data in the ``best way'' in order to assure statistically efficient estimation of parameters is known as Optimal Experimental Design. Many inverse problems consist in selecting best parameter values of a given mathematical model based on fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data.We consider an electromagnetic interrogation problem, specifically one arising in an electroencephalography (EEG) problem, of finding optimal number and locations for sensors for source identification in a 3D unit sphere from data on its boundary. In this effort we compare the use of the classical $D$-optimal criterion for observation points as opposed to that for a uniform observation mesh. We consider location and best number of sensors and report results based on statistical uncertainty analysis of the resulting estimated parameters.


    [1] Inverse Problems, 18 (2002), 1659-1672.
    [2] Applied Math Letters, 40 (2015), 84-89.
    [3] Inverse Problems, 10 (1994), 995-1007.
    [4] J. Optical Society of America A, 6 (1989), 1441-1446.
    [5] Inverse Problems, 12 (1996), 565-577.
    [6] CRSC-TR13-16, Center for Research in Scientific Computation, North Carolina State University, 2013. Mathematical Biosciences and Engineering (Submitted).
    [7] Applied Math Letters, 43 (2015), 10-18.
    [8] Frontiers in Applied Mathematics, Vol. FR21, SIAM, Philadelphia, PA, 2000.
    [9] J. Inverse and Ill-posed Problems, 15 (2007), 683-708.
    [10] J. Inverse and Ill-posed Problems, 18 (2010), 25-83.
    [11] CRSC-TR14-15, N. C. State University, Raleigh, NC, November, 2014; J. Biological Dynamics, submitted.
    [12] Inverse Problems, 27 (2011), 075002, 31pp.
    [13] CRC Press, Boca Raton, FL., 2014.
    [14] J. Inverse and Ill-Posed Problems, 8 (2000), 487-504.
    [15] Inverse Problems in Sci. and Engr., 22 (2014), 557-590.
    [16] Applied Mathematics Letters, 26 (2013), 10-14.
    [17] CRSC-TR13-01, N. C. State University, Raleigh, NC, January, 2013; Proceedings 2013 SIAM Conference on Control Theory, CT13, SIAM, (2013), 83-90.
    [18] MACI, 4 (2013), 521-524. ISSN 2314-3282.
    [19] Proceedings of the American Control Conference, (2014), 2753-2758.
    [20] Revue ARIMA, 13 (2010), 47-62.
    [21] Inverse Problems, 28 (2012), 1-24.
    [22] Springer Applied Mathematical Sciences, Vol. 93, 3rd ed., Springer Verlag, 2013.
    [23] Math Methods Applied Science, 20 (1997), 385-401.
    [24] J. Appl. Phys., 64 (1988), 464-470.
    [25] IEEE Trans. On Signal Processing, 50 (2002), 1565-1572.
    [26] Inverse Problems, 16 (2000), 651-663.
    [27] Neurology and Clinical Neurophysiology, 2004 (2004), 102.
    [28] J. Inv. Ill-Posed Problems, 14 (2006), 331-353.
    [29] Phys. Med. Biol., 41 (1996), 2231-2249.
    [30] Phys. Med. Biol., 41 (1996), 2251-2269.
    [31] Phys. Med. Biol., 41 (1996), 2271-2293.
    [32] Reviews of Modern Physics, 65 (1993), 414-487.
    [33] IEEE Trans. Biomedical Engineering, 49 (2002), 533-539.
    [34] Mathematics and Computers in Simulation, 66 (2004), 255-265.
    [35] Inverse Problems, 21 (2005), 1207-1223.
    [36] Trans. Biomedical Engineering, 46 (1999), 245-259.
    [37] Latin American Applied Research, 36 (2006), 87-92.
    [38] Phy. Med Biol., 32 (1987), 11-22.
    [39] IEEE Trans. Biomedical Engineering, 49 (2002), 409-418.
    [40] John Wiley & Sons, Inc., New York, 1989.
    [41] J. of Applied Mathematics, 12 (2003), 647-656.
    [42] Mathematical and Computer Modeling, 41 (2005), 1437-1443.
    [43] IEEE Trans. Biomed. Eng., 2 (2004), 1339-1342.
  • This article has been cited by:

    1. Guillermo F. Umbricht, Diana Rubio, Optimal Estimation of Thermal Diffusivity in a Thermal Energy Transfer Problem with Heat Generation, Convection Dissipation and Lateral Heat Flow, 2021, 16, 2224-347X, 222, 10.37394/232013.2021.16.21
    2. Guillermo Federico Umbricht, Diana Rubio, Regularization techniques for estimating the space-dependent source in an n-dimensional linear parabolic equation using space-dependent noisy data, 2024, 172, 08981221, 47, 10.1016/j.camwa.2024.07.029
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2817) PDF downloads(562) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog