This study aims to examine the effects of science teaching approaches such as experiential teaching and learning, teaching the relevance of studying and careers, science application teaching on the science subjects choices and science, technology, engineering, and mathematic (STEM) career aspirations of upper secondary students', and recommendations for science teachers using teaching approaches and methods to promote the effectiveness of STEM-oriented teaching in their lectures. A online survey questionnaire that combined with a direct investigation using contact and interview methods, in which the students measured three teaching approaches, such as 'experiential teaching, ' 'teaching the application of science, ' and 'teaching the relevance of study and career, ' was distributed to 1768 Vietnamese students in 10th grade (aged 16 years) in Hanoi and some northern, central, and southern provinces of Vietnam. Data were collected using a questionnaire and analyzed through correlations and regressions. These findings revealed that teaching the 'applications of science' and 'the relevance of study and career' were measured teaching approaches to associate with a high school students' choice of science subject and their STEM career aspiration, alongside accounting for other teaching approaches. Conversely, the findings showed that the "experiential teaching" had no association with a students' utility of science, self-efficacy, or the science subject choice. This study's implications offer valuable guidance to science educators in selecting and implementing teaching strategies that boost the impact of STEM education in their classrooms and inspire students to choose science-related paths.
Citation: Van Thi Hong Ho, Hanh Thi Thuy Doan, Ha Thanh Vo, Thanh Thi Nguyen, Chi Thi Nguyen, Chinh Ngoc Dao, Dzung Trung Le, Trang Gia Hoang, Nga Thi Hang Nguyen, Ngoc Hoan Le, Gai Thi Tran, Duc Trong Nguyen. Effects of teaching approaches on science subject choice toward STEM career orientation of Vietnamese students[J]. STEM Education, 2025, 5(3): 498-514. doi: 10.3934/steme.2025024
[1] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[2] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[3] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
[4] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[5] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[6] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[7] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
[8] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[9] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[10] | Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403 |
This study aims to examine the effects of science teaching approaches such as experiential teaching and learning, teaching the relevance of studying and careers, science application teaching on the science subjects choices and science, technology, engineering, and mathematic (STEM) career aspirations of upper secondary students', and recommendations for science teachers using teaching approaches and methods to promote the effectiveness of STEM-oriented teaching in their lectures. A online survey questionnaire that combined with a direct investigation using contact and interview methods, in which the students measured three teaching approaches, such as 'experiential teaching, ' 'teaching the application of science, ' and 'teaching the relevance of study and career, ' was distributed to 1768 Vietnamese students in 10th grade (aged 16 years) in Hanoi and some northern, central, and southern provinces of Vietnam. Data were collected using a questionnaire and analyzed through correlations and regressions. These findings revealed that teaching the 'applications of science' and 'the relevance of study and career' were measured teaching approaches to associate with a high school students' choice of science subject and their STEM career aspiration, alongside accounting for other teaching approaches. Conversely, the findings showed that the "experiential teaching" had no association with a students' utility of science, self-efficacy, or the science subject choice. This study's implications offer valuable guidance to science educators in selecting and implementing teaching strategies that boost the impact of STEM education in their classrooms and inspire students to choose science-related paths.
Let I⊆R be an interval. Then a real-valued function h:I→R is said to be convex (concave) on the interval I if the inequality
h(tκ1+(1−t)κ2)≤(≥)th(κ1)+(1−t)h(κ2) |
holds for all κ1,κ2∈I and t∈[0,1].
It is well known that convexity (concavity) has wide applications in pure and applied mathematics [1,2,3,4,5,6,7,8,9,10,11,12]. The well known Hermite-Hadamard inequality [13,14,15,16,17,18,19,20] for the convex (concave) function h:I→R can be stated as follows:
h(κ1+κ22)≤(≥)1κ2−κ1∫κ2κ1h(x)dx≤(≥)h(κ1)+h(κ2)2 |
for all κ1,κ2∈I with κ1≠κ2.
Recently, many generalizations, invariants and extensions have been made for the convexity, for example, harmonic-convexity [21,22], exponential-convexity [23,24], s-convexity [25,26], Schur-convexity [27,28,29], strong convexity [30,31,32,33], Hp,q-convexity [34,35,36,37,38], generalized convexity [39], GG- and GA-convexities [40], preinvexity [41] and quasi-convexity [42]. In particular, many remarkable inequalities can be found in the literature [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] via the convexity theory.
Niculescu [59,60] defined the GG- and GA-convex functions as follows.
Definition 1.1. (See [59]) A real-valued function h:I→[0,∞) is said to be GG-convex on the interval I if the inequality
h(κt1κ1−t2)≤h(κ1)th(κ2)1−t |
holds for all κ1,κ2∈I and t∈[0,1].
Definition 1.2. (See [60]) A real-valued function h:I→[0,∞) is said to be GA-convex if the inequality
h(κt1κ1−t2)≤th(κ1)+(1−t)h(κ2) |
holds for all κ1,κ2∈I and t∈[0,1].
Ardıç et al. [61] established several novel inequalities (Theorem 1.1) involving the GG- and GA-convex functions via an identity (Lemma 1.1) for differentiable functions.
Lemma 1.1. (See [61]) Let κ1,κ2∈(0,∞) with κ1<κ2 and h:[κ1,κ2]→R be a differentiable function such that h′∈L([κ1,κ2]). Then the identity
κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx | (1.1) |
=(logκ2−logη)∫10(κt2η1−t)3h′(κt2η1−t)dt+(logη−logκ1)∫10(ηtκ1−t1)3h′(ηtκ1−t1)dt |
holds for all η∈[κ1,κ2].
Theorem 1.1. (See [61]) Let κ1,κ2∈(0,∞) with κ1<κ2 and h:[κ1,κ2]→R be a differentiable function such that h′∈L([κ1,κ2]). Then the following statements are true:
(1) If |h′(x)| is GG-convex on [κ1,κ2], then the inequality
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.2) |
≤(logκ2−logη)L(κ32|h′(κ2)|,η3|h′(η)|)+(logη−logκ1)L(η3|h′(η)|,κ31|h′(κ1)|) |
holds for all η∈[κ1,κ2], where L(κ1,κ2)=(κ2−κ1)/(logκ2−logκ1) is the logarithmic mean of κ1 and κ2.
(2) If ϑ,γ>1 with 1/ϑ+1/γ=1 and |h′(x)|γ is GG-convex on [κ1,κ2], then the inequalities
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.3) |
≤(logκ2−logη)(L(κ3ϑ2,η3ϑ))1ϑ(L(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)(L(η3ϑ,κ3ϑ1))1ϑ(L(|h′(η)|γ,κ31|h′(κ1)|γ))1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.4) |
≤(logκ2−logη)(L(κ3γ2|h′(κ2)|γ,η3γ|h′(η)|γ))1γ |
+(logη−logκ1)(L(η3γ|h′(η)|γ,κ3γ1|h′(κ1)|γ))1γ |
and
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.5) |
≤(logκ2−logη)(L(κ32,η3))1−1γ(L(κ32|h′(κ2)|γ,η3|h′(η)|γ))1γ |
+(logη−logκ1)(L(η3,κ31))1−1γ(L(η3|h′(η)|γ,κ31|h′(κ1)|γ))1γ |
hold for all η∈[κ1,κ2].
(3) If |h′(x)| is GA-convex on [κ1,κ2], then we have
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.6) |
≤|h′(κ2)|3[κ32−L(η3,κ32)]+|h′(η)|3[L(η3,κ32)−L(κ31,η3)]+|h′(κ1)|3[L(κ31,η3)−η3] |
for all η∈[κ1,κ2].
(4) If ϑ,γ>1 with 1/ϑ+1/γ=1 and |h′(x)|γ is GA-convex on [κ1,κ2], then one has
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.7) |
≤(logκ2−logη)1−1γ(L(κ32,η3))1−1γ(|h′(κ2)|γ[κ32−L(η3,κ32)]+|h′(η)|γ[L(η3,κ32)−η3]3)1γ |
+(logη−logκ1)1−1γ(L(η3,κ31))1−1γ(|h′(η)|γ[η3−L(κ31,η3)]+|h′(κ1)|γ[L(κ31,η3)−κ31]3)1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.8) |
≤(logκ2−logη)1−1γϑ1γ(L(κ3(γ−ϑ)γ−12,η3(γ−ϑ)γ−1))γ−1γ(Aγ(κ2,η))1γ |
+(logη−logκ1)1−1γϑ1γ(L(η3(γ−ϑ)γ−1,κ3(γ−ϑ)γ−11))γ−1γ(Aγ(η,κ1))1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.9) |
≤(logκ2−logη)1−1γ(L(κ3γγ−12,η3γγ−1))1−1γ(|h′(κ2)|γ+|h′(η)|γ2)1γ |
+(logη−logκ1)1−1γ(L(η3γγ−1,κ3γγ−11))1−1γ(|h′(η)|γ+|h′(κ1)|γ2)1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.10) |
≤(logκ2−logη)1−1γγ1γ(Aγ(κ2,η))1/γ+(logη−logκ1)1−1γγ1γ(Aγ(η,κ1))1/γ, |
where
Aγ(κ2,η)=|h′(κ2)|γ[κ3γ2−L(η3γ,κ3γ2)]+|h′(η)|γ[L(η3γ,κ3γ2)−η3γ]3 |
and
Aγ(η,κ1)=|h′(η)|γ[η3γ−L(κ3γ1,η3γ)]+|h′(κ1)|γ[L(κ3γ1,η3γ)−κ3γ1]3. |
The conformable fractional derivative Dα(h)(t) [62] of order 0<α≤1 at t>0 for a function h:[0,∞)→R is defined by
Dα(h)(t)=limϵ→0h(t+ϵt1−α)−h(t)ϵ, |
h is said to be α-fractional differentiable if the conformable fractional derivative Dα(h)(t) exists. The conformable fractional derivative at 0 is defined by hα(0)=limt→0+hα(t). If h1 and h2 are α-differentiable at t>0, and κ1,κ2,λ,c∈R are constants, then the conformable fractional derivative satisfies the following formulas
dαdαt(tλ)=λtλ−α,dαdαt(c)=0, |
dαdαt(κ1h1(t)+κ2h2(t))=κ1dαdαt(h1(t))+κ2dαdαt(h2(t)), |
dαdαt(h1(t)h2(t))=h1(t)dαdαt(h2(t))+h2(t)dαdαt(h1(t)), |
dαdαt(h1(t)h2(t))=h2(t)dαdαt(h1(t))−h1(t)dαdαt(h2(t))(h2(t))2 |
and
dαdαt(h1(h2(t)))=h′1(h2(t))dαdαt(h2(t)) |
if h1 differentiable at h2(t). Moreover,
dαdαt(h1(t))=t1−αddt(h1(t)) |
if h1 is differentiable.
Let α∈(0,1] and 0≤κ1<κ2. Then the function h:[κ1,κ2]→R is said to be α-fractional integrable on [κ1,κ2] if the integral
∫κ2κ1h(x)dαx=∫κ2κ1h(x)xα−1dx |
exists and is finite. All α-fractional integrable functions on [κ1,κ2] is denoted by Lα([κ1,κ2]). Note that
Iκ1α(h1)(s)=Iκ11(sα−1h1)=∫sκ1h1(x)x1−αdx |
for all α∈(0,1], where the integral is the usual Riemann improper integral.
Recently, the conformable integrals and derivatives have attracted the attention of many researchers. Anderson [63] established the conformable integral version of the Hermite-Hadamard inequality as follows:
ακα2−κα1∫κ2κ1h(x)dαx≤h(κ1)+h(κ2)2 |
if α∈(0,1] and h:[κ1,κ2]→R is an α-fractional differentiable function such that Dα(h) is increasing. Moreover, if function h is decreasing on [κ1,κ2], then
h(κ1+κ22)≤ακα2−κα1∫κ2κ1h(x)dαx. |
The main purpose of the article is to establish the conformable fractional integral versions of the Hermite-Hadamard type inequality for GG- and GA-convex functions.
In order to establish our main results, we need a lemma which we present in this section.
Lemma 2.1. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1] and h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]). Then the identity
κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx | (2.1) |
=(logκ2−logη)∫10(κt2η1−t)3αDα(h)(κt2η1−t)t1−αdt |
+(logη−logκ1)∫10(ηtκ1−t1)3αDα(h)(ηtκ1−t1)t1−αdt |
holds for all η∈[κ1,κ2].
Proof. Integration by parts, we get
I1=∫10(κt2η1−t)3αDα(h)(κt2η1−t)t1−αdt |
=∫10(κt2η1−t)2α+1h′(κt2η1−t)dt. |
Let x=κt2η1−t. Then I1 can be rewritten as
I1=1logκ2−logη∫κ2ηx2αh′(x)dx |
=1logκ2−logη[κα2h(κ2)−ηαh(η)−2α∫κ2ηx2α−1h(x)dx] |
=1logκ2−logη[κα2h(κ2)−ηαh(η)−2α∫κ2ηxαh(x)dαx]. |
Similarly, we have
I2=∫10(ηtκ1−t1)3αDα(h)(ηtκ1−t1)t1−αdt |
=1logη−logκ1[ηαh(η)−κα1h(κ1)−2α∫ηκ1xαh(x)dαx]. |
Multiplying I1 by (logκ2−logη) and I2 by (logη−logκ1), then add them we get the desired identity.
Remark 2.1. Let α=1. Then identity (2.1) reduces to (1.1).
Theorem 2.1. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)| be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.2) |
≤(logκ2−logη)L(κ2α+12|h′(κ2)|,η2α+1|h′(η)|) |
+(logη−logκ1)L(η2α+1|h′(η)|,κ2α+11|h′(κ1)|) |
holds for all η∈[κ1,κ2].
Proof. It follows from the GG-convexity of the function |h′(x)| on the interval [κ1,κ2] and Lemma 2.1 that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κ2)|t|h′(η)|1−tdt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(η)|t|h′(κ1)|1−tdt |
=(logκ2−logη)L(κ2α+12|h′(κ2)|,η2α+1|h′(η)|) |
+(logη−logκ1)L(η2α+1|h′(η)|,κ2α+11|h′(κ1)|). |
Remark 2.2. Let α=1. Then inequality (2.2) reduces to (1.2).
Theorem 2.2. Let κ1,κ2∈(0,∞) with κ1<κ2, ϑ,γ>1 with 1/ϑ+1/γ=1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.3) |
≤(logκ2−logη)(L(κ(2α+1)ϑ2,η(2α+1)ϑ))1ϑ(L(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)ϑ,κ(2α+1)ϑ1))1ϑ(L(|h′(η)|γ,|h′(κ1)|γ))1γ |
holds for all η∈[κ1,κ2].
Proof. From Lemma 2.1, the property of the modulus, GG-convexity of |h′|γ and Hölder inequality we clearly see that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κt2η1−t)(2α+1)ϑdt)1ϑ(∫10|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)(2α+1)ϑdt)1ϑ(∫10|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κt2η1−t)(2α+1)ϑdt)1ϑ(∫10|h′(κ2)|γt|h′(η)|(1−t)γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)(2α+1)ϑdt)1ϑ(∫10|h′(η)|γt|h′(κ1)|(1−t)γdt)1γ |
=(logκ2−logη)(L(κ(2α+1)ϑ2,η(2α+1)ϑ))1ϑ(L(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)ϑ,κ(2α+1)ϑ1))1ϑ(L(|h′(η)|γ,|h′(κ1)|γ))1γ. |
Remark 2.3. Let α=1. Then inequality (2.3) reduces to (1.3).
Theorem 2.3. Let κ1,κ2∈(0,∞) with κ1<κ2, γ>1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.4) |
≤(logκ2−logη)(L(κ(2α+1)γ2|h′(κ2)|γ,η(2α+1)γ|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)γ|h′(η)|γ,κ(2α+1)γ1|h′(κ1)|γ))1γ |
holds for all η∈[κ1,κ2].
Proof. It follows from Lemma 2.1 that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt. |
Let ϑ>1 such that ϑ−1+γ−1=1. Then making use of the Hölder integral inequality and the GG-convexity of |h′|γ, we get
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)(∫10dt)1ϑ(∫10(κt2η1−t)(2α+1)γ|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10dt)1ϑ(∫10(ηtκ1−t1)(2α+1)γ|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10dt)1ϑ(∫10(κt2η1−t)(2α+1)γ|h′(κ2)|γt|h′(η)|(1−t)γdt)1γ |
+(logη−logκ1)(∫10dt)1ϑ(∫10(ηtκ1−t1)(2α+1)γ|h′(η)|γt|h′(κ1)|(1−t)γdt)1γ |
=(logκ2−logη)(L(κ(2α+1)γ2|h′(κ2)|γ,η(2α+1)γ|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)γ|h′(η)|γ,κ(2α+1)γ1|h′(κ1)|γ))1γ. |
Remark 2.4. Let α=1. Then inequality (2.4) reduces to (1.4).
Theorem 2.4. Let κ1,κ2∈(0,∞) with κ1<κ2, γ>1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.5) |
≤(logκ2−logη)(L(κ(2α+1)2,η(2α+1)))1−1γ(L(κ(2α+1)2|h′(κ2)|γ,η(2α+1)|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1),κ(2α+1)1))1−1γ(L(η(2α+1)|h′(η)|γ,κ(2α+1)1|h′(κ1)|γ))1γ |
holds whenever η∈[κ1,κ2].
Proof. From the GG-convexity of |h′|γ, power mean inequality, the property of the modulus and Lemma 2.1 we clearly see that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1|h′(κ2)|γt|h′(η)|(1−t)γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1|h′(η)|γt|h′(κ1)|(1−t)γdt)1γ |
=(logκ2−logη)(L(κ(2α+1)2,η(2α+1)))1−1γ(L(κ(2α+1)2|h′(κ2)|γ,η(2α+1)|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1),κ(2α+1)1))1−1γ(L(η(2α+1)|h′(η)|γ,κ(2α+1)1|h′(κ1)|γ))1γ. |
Remark 2.5. Let α=1. Then inequality (2.5) reduces to (1.5).
Theorem 2.5. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)| be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.6) |
≤|h(κ2)|2α+1[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|2α+1[L(η2α+1,κ2α+12)−L(κ2α+11,η2α+1)] |
+|h′(κ1)|2α+1[L(κ2α+11,η2α+1)−η2α+1] |
holds for each η∈[κ1,κ2].
Proof. It follows from the GA-convexity of |h′(x)| and Lemma 2.1 that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)∫10(κt2η1−t)2α+1[t|h′(κ2)|+(1−t)|h′(η)|]dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1[t|h′(η)|+(1−t)|h′(κ1)|]dt |
=|h′(κ2)|2α+1[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|2α+1[L(η2α+1,κ2α+12)−L(κ2α+11,η2α+1)] |
+|h′(κ1)|2α+1[L(κ2α+11,η2α+1)−η2α+1]. |
Remark 2.6. Let α=1. Then inequality (2.6) becomes (1.6).
Theorem 2.6. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1], γ>1, h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.7) |
≤(logκ2−logη)1−1γ(L(κ(2α+1)2,η(2α+1)))1−1γ |
×(|h′(κ2)|γ[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|γ[L(η2α+1,κ2α+12)−η2α+1]2α+1)1γ |
+(logη−logκ1)1−1γ(L(η(2α+1),κ(2α+1)1))1−1γ |
×(|h′(η)|γ[η2α+1−L(κ2α+11),η2α+1]+|h′(κ1)|γ[L(κ2α+11,η2α+1)−κ2α+11]2α+1)1γ |
holds for any η∈[κ1,κ2].
Proof. From the GA-convexity of |h′|γ, power mean inequality, the property of the modulus and Lemma 2.1, one has
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1[t|h′(κ2)|γ+(1−t)|h′(η)|γ]dt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1[t|h′(η)|γ+(1−t)|h′(κ1)|γ]dt)1γ |
=(logκ2−logη)1−1γ(L(κ(2α+1)2,η(2α+1)))1−1γ |
×(|h′(κ2)|γ[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|γ[L(η2α+1,κ2α+12)−η2α+1]2α+1)1γ |
+(logη−logκ1)1−1γ(L(η(2α+1),κ(2α+1)1))1−1γ |
×(|h′(η)|γ[η2α+1−L(κ2α+11),η2α+1]+|h′(κ1)|γ[L(κ2α+11,η2α+1)−κ2α+11]2α+1)1γ. |
Remark 2.7. Let α=1. Then inequality (2.7) reduces to (1.7).
Theorem 2.7. Let κ1,κ2∈(0,∞) with κ1<κ2, ϑ,γ>1 with 1/ϑ+1/γ=1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.8) |
≤(logκ2−logη)1−1γϑ1γ(L(κ(γ−ϑ)(2α+1)γ−12,η(γ−ϑ)(2α+1)γ−1))γ−1γ(Aγ(κ2,η))1γ |
+(logη−logκ1)1−1γϑ1γ(L(η(γ−ϑ)(2α+1)γ−1,κ(γ−ϑ)(2α+1)γ−11))γ−1γ(Aγ(η,κ1))1γ |
holds for any η∈[κ1,κ2], where
Aγ(κ2,η)=|h′(κ2)|γ[κγ(2α+1)2−L(ηγ(2α+1),κγ(2α+1)2)]+|h′(η)|γ[L(ηγ(2α+1),κγ(2α+1)2)−ηγ(2α+1)]2α+1, |
Aγ(η,κ1)=|h′(η)|γ[ηγ(2α+1)−L(κγ(2α+1)1,ηγ(2α+1))]+|h′(κ1)|γ[L(κγ(2α+1)1,ηγ(2α+1))−κγ(2α+1)1]2α+1. |
Proof. It follows from Lemma 2.1, the GA-convexity of |h′|γ, power mean inequality, Hölder integral inequality and the property of the modulus that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κ(2α+1)t2η(2α+1)(1−t))γ−ϑγ−1dt)γ−1γ |
×(∫10(κ(2α+1)t2η(2α+1)(1−t))ϑ|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(η(2α+1)tκ(2α+1)(1−t)1)γ−ϑγ−1dt)γ−1γ |
×(∫10(η(2α+1)tκ(2α+1)(1−t)1)ϑ|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κ(2α+1)t2η(2α+1)(1−t))γ−ϑγ−1dt)γ−1γ |
×(∫10(κ(2α+1)t2η(2α+1)(1−t))ϑ[t|h′(κ2)|γ+(1−t)|h′(η)|γ]dt)1γ |
+(logη−logκ1)(∫10(η(2α+1)tκ(2α+1)(1−t)1)γ−ϑγ−1dt)γ−1γ |
×(∫10(η(2α+1)tκ(2α+1)(1−t)1)ϑ[t|h′(η)|γ+(1−t)|h′(κ1)|γ]dt)1γ |
=(logκ2−logη)1−1γϑ1γ(L(κ(γ−ϑ)(2α+1)γ−12,η(γ−ϑ)(2α+1)γ−1))γ−1γ(Aγ(κ2,η))1γ |
+(logη−logκ1)1−1γϑ1γ(L(η(γ−ϑ)(2α+1)γ−1,κ(γ−ϑ)(2α+1)γ−11))γ−1γ(Aγ(η,κ1))1γ. |
Remark 2.8. Let α=1. Then inequality (2.8) becomes (1.8).
Theorem 2.8. Let κ1,κ2∈(0,∞) with κ1<κ2, γ>1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.9) |
≤(logκ2−logη)1−1γ(L(κγ(2α+1)γ−12,ηγ(2α+1)γ−1))1−1γ(A(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)1−1γ(L(ηγ(2α+1)γ−1,κγ(2α+1)γ−11))1−1γ(A(|h′(η)|γ,|h′(κ1)|γ))1γ |
holds for any η∈[κ1,κ2].
Proof. From Lemma 2.1, the GG-convexity of |h′|γ, Hölder inequality and the property of the modulus, we have
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10[t|h′(κ2)|γ+(1−t)|h′(η)|γ]dt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10[t|h′(η)|γ+(1−t)|h′(κ1)|γ]dt)1γ |
=(logκ2−logη)1−1γ(L(κγ(2α+1)γ−12,ηγ(2α+1)γ−1))1−1γ(A(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)1−1γ(L(ηγ(2α+1)γ−1,κγ(2α+1)γ−11))1−1γ(A(|h′(η)|γ,|h′(κ1)|γ))1γ. |
Remark 2.9. Let α=1. Then inequality (2.9) leads to (1.9).
Theorem 2.9. Let κ1,κ2∈(0,∞) with κ1<κ2, γ>1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.10) |
≤(logκ2−logη)1−1γγ1γBγ(κ2,η)+(logη−logκ1)1−1γγ1γBγ(η,κ1) |
holds for any η∈[κ1,κ2], where
Bγ(κ2,η)=(|h′(κ2)|γ[κγ(2α+1)2−L(ηγ(2α+1),κγ(2α+1)2)]+|h′(η)|γ[L(ηγ(2α+1),κγ(2α+1)2)−ηγ(α+1)]2α+1)1γ, |
Bγ(η,κ1)=(|h′(η)|γ[ηγ(2α+1)−L(κγ(2α+1)1,ηγ(2α+1))]+|h′(κ1)|γ[L(κγ(2α+1)1,ηγ(2α+1))−κγ(α+1)1]2α+1)1γ. |
Proof. It follows from Lemma 2.1, the GA-convexity of |h′|γ, power mean inequality and property of the modulus that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10dt)1−1γ(∫10(κt2η1−t)2α+1|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10dt)1−1γ(∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10dt)1−1γ(∫10(κt2η1−t)2α+1[t|h′(κ2)|γ+(1−t)|h′(η)|γ]dt)1γ |
+(logη−logκ1)(∫10dt)1−1γ(∫10(ηtκ1−t1)2α+1[t|h′(η)|γ+(1−t)|h′(κ1)|γ]dt)1γ |
=(logκ2−logη)1−1γγ1γBγ(κ2,η)+(logη−logκ1)1−1γγ1γBγ(η,κ1). |
Remark 2.10. Let α=1. Then inequality (2.10) reduces to (1.10).
We have generalized the Hermite-Hadamard type inequalities for GG- and GA-convex functions established by Ardıç, Akdemir and Yıdız in [61] to the conformable fractional integrals. Our ideas and approach may lead to a lot of follow-up research.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).
The authors declare no conflict of interest.
[1] |
Hiğde, E. and Aktamış, H., The effects of STEM activities on students' STEM career interests, motivation, science process skills, science achievement and views. Thinking Skills and Creativity, 2022, 43: 101000. https://doi.org/https://doi.org/10.1016/j.tsc.2022.101000 doi: 10.1016/j.tsc.2022.101000
![]() |
[2] | Subotnik, R.F., Tai, R.H., Rickoff, R. and Almarode, J., Specialized public high schools of science, mathematics, and technology and the STEM pipeline: what do we know now and what will we know in 5 years?. Roeper Review, 2010, 32(1): 7-16. |
[3] | Salonen, A., Hartikainen-Ahia, A., Hense, J., Scheersoi, A. and Keinonen, T., Secondary school students' perceptions of working life skills in science-related careers. International Journal of Science Education, 2017, 39(10): 1339–1352. |
[4] |
Archer, L., DeWitt, J. and Dillon, J., 'It didn't really change my opinion': exploring what works, what doesn't and why in a school science, technology, engineering and mathematics careers intervention. Research in Science & Technological Education, 2014, 32(1): 35-55. https://doi.org/10.1080/02635143.2013.865601 doi: 10.1080/02635143.2013.865601
![]() |
[5] | Lavonen, J., Gedrovics, J., Byman, R., Meisalo, V., Juuti, K. and Uitto, A., Students' motivational orientations and career choice in science and technology : A comparative investiga tion in Finland and Latvia. Journal of Baltic Science Education, 2008, 7: 86-102. |
[6] | Vietnam Ministry of Education and Training, General Education Curriculum, 2018. Available from: https://drive.google.com/file/d/1WT6bvJRjA64pwS3svXbAR5iT2CCG2GvQ/view |
[7] |
Nguyen, P.L., Vietnam's STEM Education Landscape: Evolution, Challenges, and Policy Interventions. Vietnam Journal of Education, 2024, 8(2): 177-189. https://doi.org/10.52296/vje.2024.389 doi: 10.52296/vje.2024.389
![]() |
[8] |
Le, L.T.B., Tran, T.T. and Tran, N.H., Challenges to STEM education in Vietnamese high school contexts. Heliyon, 2021, 7(12): e08649. https://doi.org/10.1016/j.heliyon.2021.e08649 doi: 10.1016/j.heliyon.2021.e08649
![]() |
[9] |
Köller, O., Baumert, J. and Schnabel, K., Does Interest Matter? The Relationship between Academic Interest and Achievement in Mathematics. Journal for Research in Mathematics Education, 2001, 32: 448-470. https://doi.org/10.2307/749801 doi: 10.2307/749801
![]() |
[10] |
Aeschlimann, B., Herzog, W. and Makarova, E., How to foster students' motivation in mathematics and science classes and promote students' STEM career choice. A study in Swiss high schools. International Journal of Educational Research, 2016, 79: 31-41. https://doi.org/10.1016/j.ijer.2016.06.004 doi: 10.1016/j.ijer.2016.06.004
![]() |
[11] |
Phan, P. and Van Hong, B., Science, Technology, Engineering, and Mathematics (STEM) Education in the New General Education Curriculum of Vietnam. AsTEN Journal of Teacher Education, 2024. https://doi.org/10.56278/asten.vi.2702 doi: 10.56278/asten.vi.2702
![]() |
[12] | Luo, T., Rüschenpöhler, L. and Wang, J., Student motivation in STEM: factors related to and measurement of STEM motivation. 2023,401-408. |
[13] |
Rosenbaum, J.E., Kariya, T., Settersten, R. and Maier, T., Market and Network Theories of the Transition from High School to Work: Their Application to Industrialized Societies. Annual Review of Sociology, 1990, 16: 263-299. https://doi.org/10.1146/annurev.so.16.080190.001403 doi: 10.1146/annurev.so.16.080190.001403
![]() |
[14] | Faize, F., Effect of the Availability and the Use of Instructional Material on Academic Performance of Students in Punjab (Pakistan). Middle Eastern Finance and Economics, 2011, 11(11). |
[15] |
Uyen, V. and Thu, P., Navigating the Future: How Career Guidance Programs Prepare Secondary Students for Employment. Journal of Research in Vocational Education, 2025, 7: 10-14. https://doi.org/10.53469/jrve.2025.7(03).02 doi: 10.53469/jrve.2025.7(03).02
![]() |
[16] |
Trinh, T.M., Le, T.T.K., Le, K.M.A., Nguyen, C. and Tran, T.N., Shaping choices: factors influencing Vietnamese high school students' transition to higher education. Higher Education, 2024, 1-23. https://doi.org/10.1007/s10734-024-01384-x doi: 10.1007/s10734-024-01384-x
![]() |
[17] |
Nauta, M. and Epperson, D., A Longitudinal Examination of the Social-Cognitive Model Applied to High School Girls' Choices of Nontraditional College Majors and Aspirations. Journal of Counseling Psychology, 2003, 50: 448-457. https://doi.org/10.1037/0022-0167.50.4.448 doi: 10.1037/0022-0167.50.4.448
![]() |
[18] |
Rottinghaus, P.J., Lindley, L.D., Green, M.A. and Borgen, F.H., Educational Aspirations: The Contribution of Personality, Self-Efficacy, and Interests. Journal of Vocational Behavior, 2002, 61: 1-19. https://doi.org/10.1006/jvbe.2001.1843 doi: 10.1006/jvbe.2001.1843
![]() |
[19] | Sheldrake, R., Mujtaba, T. and Reiss, M., Science teaching and students' attitudes and aspirations: The importance of conveying the applications and relevance of science. International Journal of Educational Research, 2017, 85: 167–183. |
[20] |
Shin, D.D., Lee, M., Ha, J.E., Park, J.H., Ahn, H.S., Son, E., et al., Science for all: Boosting the science motivation of elementary school students with utility value intervention. Learning and Instruction, 2019, 60: 104-116. https://doi.org/10.1016/j.learninstruc.2018.12.003 doi: 10.1016/j.learninstruc.2018.12.003
![]() |
[21] | Cohen, C., Patterson, D.G., Kovarik, D.N. and Chowning, J.T., Fostering STEM Career Awareness: Emerging Opportunities for Teachers. Washington State Kappan, 2013, 6: 12-17. |
[22] |
Sellami, A., Santhosh, M., Bhadra, J. and Ahmad, Z., High school students' STEM interests and career aspirations in Qatar: An exploratory study. Heliyon, 2023, 9(3). https://doi.org/10.1016/j.heliyon.2023.e13898 doi: 10.1016/j.heliyon.2023.e13898
![]() |
[23] | Eccles, J.S. and Wigfield, A., Motivational beliefs, values and goals. Annual Review of Psychology, 2002, 53: 109–132. |
[24] |
Eccles, J. and Wigfield, A., Motivational Beliefs, Values and Goals. Annual Review of Psychology, 2002, 53: 109-132. https://doi.org/10.1146/annurev.psych.53.100901.135153 doi: 10.1146/annurev.psych.53.100901.135153
![]() |
[25] | Wigfield, A. and Eccles, J.S., Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 2000, 25: 68–81. |
[26] |
Wang, M.T. and J.S., Eccles, School context, achievement motivation, and academic engagement: A longitudinal study of school engagement using a multidimensional perspective. Learning and Instruction, 2013, 28: 12-23. https://doi.org/https://doi.org/10.1016/j.learninstruc.2013.04.002 doi: 10.1016/j.learninstruc.2013.04.002
![]() |
[27] |
Stake, J.E. and Mares, K.R., Science enrichment programs for gifted high school girls and boys: Predictors of program impact on science confidence and motivation. Journal of Research in Science Teaching, 2001, 38(10): 1065-1088. https://doi.org/https://doi.org/10.1002/tea.10001 doi: 10.1002/tea.10001
![]() |
[28] |
Tang, M., Pan, W. and Newmeyer, M., Factors Influencing High School Students' Career Aspirations. Professional School Counseling, 2008, 11: 285-295. https://doi.org/10.5330/PSC.n.2010-11.285 doi: 10.5330/PSC.n.2010-11.285
![]() |
[29] | Ornstein, A., The Frequency of Hands-On Experimentation and Student Attitudes toward Science: A Statistically Significant Relation (2005-51-Ornstein). Journal of Science Education and Technology, 2006, 15(3/4): 285-297. |
[30] |
Husin, M.R., Ahmad, H.B., Mustafa, M.B.B., Panessai, I.Y. and Ramlan, R., Science-related aspirations of career based on learning content in upper secondary level. International Journal of Evaluation and Research in Education (IJERE), 2020, 9: 920. https://doi.org/10.11591/ijere.v9i4.20650 doi: 10.11591/ijere.v9i4.20650
![]() |
[31] |
Negrea, V., Exploring career changers' experiences in a school-based initial teacher education programme for science teachers in England. International Journal of Educational Research, 2024,125: 102342. https://doi.org/https://doi.org/10.1016/j.ijer.2024.102342 doi: 10.1016/j.ijer.2024.102342
![]() |
[32] |
Johnson, L., The Relevance of School to Career: A Study in Student Awareness. Journal of Career Development, 2000, 26: 263-276. https://doi.org/10.1023/A:1022950223258 doi: 10.1023/A:1022950223258
![]() |
[33] | Constantinou, C., Tsivitanidou, O. and Rybska, E., What Is Inquiry-Based Science Teaching and Learning? 2018, 1-23. |
[34] |
Ayuso, E., López, L. and Ruiz-Vidal, A., Students' performance in the scientific skills during secondary education. Eurasia Journal of Mathematics, Science and Technology Education, 2022, 18: em2165. https://doi.org/10.29333/ejmste/12444 doi: 10.29333/ejmste/12444
![]() |
[35] |
Apeadido, S., Opoku-Mensah, D. and Mensah, G., Enhancing Science Process Skills and Academic Performance in Biology: The Impact of Practical Work. Integrated Science Education Journal, 2024, 5: 34-41. https://doi.org/10.37251/isej.v5i1.854 doi: 10.37251/isej.v5i1.854
![]() |
[36] |
Ferreira, S. and Morais, A., Practical Work in Science Education: Study of Different Contexts of Pedagogic Practice. Research in Science Education, 2020, 50(4): 1547-1574. https://doi.org/10.1007/s11165-018-9743-6 doi: 10.1007/s11165-018-9743-6
![]() |
[37] |
Brauer, S., Ratinen, I., Kumpulainen, K., Kyrö-Ämmälä, O., Nikander, L. and Väänänen, I., Agency, Expertise and Working Life Skills – Students' Conceptions of the Generic Competences Required in the World of Work. European Journal of Education Studies, 2021. https://doi.org/10.46827/ejes.v8i5.3710 doi: 10.46827/ejes.v8i5.3710
![]() |
1. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
2. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
3. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328 | |
4. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
5. | Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1 | |
6. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
7. | Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231 | |
8. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02878-5 | |
9. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
10. | Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860 | |
11. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
12. | Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375 | |
13. | Eze R. Nwaeze, Muhammad Adil Khan, Yu-Ming Chu, Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02977-3 | |
14. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
15. | Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341 | |
16. | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390 | |
17. | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392 | |
18. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
19. | Sadia Khalid, Josip Pečarić, Refinements of some Hardy–Littlewood–Pólya type inequalities via Green’s functions and Fink’s identity and related results, 2020, 2020, 1029-242X, 10.1186/s13660-020-02498-3 | |
20. | Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612 | |
21. | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391 | |
22. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
23. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
24. | Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798 | |
25. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
26. | Yu-Ming Chu, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right (p,q)-derivatives and definite integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03094-x | |
27. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
28. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
29. | Hu Ge-JiLe, Saima Rashid, Fozia Bashir Farooq, Sobia Sultana, Shanhe Wu, Some Inequalities for a New Class of Convex Functions with Applications via Local Fractional Integral, 2021, 2021, 2314-8888, 1, 10.1155/2021/6663971 | |
30. | Yu‐ming Chu, Saima Rashid, Jagdev Singh, A novel comprehensive analysis on generalized harmonically ψ ‐convex with respect to Raina's function on fractal set with applications , 2021, 0170-4214, 10.1002/mma.7346 | |
31. | Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201 | |
32. | SAIMA RASHID, AASMA KHALID, YELIZ KARACA, YU-MING CHU, REVISITING FEJÉR–HERMITE–HADAMARD TYPE INEQUALITIES IN FRACTAL DOMAIN AND APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22401338 | |
33. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
34. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, On generalizations of some integral inequalities for preinvex functions via (p,q)-calculus, 2022, 2022, 1029-242X, 10.1186/s13660-022-02896-9 | |
35. | Khuram Ali Khan, Saeeda Fatima, Ammara Nosheen, Rostin Matendo Mabela, Kenan Yildirim, New Developments of Hermite–Hadamard Type Inequalities via s-Convexity and Fractional Integrals, 2024, 2024, 2314-4785, 1, 10.1155/2024/1997549 | |
36. | Ghada AlNemer, Samir H. Saker, Gehad M. Ashry, Mohammed Zakarya, Haytham M. Rezk, Mohammed R. Kenawy, Some Hardy's inequalities on conformable fractional calculus, 2024, 57, 2391-4661, 10.1515/dema-2024-0027 | |
37. | Tahir Ullah Khan, Muhammad Adil Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, 2021, 6, 2473-6988, 23, 10.3934/math.2021002 |