Loading [MathJax]/jax/output/SVG/jax.js
Research article

Rigorous derivation of discrete fracture models for Darcy flow in the limit of vanishing aperture

  • Received: 04 August 2023 Revised: 18 December 2023 Accepted: 08 January 2024 Published: 30 January 2024
  • We consider single-phase flow in a fractured porous medium governed by Darcy's law with spatially varying hydraulic conductivity matrices in both bulk and fractures. The width-to-length ratio of a fracture is of the order of a small parameter ε and the ratio Kf/Kb of the characteristic hydraulic conductivities in the fracture and bulk domains is assumed to scale with εα for a parameter αR. The fracture geometry is parameterized by aperture functions on a submanifold of codimension one. Given a fracture, we derive the limit models as ε0. Depending on the value of α, we obtain five different limit models as ε0, for which we present rigorous convergence results.

    Citation: Maximilian Hörl, Christian Rohde. Rigorous derivation of discrete fracture models for Darcy flow in the limit of vanishing aperture[J]. Networks and Heterogeneous Media, 2024, 19(1): 114-156. doi: 10.3934/nhm.2024006

    Related Papers:

    [1] Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the p--System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495
    [2] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008
    [5] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [6] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [7] Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
    [8] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [9] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [10] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
  • We consider single-phase flow in a fractured porous medium governed by Darcy's law with spatially varying hydraulic conductivity matrices in both bulk and fractures. The width-to-length ratio of a fracture is of the order of a small parameter ε and the ratio Kf/Kb of the characteristic hydraulic conductivities in the fracture and bulk domains is assumed to scale with εα for a parameter αR. The fracture geometry is parameterized by aperture functions on a submanifold of codimension one. Given a fracture, we derive the limit models as ε0. Depending on the value of α, we obtain five different limit models as ε0, for which we present rigorous convergence results.





    [1] S. Burbulla, M. Hörl, C. Rohde, Flow in porous media with fractures of varying aperture, SIAM J. Sci. Comput., 45 (2023), A1519–A1544. https://doi.org/10.1137/22M1510406 doi: 10.1137/22M1510406
    [2] L. Y. Wang, Z. Y. Yin, Fluid flow and mass transport in fractured media with curved fractures and varying apertures: A 3d modeling approach, Int. J. Numer. Methods Eng., 124(2023), 4311–4338. https://doi.org/10.1002/nme.7314 doi: 10.1002/nme.7314
    [3] I. Berre, F. Doster, E. Keilegavlen, Flow in fractured porous media: A review of conceptual models and discretization approaches, Transp. Porous Med., 130 (2019), 215–236. https://doi.org/10.1007/s11242-018-1171-6 doi: 10.1007/s11242-018-1171-6
    [4] R. C. Liu, B. Li, Y. J. Jiang, N. Huang, Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks, Hydrogeol. J., 24 (2016), 1623–1649. https://doi.org/10.1007/s10040-016-1441-8 doi: 10.1007/s10040-016-1441-8
    [5] M. Oda, Permeability tensor for discontinuous rock masses, Géotechnique, 35 (1985), 483–495. https://doi.org/10.1680/geot.1985.35.4.483 doi: 10.1680/geot.1985.35.4.483
    [6] T. Arbogast, J. Douglas, Jr., U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Numer. Anal., 21 (1990), 823–836. https://doi.org/10.1137/0521046 doi: 10.1137/0521046
    [7] G. I. Barenblatt, I. P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6 doi: 10.1016/0021-8928(60)90107-6
    [8] M. Chen, S. A. Masum, H. R. Thomas, 3d hybrid coupled dual continuum and discrete fracture model for simulation of CO2 injection into stimulated coal reservoirs with parallel implementation, Int. J. Coal Geol., 262 (2022), 104103. https://doi.org/10.1016/j.coal.2022.104103 doi: 10.1016/j.coal.2022.104103
    [9] D. C. Karvounis, P. Jenny, Adaptive hierarchical fracture model for enhanced geothermal systems, Multiscale Model Simul., 14 (2016), 207–231. https://doi.org/10.1137/140983987 doi: 10.1137/140983987
    [10] E. Ahmed, J. Jaffré, J. E. Roberts, A reduced fracture model for two-phase flow with different rock types, Math. Comput. Simul., 137 (2017), 49–70. https://doi.org/10.1016/j.matcom.2016.10.005 doi: 10.1016/j.matcom.2016.10.005
    [11] K. Brenner, J. Hennicker, R. Masson, P. Samier, Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions, J. Comput. Phys., 357 (2018), 100–124. https://doi.org/10.1016/j.jcp.2017.12.003 doi: 10.1016/j.jcp.2017.12.003
    [12] M. Bukac, I. Yotov, P. Zunino, Dimensional model reduction for flow through fractures in poroelastic media, ESAIM Math. Model. Numer. Anal., 51 (2017), 1429–1471.
    [13] S. Burbulla, C. Rohde, A finite-volume moving-mesh method for two-phase flow in dynamically fracturing porous media, J. Comput. Phys., 458 (2022), 111031. https://doi.org/10.1016/j.jcp.2022.111031 doi: 10.1016/j.jcp.2022.111031
    [14] M. Lesinigo, C. D'Angelo, A. Quarteroni, A multiscale Darcy–Brinkman model for fluid flow in fractured porous media, Numer. Math., 117 (2011), 717–752. https://doi.org/10.1007/s00211-010-0343-2 doi: 10.1007/s00211-010-0343-2
    [15] V. Martin, J. Jaffré, J. E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 26 (2005), 1667–1691. https://doi.org/10.1137/S1064827503429363 doi: 10.1137/S1064827503429363
    [16] I. Rybak, S. Metzger, A dimensionally reduced Stokes–Darcy model for fluid flow in fractured porous media, Appl. Math. Comput., 384 (2020), 125260. https://doi.org/10.1016/j.amc.2020.125260 doi: 10.1016/j.amc.2020.125260
    [17] M. Starnoni, I. Berre, E. Keilegavlen, J. M. Nordbotten, Modeling and discretization of flow in porous media with thin, full-tensor permeability inclusions, Internat. J. Numer. Methods Engrg., 122 (2021), 4730–4750.
    [18] P. Paranamana, E. Aulisa, M. Toda, Geometric model of the fracture as a manifold immersed in porous media, J. Math. Phys., 62 (2021), 051508. https://doi.org/10.1063/1.5109730 doi: 10.1063/1.5109730
    [19] A. Armiti-Juber, On the limit of a two-phase flow problem in thin porous media domains of Brinkman type, Math. Methods Appl. Sci., 45 (2022), 2563–2581. https://doi.org/10.1002/mma.7940 doi: 10.1002/mma.7940
    [20] H. P. Huy, E. Sanchez-Palencia, Phénomènes de transmission à travers des couches minces de conductivité élevée, J. Math. Anal. Appl., 47 (1974), 284–309. https://doi.org/10.1016/0022-247X(74)90023-7 doi: 10.1016/0022-247X(74)90023-7
    [21] F. List, K. Kumar, I. S. Pop, F. A. Radu, Rigorous upscaling of unsaturated flow in fractured porous media, SIAM J. Math. Anal., 52 (2020), 239–276. https://doi.org/10.1137/18M1203754 doi: 10.1137/18M1203754
    [22] F. A. Morales, R. E. Showalter, The narrow fracture approximation by channeled flow, J. Math. Anal. Appl., 365 (2010), 320–331.
    [23] F. A. Morales, R. E. Showalter, A Darcy–Brinkman model of fractures in porous media, J. Math. Anal. Appl., 452 (2017), 1332–1358. https://doi.org/10.1016/j.jmaa.2017.03.063 doi: 10.1016/j.jmaa.2017.03.063
    [24] F. A. Morales, R. E. Showalter, Interface approximation of darcy flow in a narrow channel, Math. Methods Appl. Sci., 35 (2012), 182–195. https://doi.org/10.1002/mma.1555 doi: 10.1002/mma.1555
    [25] E. Sanchez-Palencia, Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité, J. Math. Pures Appl., 53 (1974), 251–269.
    [26] M. Dugstad, K. Kumar, Dimensional reduction of a fractured medium for a two-phase flow, Adv. Water Resour., 162 (2022), 104140. https://doi.org/10.1016/j.advwatres.2022.104140 doi: 10.1016/j.advwatres.2022.104140
    [27] K. Kumar, F. List, I. S. Pop, F. A. Radu, Formal upscaling and numerical validation of unsaturated flow models in fractured porous media, J. Comput. Phys., 407 (2020), 109138. https://doi.org/10.1016/j.jcp.2019.109138 doi: 10.1016/j.jcp.2019.109138
    [28] T. Mel'nyk, C. Rohde, Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks, J. Math. Anal. Appl., 529 (2024), 127587. https://doi.org/10.1016/j.jmaa.2023.127587 doi: 10.1016/j.jmaa.2023.127587
    [29] Jan Březina, Jan Stebel, Analysis of model error for a continuum-fracture model of porous media flow, In T. Kozubek, R. Blaheta, J. Šístek, M. Rozložník, M. Čermák, editors, High Performance Computing in Science and Engineering, Cham: Springer, 2016,152–160.
    [30] M. J. Gander, J. Hennicker, R. Masson, Modeling and analysis of the coupling in discrete fracture matrix models, SIAM J. Numer. Anal., 59 (2021), 195–218. https://doi.org/10.1137/20M1312125 doi: 10.1137/20M1312125
    [31] W. M. Boon, J. M. Nordbotten, J. E. Vatne, Functional analysis and exterior calculus on mixed-dimensional geometries, Ann. Mat. Pura Appl., 200 (2021), 757–789. https://doi.org/10.1007/s10231-020-01013-1 doi: 10.1007/s10231-020-01013-1
    [32] W. M. Boon, J. M. Nordbotten, Mixed-dimensional poromechanical models of fractured porous media, Acta Mech., 234 (2023), 1121–1168. https://doi.org/10.1007/s00707-022-03378-1 doi: 10.1007/s00707-022-03378-1
    [33] A. Mikelić, M. F. Wheeler, T. Wick, Phase-field modeling of a fluid-driven fracture in a poroelastic medium, Comput. Geosci., 19 (2015), 1171–1195. https://doi.org/10.1007/s10596-015-9532-5 doi: 10.1007/s10596-015-9532-5
    [34] S. Burbulla, L. Formaggia, C. Rohde, A. Scotti, Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models, Comput. Methods Appl. Mech. Eng., 403 (2023), 115699. https://doi.org/10.1016/j.cma.2022.115699 doi: 10.1016/j.cma.2022.115699
    [35] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, New York: Springer, 2011.
    [36] G. Leobacher, A. Steinicke, Existence, uniqueness and regularity of the projection onto differentiable manifolds, Ann. Glob. Anal. Geom., 60 (2021), 559–587. https://doi.org/10.1007/s10455-021-09788-z doi: 10.1007/s10455-021-09788-z
    [37] M. C. Delfour, J. P. Zolésio, Shapes and Geometries, Philadelphia: SIAM, 2011.
    [38] E. Hebey, Nonlinear Analysis on Manifolds, Providence: American Mathematical Society, 2000.
    [39] J. Wloka, Partial Differential Equations, Cambridge: Cambridge University Press, 1987.
    [40] B. Booß-Bavnbek, K. P. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Boston: Birkhäuser, 1993.
  • This article has been cited by:

    1. R. M. Colombo, M. Herty, V. Sachers, On 2×2 Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    2. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    3. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    4. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197
    5. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    6. Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927
    7. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    8. Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X
    9. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    10. Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8
    11. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    12. Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138
    13. Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027
    14. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    15. Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300
    16. Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841
    17. J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004
    18. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    19. Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016
    20. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    21. Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005
    22. Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283
    23. Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929
    24. Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13
    25. Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212
    26. Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719
    27. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    28. R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957
    29. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    30. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    31. Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9
    32. Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011
    33. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    34. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    35. Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054
    36. Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042
    37. Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948
    38. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    39. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    40. Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006
    41. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    42. Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049
    43. Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049
    44. F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055
    45. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    46. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    47. F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010
    48. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    49. Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X
    50. Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531
    51. RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593
    52. Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021
    53. Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X
    54. Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006
    55. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    56. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7
    57. Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580
    58. Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003
    59. MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X
    60. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    61. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    62. Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65
    63. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
    64. Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013
    65. Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence of Coupling Conditions for the Isothermal Euler System, 2025, 0170-4214, 10.1002/mma.10847
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1568) PDF downloads(181) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog