Models, measurement and inference in epithelial tissue dynamics

  • Received: 01 October 2014 Accepted: 29 June 2018 Published: 01 August 2015
  • MSC : Primary: 92CXX; Secondary: 92BXX, 92D25.

  • The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison.

    Citation: Oliver J. Maclaren, Helen M. Byrne, Alexander G. Fletcher, Philip K. Maini. Models, measurement and inference in epithelial tissue dynamics[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1321-1340. doi: 10.3934/mbe.2015.12.1321

    Related Papers:

    [1] Yangjin Kim, Hans G. Othmer . Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141
    [2] Yendry N. Arguedas, Mario Santana-Cibrian, Jorge X. Velasco-Hernández . Transmission dynamics of acute respiratory diseases in a population structured by age. Mathematical Biosciences and Engineering, 2019, 16(6): 7477-7493. doi: 10.3934/mbe.2019375
    [3] Dong-feng Li, Aisikeer Tulahong, Md. Nazim Uddin, Huan Zhao, Hua Zhang . Meta-analysis identifying epithelial-derived transcriptomes predicts poor clinical outcome and immune infiltrations in ovarian cancer. Mathematical Biosciences and Engineering, 2021, 18(5): 6527-6551. doi: 10.3934/mbe.2021324
    [4] Ancheng Deng, Xiaoqiang Sun . Dynamic gene regulatory network reconstruction and analysis based on clinical transcriptomic data of colorectal cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 3224-3239. doi: 10.3934/mbe.2020183
    [5] Christian Engwer, Markus Knappitsch, Christina Surulescu . A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011
    [6] Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky . Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences and Engineering, 2013, 10(3): 729-742. doi: 10.3934/mbe.2013.10.729
    [7] Giuseppina Albano, Virginia Giorno, Francisco Torres-Ruiz . Inference of a Susceptible–Infectious stochastic model. Mathematical Biosciences and Engineering, 2024, 21(9): 7067-7083. doi: 10.3934/mbe.2024310
    [8] Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350
    [9] Fiona R. Macfarlane, Mark A. J. Chaplain, Tommaso Lorenzi . A hybrid discrete-continuum approach to model Turing pattern formation. Mathematical Biosciences and Engineering, 2020, 17(6): 7442-7479. doi: 10.3934/mbe.2020381
    [10] Katrine O. Bangsgaard, Morten Andersen, Vibe Skov, Lasse Kjær, Hans C. Hasselbalch, Johnny T. Ottesen . Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Mathematical Biosciences and Engineering, 2020, 17(6): 7645-7670. doi: 10.3934/mbe.2020389
  • The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison.


    [1] J. Mech. Phys. Solids, 59 (2011), 863-883.
    [2] Cell Rep., 8 (2014), 940-947.
    [3] J. Am. Statist. Assoc., 95 (2000), 1269-1276.
    [4] Curr. Opin. Genet. Dev., 21 (2011), 653-663.
    [5] Nat. Methods, 6 (2009), 458-464.
    [6] Phys. Rev. Lett., 99 (2007), 248101.
    [7] J. R. Soc. Interface, 9 (2012), 20120263.
    [8] J. Theor. Biol., 98 (1982), 531-541.
    [9] PLoS Comput. Biol., 7 (2011), e1001045.
    [10] Integr. Biol., 6 (2014), 243-257.
    [11] Biophy. J., 99 (2010), 3145-3154.
    [12] BMC Sys. Biol., 4 (2010), p107.
    [13] arXiv:1302.6989v3
    [14] J. Math. Biol., 66 (2013), 1409-1462.
    [15] J. R. Soc. Interface, 11 (2014), 20140631.
    [16] Springer, 2005.
    [17] SIAM J. Appl. Math., 73 (2013), 1164-1182.
    [18] In Multiscale Cancer Modeling, Editor: TS Deisboeck, 6 (2010), 111-134.
    [19] J. Theor. Biol., 300 (2012), 118-133.
    [20] Prog. Biophys. Mol. Bio., 113 (2013), 299-326.
    [21] Math. Med. Biol., 27 (2010), 39-74.
    [22] Springer, New York, 2008.
    [23] Appl. Mech. Rev., 62 (2009), 030801.
    [24] Brit. J. Cancer, BJC, 97 (2007), 646-653.
    [25] CRC press, 2013.
    [26] Br. J. Math. Stat. Psychol., 66 (2013), 8-38.
    [27] Phys. Rev. E, 47 (1993), p2128.
    [28] In Single-Cell-Based Models in Biology and Medicine, pages 79-106. Springer, 2007.
    [29] Phys. Rev. Lett., 69 (1992), p2013.
    [30] Eur. Phys. J. E Soft Matter, 25 (2008), 349-369.
    [31] Springer, 2000.
    [32] Cambridge University Press, 2010.
    [33] J. Math. Biol., 67 (2013), 1457-1485.
    [34] Springer, 2007.
    [35] In SIAM News, volume July/August, 2014.
    [36] Springer, 1989.
    [37] Cambridge University Press, 2003.
    [38] Cell Cycle, 6 (2007), 2106-2112.
    [39] Proc. Natl. Acad. Sci. USA, 104 (2007), 4008-4013.
    [40] SIAM Rev., 54 (2012), 52-118.
    [41] IET Syst. Biol., 7 (2013), p57.
    [42] PLoS Biol., 7 (2009), e1000015.
    [43] Biophys. J., 69 (1995), 1284-1298.
    [44] Math. Biosci. Eng.: MBE, 6 (2009), 59-82.
    [45] Cell Prolif., 19 (1986), 627-645.
    [46] Phys Rev. E, 78 (2008), 061904.
    [47] Annu. Rev. Pathol. - Mech., 5 (2010), 119-144.
    [48] Disc. Cont. Dyn. Syst., 34 (2014), 5123-5133.
    [49] Eur. Phys. J.E, 25 (2008), 371-384.
    [50] World Scientific, 1999.
    [51] Cell Prolif., 34 (2001), 253-266.
    [52] Mech. Res. Commun., 42 (2012), 1-14.
    [53] J. Theor. Biol., 359 (2014), 220-232.
    [54] J. Theor. Biol., 312 (2012), 143-156.
    [55] PLoS Comput. Biol., 9 (2013), e1002970, 8pp.
    [56] Int. Geophys. Series, 81 (2002), 237-265.
    [57] Phys. Rev. E, 80 (2009), 031912.
    [58] Phys. Rev. E, 85 (2012), 021921.
    [59] Phys. Biol., 8 (2011), 026011.
    [60] Phys. Rev. E, 70 (2004), 051916.
    [61] Math. Biosci. Eng.: MBE, 2 (2005), 613-624.
    [62] Math. Mod. Meth. Appl. S., 20 (2010), 477-517.
    [63] Math. Mod. Meth. Appl. S., 23 (2013), 1309-1338.
    [64] Phil. Trans. R. Soc. A, 368 (2010), 5013-5028.
    [65] Physica A, 329 (2003), 451-458.
    [66] Biophys. J., 104 (2013), 237-246.
    [67] Science, 307 (2005), 1904-1909.
    [68] Phys. Rev. E, 81 (2010), 031404.
    [69] Compr. Physiol., 2011.
    [70] Phys. Biol., 8 (2011), 045008.
    [71] Phys. Biol., 8 (2011), 045007.
    [72] Phys. Biol., 5 (2008), 015002.
    [73] Science, 137 (1962), 762-763.
    [74] Proc. Natl. Acad. Sci. USA, 48 (1962), 1577-1582.
    [75] Proc. Natl. Acad. Sci. USA, 48 (1962), 1769-1776.
    [76] Science, 141 (1963), 401-408.
    [77] Acta Numerica, 19 (2010), 451-559.
    [78] SIAM, 2005.
    [79] Cambridge University Press, Cambridge, 1942.
    [80] J. Theor. Biol., 216 (2002), 85-100.
    [81] Cell Prolif., 42 (2009), 617-636.
    [82] PloS one, 7 (2012), e42852.
    [83] PhD thesis, University of Nottingham, 2009.
    [84] Clarendon Press Oxford, 1984.
    [85] BMC Syst. Biol., 6 (2012), p93.
    [86] Elsevier, 1983.
  • This article has been cited by:

    1. David J. Warne, Ruth E. Baker, Matthew J. Simpson, Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art, 2019, 16, 1742-5689, 20180943, 10.1098/rsif.2018.0943
    2. Julien Varennes, Bumsoo Han, Andrew Mugler, Collective Chemotaxis through Noisy Multicellular Gradient Sensing, 2016, 111, 00063495, 640, 10.1016/j.bpj.2016.06.040
    3. Zahra Sadat Hosseini, Seyed Mohammad Reza Hashemi Gholpayeghani, Masoud Sotoudeh, Reza Malekzadeh, A fractal based approach to evaluate the progression of esophageal squamous cell dysplasia, 2019, 48, 17468094, 273, 10.1016/j.bspc.2018.09.001
    4. Oliver J. Maclaren, Aimée Parker, Carmen Pin, Simon R. Carding, Alastair J. M. Watson, Alexander G. Fletcher, Helen M. Byrne, Philip K. Maini, Qing Nie, A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium, 2017, 13, 1553-7358, e1005688, 10.1371/journal.pcbi.1005688
    5. Axel A. Almet, Philip K. Maini, Derek E. Moulton, Helen M. Byrne, Modeling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodeling, 2020, 15, 24684511, 32, 10.1016/j.cobme.2019.12.012
    6. Ushasi Roy, Andrew Mugler, Intermediate adhesion maximizes migration velocity of multicellular clusters, 2021, 103, 2470-0045, 10.1103/PhysRevE.103.032410
    7. François Graner, Daniel Riveline, ‘The Forms of Tissues, or Cell-aggregates’: D'Arcy Thompson's influence and its limits, 2017, 144, 0950-1991, 4226, 10.1242/dev.151233
    8. Zahra Sadat Hosseini, Seyed Mohammad Reza Hashemi Golpayegani, Esophageal epithelium modeling based on globally coupled map: an approach toward precancerous lesion diagnosis, 2020, 58, 0140-0118, 1297, 10.1007/s11517-020-02151-7
    9. Julien Varennes, Andrew Mugler, Sense and Sensitivity: Physical Limits to Multicellular Sensing, Migration, and Drug Response, 2016, 13, 1543-8384, 2224, 10.1021/acs.molpharmaceut.5b00899
    10. Aysel Oktay, Busra Oktay, Elif Durasi, Hilal Calik, Ilkay Tenim, Rabia Yilmaz Ozturk, Ruveyda Aydin, Tarlan Mahouti, Hakan Yilmazer, Rabia Cakir Koc, 2023, Chapter 2, 978-3-031-35831-9, 31, 10.1007/978-3-031-35832-6_2
    11. Daniel J. VandenHeuvel, Pascal R. Buenzli, Matthew J. Simpson, Pushing coarse-grained models beyond the continuum limit using equation learning, 2024, 480, 1364-5021, 10.1098/rspa.2023.0619
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2520) PDF downloads(528) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog