Citation: D. Clayton John. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic[J]. AIMS Materials Science, 2014, 1(3): 143-158. doi: 10.3934/matersci.2014.3.143
[1] | Nurtiti Sunusi, Giarno . Bias of automatic weather parameter measurement in monsoon area, a case study in Makassar Coast. AIMS Environmental Science, 2023, 10(1): 1-15. doi: 10.3934/environsci.2023001 |
[2] | RAHMOUN Ibrahim, BENMAMAR Saâdia, RABEHI Mohamed . Comparison between different Intensities of Rainfall to identify overflow points in a combined sewer system using Storm Water Management Model. AIMS Environmental Science, 2022, 9(5): 573-592. doi: 10.3934/environsci.2022034 |
[3] | Lei Wang, Huan Du, Jiajun Wu, Wei Gao, Linna Suo, Dan Wei, Liang Jin, Jianli Ding, Jianzhi Xie, Zhizhuang An . Characteristics of soil erosion in different land-use patterns under natural rainfall. AIMS Environmental Science, 2022, 9(3): 309-324. doi: 10.3934/environsci.2022021 |
[4] | Ronak P. Chaudhari, Shantanu R. Thorat, Darshan J. Mehta, Sahita I. Waikhom, Vipinkumar G. Yadav, Vijendra Kumar . Comparison of soft-computing techniques: Data-driven models for flood forecasting. AIMS Environmental Science, 2024, 11(5): 741-758. doi: 10.3934/environsci.2024037 |
[5] | Muhammad Rendana, Wan Mohd Razi Idris, Sahibin Abdul Rahim . Clustering analysis of PM2.5 concentrations in the South Sumatra Province, Indonesia, using the Merra-2 Satellite Application and Hierarchical Cluster Method. AIMS Environmental Science, 2022, 9(6): 754-770. doi: 10.3934/environsci.2022043 |
[6] | Swatantra R. Kethireddy, Grace A. Adegoye, Paul B. Tchounwou, Francis Tuluri, H. Anwar Ahmad, John H. Young, Lei Zhang . The status of geo-environmental health in Mississippi: Application of spatiotemporal statistics to improve health and air quality. AIMS Environmental Science, 2018, 5(4): 273-293. doi: 10.3934/environsci.2018.4.273 |
[7] | Dong Chen, Marcus Thatcher, Xiaoming Wang, Guy Barnett, Anthony Kachenko, Robert Prince . Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia. AIMS Environmental Science, 2015, 2(3): 648-667. doi: 10.3934/environsci.2015.3.648 |
[8] | Zinabu A. Alemu, Emmanuel C. Dioha, Michael O. Dioha . Hydro-meteorological drought in Addis Ababa: A characterization study. AIMS Environmental Science, 2021, 8(2): 148-168. doi: 10.3934/environsci.2021011 |
[9] | Robert Russell Monteith Paterson . Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environmental Science, 2020, 7(5): 366-379. doi: 10.3934/environsci.2020024 |
[10] | Meriatna, Zulmiardi, Lukman Hakim, Faisal, Suryati, Mizwa Widiarman . Adsorbent performance of nipa (nypafruticans) frond in methylene blue dye degradation: Response surface methodology optimization. AIMS Environmental Science, 2024, 11(1): 38-56. doi: 10.3934/environsci.2024003 |
[1] | Gregoryanz E, Hemley R, Mao H, et al. (2000) High pressure elasticity of α-quartz: instability and ferroelastic transition.Phys Rev Lett 84: 3117-3120. |
[2] | Watson G, Parker S (1995) Dynamical instabilities in α-quartz and α-berlinite: a mechanism for amorphization.Phys Rev B 52: 13306-13309. |
[3] | Goel P, Mittal R, Choudhury N, et al. (2010) Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12..J Phys: Condens Mat 22: 065401. |
[4] | Yan X, Tang Z, Zhang L, et al. (2009) Depressurization amorphization of single-crystal boron carbide.Phys Rev Lett 102: 075505. |
[5] | Born M (1940) On the stability of crystal lattices I.Math Proc Cambridge 36: 160-172. |
[6] | Hill R (1975) On the elasticity and stability of perfect crystals at finite strain.Math Proc Cambridge 77: 225-240. |
[7] | Morris J, Krenn C (2000) The internal stability of an elastic solid.Phil Mag A 80: 2827-2840. |
[8] | Clayton J, Bliss K (2014) Analysis of intrinsic stability criteria for isotropic third-order Green elastic and compressible neo-Hookean solids.Mech Mater 68: 104-119. |
[9] | Fanchini G, McCauley J, Chhowalla M (2006) Behavior of disordered boron carbide under stress.Phys Rev Lett 97: 035502. |
[10] | Taylor D, Wright T, McCauley J (2011) First principles calculation of stress induced amorphization in armor ceramics. US Army Research Lab Res Rep ARL-MR-0779.Aberdeen Proving Ground, MD . |
[11] | Taylor D, McCauley J, Wright T (2012) The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading.J Phys: Condens Mat 24: 505402. |
[12] | Aryal S, Rulis P, Ching W (2011) Mechanism for amorphization of boron carbide B4C under uniaxial compression.Phys Rev B 84: 184112. |
[13] | Subhash G, Maiti S, Geubelle P, Ghosh D (2008) Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics.J Am Ceram Soc 91: 2777-2791. |
[14] | Chen M, McCauley J, Hemker K (2003) Shock-induced localized amorphization in boron carbide.Science 299: 1563-1566. |
[15] | Grady D (2011) Adiabatic shear failure in brittle solids.Int J Impact Eng 38: 661-667. |
[16] | Clayton J (2012) Towards a nonlinear elastic representation of finite compression and instability of boron carbide ceramic.Phil Mag 92: 2860-2893. |
[17] | Clayton J (2013) Mesoscale modeling of dynamic compression of boron carbide polycrystals.Mech Res Commun 49: 57-64. |
[18] | Koslowski M, Cuitino A, Ortiz M (2002) A phase-field theory of dislocation dynamics, strain hardening, and hysteresis in ductile single crystals.J Mech Phys Solids 50: 2597-2635. |
[19] | Clayton J, Knap J (2011) A phase field model of deformation twinning: nonlinear theory and numerical simulations.Physica D 240: 841-858. |
[20] | Clayton J, Knap J (2011) Phase field modeling of twinning in indentation of transparent single crystals.Model Simul Mater Sci Eng 19: 085005. |
[21] | Clayton J, Knap J (2013) Phase-field analysis of fracture induced twinning in single crystals.Acta Mater 61: 5341-5353. |
[22] | Kuhn C, Müller R (2012) Interpretation of parameters in phase field models for fracture.Proc Appl Math Mec 12: 161-162. |
[23] | Borden M, Verhoosel C, Scott M, et al. (2012) A phase-field description of dynamic brittle fracture.Comput Method Appl Mech Eng 271: 77-95. |
[24] | Voyiadjis G, Mozaffari N (2013) Nonlocal damage model using the phase field method: theory and applications.Int J Solids Structures 50: 3136-3151. |
[25] | Clayton J, Knap J (2014) A geometrically nonlinear phase field theory of brittle fracture.Int J Fracture, submitted . |
[26] | Clayton J (2005) Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation.J Mech Phys Solids 53: 261-301. |
[27] | Clayton J (2009) A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire.Proc R Soc Lond A 465: 307-334. |
[28] | Clayton J (2010) Modeling nonlinear electromechanical behavior of shocked silicon carbide.J Appl Phys 107: 013520. |
[29] | Clayton J (2010) Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory.Int J Eng Sci 79: 1-20. |
[30] | Benallal A, Marigo J (2007) Bifurcation and stability issues in gradient theories with softening.Model Simul Mater Sci Eng 15: S283-S295. |
[31] | Clayton J (2011) Nonlinear Mechanics of Crystals, Dordrecht.Springer . |
[32] | Ashbee K (1971) Defects in boron carbide before and after irradiation.Acta Metall 19: 1079-1085. |
[33] | Sano T, Randow C (2011) The effect of twins on the mechanical behavior of boron carbide.Metall Mater Trans A 42: 570-574. |
[34] | Clayton J (2010) On anholonomic deformation, geometry, and differentiation.Math Mech Solids 17: 702-735. |
[35] | Clayton J (2010) Deformation, fracture, and fragmentation in brittle geologic solids.Int J Fracture 163: 151-172. |
[36] | Clayton J, McDowell D, Bammann D (2006) Modeling dislocations and disclinations with finite micropolar elastoplasticity.Int J Plasticity 22: 210-256. |
[37] | Clayton J (2013) Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions.Z Angew Math Mech (ZAMM) in press . |
[38] | Clayton J (2014) An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions.Q J Mech Appl Math 67: 127-158. |
[39] | Clayton J, Bammann D, McDowell D (2005) A geometric framework for the kinematics of crystals with defects.Phil Mag 85: 3983-4010. |
[40] | Clayton J (2009) A non-linear model for elastic dielectric crystals with mobile vacancies.Int J Non-Linear Mech 44: 675-688. |
[41] | Clayton J (2008) A model for deformation and fragmentation in crushable brittle solids.Int J Impact Eng 35: 269-289. |
[42] | Ivaneshchenko V, Shevchenko V, Turchi P (2009) First principles study of the atomic and electronic structures of crystalline and amorphous B4C.Phys Rev B 80: 235208. |
[43] | Clayton J (2013) Nonlinear Eulerian thermoelasticity for anisotropic crystals.J Mech Phys Solids 61: 1983-2014. |
[44] | Clayton J, McDowell D (2003) A multiscale multiplicative decomposition for elastoplasticity of polycrystals.Int J Plasticity 19: 1401-1444. |
[45] | Hu S, Henager C, Chen LQ (2010) Simulations of stress-induced twinning and de-twinning: a phase field model.Acta Mater 58: 6554-6564. |
[46] | Ghosh D, Subhash G, Lee C, et al. (2007) Strain-induced formation of carbon and boron clusters in boron carbide during dynamic indentation.Appl Phys Lett 91: 061910. |
1. | Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, 2018, 457, 00225193, 19, 10.1016/j.jtbi.2018.08.025 | |
2. | Lauren A. White, James D. Forester, Meggan E. Craft, Thierry Boulinier, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, 2018, 87, 00218790, 559, 10.1111/1365-2656.12761 | |
3. | Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, 2018, 12, 1935-2735, e0006337, 10.1371/journal.pntd.0006337 | |
4. | Vanessa Steindorf, Norberto Aníbal Maidana, Modeling the Spatial Spread of Chagas Disease, 2019, 81, 0092-8240, 1687, 10.1007/s11538-019-00581-5 | |
5. | Britnee A. Crawford, Christopher M. Kribs-Zaleta, Gaik Ambartsoumian, Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration, 2013, 75, 0092-8240, 1051, 10.1007/s11538-013-9840-7 | |
6. | Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, 2015, 9, 1751-3758, 247, 10.1080/17513758.2015.1075611 | |
7. | N. El Saadi, A. Bah, T. Mahdjoub, C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model, 2020, 423, 03043800, 109001, 10.1016/j.ecolmodel.2020.109001 | |
8. | Cheol Yong Han, Habeeb Issa, Jan Rychtář, Dewey Taylor, Nancy Umana, Marc Choisy, A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease, 2020, 14, 1935-2735, e0008833, 10.1371/journal.pntd.0008833 | |
9. |
Daniel Olmos, Ignacio Barradas, David Baca-Carrasco,
On the Calculation of
R
0
Using Submodels,
2017,
25,
0971-3514,
481,
10.1007/s12591-015-0257-7
|
|
10. | Md. Abdul Hye, M. A. Haider Ali Biswas, Mohammed Forhad Uddin, Mohammad Saifuddin, Mathematical Modeling of Covid-19 and Dengue Co-Infection Dynamics in Bangladesh: Optimal Control and Data-Driven Analysis, 2022, 33, 1046-283X, 173, 10.1007/s10598-023-09564-7 | |
11. | A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6 | |
12. | Edem Fiatsonu, Rachel E. Busselman, Gabriel L. Hamer, Sarah A. Hamer, Martial L. Ndeffo-Mbah, Luisa Magalhães, Effectiveness of fluralaner treatment regimens for the control of canine Chagas disease: A mathematical modeling study, 2023, 17, 1935-2735, e0011084, 10.1371/journal.pntd.0011084 | |
13. | H. Rwezaura, S.Y. Tchoumi, J.M. Tchuenche, Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study, 2021, 27, 23529148, 100807, 10.1016/j.imu.2021.100807 | |
14. | Malicki Zorom, Babacar Leye, Mamadou Diop, Serigne M’backé Coly, Metapopulation Modeling of Socioeconomic Vulnerability of Sahelian Populations to Climate Variability: Case of Tougou, Village in Northern Burkina Faso, 2023, 11, 2227-7390, 4507, 10.3390/math11214507 | |
15. | Xuan Dai, Xiaotian Wu, Jiao Jiang, Libin Rong, Modeling the impact of non-human host predation on the transmission of Chagas disease, 2024, 00255564, 109230, 10.1016/j.mbs.2024.109230 | |
16. | M. Adrian Acuña-Zegarra, Mayra R. Tocto-Erazo, Claudio C. García-Mendoza, Daniel Olmos-Liceaga, Presence and infestation waves of hematophagous arthropod species, 2024, 376, 00255564, 109282, 10.1016/j.mbs.2024.109282 |