Research article

Rigorous derivation of discrete fracture models for Darcy flow in the limit of vanishing aperture

  • Received: 04 August 2023 Revised: 18 December 2023 Accepted: 08 January 2024 Published: 30 January 2024
  • We consider single-phase flow in a fractured porous medium governed by Darcy's law with spatially varying hydraulic conductivity matrices in both bulk and fractures. The width-to-length ratio of a fracture is of the order of a small parameter $ \varepsilon $ and the ratio $ {{K_\mathrm{f}}}^\star / {{K_\mathrm{b}}}^\star $ of the characteristic hydraulic conductivities in the fracture and bulk domains is assumed to scale with $ \varepsilon^\alpha $ for a parameter $ \alpha \in \mathbb{R} $. The fracture geometry is parameterized by aperture functions on a submanifold of codimension one. Given a fracture, we derive the limit models as $ \varepsilon \rightarrow 0 $. Depending on the value of $ \alpha $, we obtain five different limit models as $ \varepsilon \rightarrow 0 $, for which we present rigorous convergence results.

    Citation: Maximilian Hörl, Christian Rohde. Rigorous derivation of discrete fracture models for Darcy flow in the limit of vanishing aperture[J]. Networks and Heterogeneous Media, 2024, 19(1): 114-156. doi: 10.3934/nhm.2024006

    Related Papers:

  • We consider single-phase flow in a fractured porous medium governed by Darcy's law with spatially varying hydraulic conductivity matrices in both bulk and fractures. The width-to-length ratio of a fracture is of the order of a small parameter $ \varepsilon $ and the ratio $ {{K_\mathrm{f}}}^\star / {{K_\mathrm{b}}}^\star $ of the characteristic hydraulic conductivities in the fracture and bulk domains is assumed to scale with $ \varepsilon^\alpha $ for a parameter $ \alpha \in \mathbb{R} $. The fracture geometry is parameterized by aperture functions on a submanifold of codimension one. Given a fracture, we derive the limit models as $ \varepsilon \rightarrow 0 $. Depending on the value of $ \alpha $, we obtain five different limit models as $ \varepsilon \rightarrow 0 $, for which we present rigorous convergence results.



    加载中


    [1] S. Burbulla, M. Hörl, C. Rohde, Flow in porous media with fractures of varying aperture, SIAM J. Sci. Comput., 45 (2023), A1519–A1544. https://doi.org/10.1137/22M1510406 doi: 10.1137/22M1510406
    [2] L. Y. Wang, Z. Y. Yin, Fluid flow and mass transport in fractured media with curved fractures and varying apertures: A 3d modeling approach, Int. J. Numer. Methods Eng., 124(2023), 4311–4338. https://doi.org/10.1002/nme.7314 doi: 10.1002/nme.7314
    [3] I. Berre, F. Doster, E. Keilegavlen, Flow in fractured porous media: A review of conceptual models and discretization approaches, Transp. Porous Med., 130 (2019), 215–236. https://doi.org/10.1007/s11242-018-1171-6 doi: 10.1007/s11242-018-1171-6
    [4] R. C. Liu, B. Li, Y. J. Jiang, N. Huang, Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks, Hydrogeol. J., 24 (2016), 1623–1649. https://doi.org/10.1007/s10040-016-1441-8 doi: 10.1007/s10040-016-1441-8
    [5] M. Oda, Permeability tensor for discontinuous rock masses, Géotechnique, 35 (1985), 483–495. https://doi.org/10.1680/geot.1985.35.4.483 doi: 10.1680/geot.1985.35.4.483
    [6] T. Arbogast, J. Douglas, Jr., U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Numer. Anal., 21 (1990), 823–836. https://doi.org/10.1137/0521046 doi: 10.1137/0521046
    [7] G. I. Barenblatt, I. P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6 doi: 10.1016/0021-8928(60)90107-6
    [8] M. Chen, S. A. Masum, H. R. Thomas, 3d hybrid coupled dual continuum and discrete fracture model for simulation of CO2 injection into stimulated coal reservoirs with parallel implementation, Int. J. Coal Geol., 262 (2022), 104103. https://doi.org/10.1016/j.coal.2022.104103 doi: 10.1016/j.coal.2022.104103
    [9] D. C. Karvounis, P. Jenny, Adaptive hierarchical fracture model for enhanced geothermal systems, Multiscale Model Simul., 14 (2016), 207–231. https://doi.org/10.1137/140983987 doi: 10.1137/140983987
    [10] E. Ahmed, J. Jaffré, J. E. Roberts, A reduced fracture model for two-phase flow with different rock types, Math. Comput. Simul., 137 (2017), 49–70. https://doi.org/10.1016/j.matcom.2016.10.005 doi: 10.1016/j.matcom.2016.10.005
    [11] K. Brenner, J. Hennicker, R. Masson, P. Samier, Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions, J. Comput. Phys., 357 (2018), 100–124. https://doi.org/10.1016/j.jcp.2017.12.003 doi: 10.1016/j.jcp.2017.12.003
    [12] M. Bukac, I. Yotov, P. Zunino, Dimensional model reduction for flow through fractures in poroelastic media, ESAIM Math. Model. Numer. Anal., 51 (2017), 1429–1471.
    [13] S. Burbulla, C. Rohde, A finite-volume moving-mesh method for two-phase flow in dynamically fracturing porous media, J. Comput. Phys., 458 (2022), 111031. https://doi.org/10.1016/j.jcp.2022.111031 doi: 10.1016/j.jcp.2022.111031
    [14] M. Lesinigo, C. D'Angelo, A. Quarteroni, A multiscale Darcy–Brinkman model for fluid flow in fractured porous media, Numer. Math., 117 (2011), 717–752. https://doi.org/10.1007/s00211-010-0343-2 doi: 10.1007/s00211-010-0343-2
    [15] V. Martin, J. Jaffré, J. E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 26 (2005), 1667–1691. https://doi.org/10.1137/S1064827503429363 doi: 10.1137/S1064827503429363
    [16] I. Rybak, S. Metzger, A dimensionally reduced Stokes–Darcy model for fluid flow in fractured porous media, Appl. Math. Comput., 384 (2020), 125260. https://doi.org/10.1016/j.amc.2020.125260 doi: 10.1016/j.amc.2020.125260
    [17] M. Starnoni, I. Berre, E. Keilegavlen, J. M. Nordbotten, Modeling and discretization of flow in porous media with thin, full-tensor permeability inclusions, Internat. J. Numer. Methods Engrg., 122 (2021), 4730–4750.
    [18] P. Paranamana, E. Aulisa, M. Toda, Geometric model of the fracture as a manifold immersed in porous media, J. Math. Phys., 62 (2021), 051508. https://doi.org/10.1063/1.5109730 doi: 10.1063/1.5109730
    [19] A. Armiti-Juber, On the limit of a two-phase flow problem in thin porous media domains of Brinkman type, Math. Methods Appl. Sci., 45 (2022), 2563–2581. https://doi.org/10.1002/mma.7940 doi: 10.1002/mma.7940
    [20] H. P. Huy, E. Sanchez-Palencia, Phénomènes de transmission à travers des couches minces de conductivité élevée, J. Math. Anal. Appl., 47 (1974), 284–309. https://doi.org/10.1016/0022-247X(74)90023-7 doi: 10.1016/0022-247X(74)90023-7
    [21] F. List, K. Kumar, I. S. Pop, F. A. Radu, Rigorous upscaling of unsaturated flow in fractured porous media, SIAM J. Math. Anal., 52 (2020), 239–276. https://doi.org/10.1137/18M1203754 doi: 10.1137/18M1203754
    [22] F. A. Morales, R. E. Showalter, The narrow fracture approximation by channeled flow, J. Math. Anal. Appl., 365 (2010), 320–331.
    [23] F. A. Morales, R. E. Showalter, A Darcy–Brinkman model of fractures in porous media, J. Math. Anal. Appl., 452 (2017), 1332–1358. https://doi.org/10.1016/j.jmaa.2017.03.063 doi: 10.1016/j.jmaa.2017.03.063
    [24] F. A. Morales, R. E. Showalter, Interface approximation of darcy flow in a narrow channel, Math. Methods Appl. Sci., 35 (2012), 182–195. https://doi.org/10.1002/mma.1555 doi: 10.1002/mma.1555
    [25] E. Sanchez-Palencia, Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité, J. Math. Pures Appl., 53 (1974), 251–269.
    [26] M. Dugstad, K. Kumar, Dimensional reduction of a fractured medium for a two-phase flow, Adv. Water Resour., 162 (2022), 104140. https://doi.org/10.1016/j.advwatres.2022.104140 doi: 10.1016/j.advwatres.2022.104140
    [27] K. Kumar, F. List, I. S. Pop, F. A. Radu, Formal upscaling and numerical validation of unsaturated flow models in fractured porous media, J. Comput. Phys., 407 (2020), 109138. https://doi.org/10.1016/j.jcp.2019.109138 doi: 10.1016/j.jcp.2019.109138
    [28] T. Mel'nyk, C. Rohde, Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks, J. Math. Anal. Appl., 529 (2024), 127587. https://doi.org/10.1016/j.jmaa.2023.127587 doi: 10.1016/j.jmaa.2023.127587
    [29] Jan Březina, Jan Stebel, Analysis of model error for a continuum-fracture model of porous media flow, In T. Kozubek, R. Blaheta, J. Šístek, M. Rozložník, M. Čermák, editors, High Performance Computing in Science and Engineering, Cham: Springer, 2016,152–160.
    [30] M. J. Gander, J. Hennicker, R. Masson, Modeling and analysis of the coupling in discrete fracture matrix models, SIAM J. Numer. Anal., 59 (2021), 195–218. https://doi.org/10.1137/20M1312125 doi: 10.1137/20M1312125
    [31] W. M. Boon, J. M. Nordbotten, J. E. Vatne, Functional analysis and exterior calculus on mixed-dimensional geometries, Ann. Mat. Pura Appl., 200 (2021), 757–789. https://doi.org/10.1007/s10231-020-01013-1 doi: 10.1007/s10231-020-01013-1
    [32] W. M. Boon, J. M. Nordbotten, Mixed-dimensional poromechanical models of fractured porous media, Acta Mech., 234 (2023), 1121–1168. https://doi.org/10.1007/s00707-022-03378-1 doi: 10.1007/s00707-022-03378-1
    [33] A. Mikelić, M. F. Wheeler, T. Wick, Phase-field modeling of a fluid-driven fracture in a poroelastic medium, Comput. Geosci., 19 (2015), 1171–1195. https://doi.org/10.1007/s10596-015-9532-5 doi: 10.1007/s10596-015-9532-5
    [34] S. Burbulla, L. Formaggia, C. Rohde, A. Scotti, Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models, Comput. Methods Appl. Mech. Eng., 403 (2023), 115699. https://doi.org/10.1016/j.cma.2022.115699 doi: 10.1016/j.cma.2022.115699
    [35] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, New York: Springer, 2011.
    [36] G. Leobacher, A. Steinicke, Existence, uniqueness and regularity of the projection onto differentiable manifolds, Ann. Glob. Anal. Geom., 60 (2021), 559–587. https://doi.org/10.1007/s10455-021-09788-z doi: 10.1007/s10455-021-09788-z
    [37] M. C. Delfour, J. P. Zolésio, Shapes and Geometries, Philadelphia: SIAM, 2011.
    [38] E. Hebey, Nonlinear Analysis on Manifolds, Providence: American Mathematical Society, 2000.
    [39] J. Wloka, Partial Differential Equations, Cambridge: Cambridge University Press, 1987.
    [40] B. Booß-Bavnbek, K. P. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Boston: Birkhäuser, 1993.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(367) PDF downloads(122) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog