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Abstract: We consider single-phase flow in a fractured porous medium governed by Darcy’s law with
spatially varying hydraulic conductivity matrices in both bulk and fractures. The width-to-length ratio
of a fracture is of the order of a small parameter ε and the ratio Kf

⋆/Kb
⋆ of the characteristic hydraulic

conductivities in the fracture and bulk domains is assumed to scale with εα for a parameter α ∈ R. The
fracture geometry is parameterized by aperture functions on a submanifold of codimension one. Given
a fracture, we derive the limit models as ε → 0. Depending on the value of α, we obtain five different
limit models as ε→ 0, for which we present rigorous convergence results.
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1. Introduction

Porous media with fractures or other thin heterogeneities, such as membranes, occur in a wide range
of applications in nature and industry including carbon sequestration, groundwater flow, geothermal
engineering, oil recovery, and biomedicine. Fractures are characterized by an extreme geometry with
a small aperture but a significantly larger longitudinal extent, typically by several orders of magnitude.
Therefore, it is often computationally unfeasible to represent fractures explicitly in full-dimensional
numerical methods, especially in the case of fracture networks, as this results in thin equi-dimensional
domains that require a high resolution. However, the presence of fractures can have a crucial impact
on the flow profile in a porous medium with the fractures acting either as major conduits or as barriers.
Moreover, in order to obtain accurate predictions for the flow profile, generally, one also has to take
into account the geometry of fractures, i.e., curvature and spatially varying aperture [1, 2].

In the following paragraph, we provide a brief overview on modeling approaches for flow in
fractured porous media with a focus on discrete fracture models. For details on modeling and
discretization strategies, we refer to the review article [3] and the references therein. Conceptually,
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one can distinguish between models with an explicit representation of fractures and models that
represent fractures implicitly by an effective continuum. For the latter category, there is a distinction
between equivalent porous medium models [4, 5], where fractures are modeled by modifying the
permeability of the underlying porous medium, and multi-continuum models [6, 7], where the
fractured porous medium is represented by multiple superimposed interacting continua—in the
simplest case by a fracture continuum and a matrix continuum. In contrast, discrete fracture models
represent fractures explicitly as interfaces of codimension one within a porous medium. In
comparison with implicit models, there is an increase in geometrical complexity but no upscaled
description based on effective quantities. Besides, there are also hybrid approaches for fracture
networks, where only dominant fractures are represented explicitly [8, 9]. The most popular method
for the derivation of discrete fracture models is vertical averaging [10–17], where the governing
equations inside the fracture are integrated in normal direction. This leads to a description based on
averaged fracture quantities on an interface of codimension one. However, the integration in normal
direction provides no relation between the resulting interfacial model and the bulk flow model. Thus,
using this approach, the resulting mixed-dimensional model is typically closed by making
assumptions on the flow profile inside the fracture, which eventually renders the model derivation
formal. Most commonly, averaged discrete fracture models are based on the conception of a planar
fracture geometry with constant aperture. However, there are also works that consider curved
fractures and fractures with spatially varying aperture [1, 18]. Moreover, there are papers that take a
fully mathematically rigorous approach for the derivation of discrete fracture models by applying
weak compactness arguments to prove (weak) convergence towards a mixed-dimensional model in
the limit of vanishing aperture [19–25]. This is also the approach that we follow here. In this case, in
contrast to the method of vertical averaging, the width-to-length ratio of a fracture serves as a scaling
parameter ε and one has to specify how the model parameters, such as the hydraulic conductivity,
scale with respect to ε in the limit ε → 0. Depending on their scaling, one can identify different
regimes with fundamentally different limit problems as ε → 0. Similar to the idea of homogenization
theory, in the first place, this approach provides insight on the behavior of the system in the limit of
vanishing width-to-length ratio ε → 0 but the resulting limit models can be also be viewed as a
computationally efficient approximation for real fractures with positive width-to-length
ratio 0 < ε ≪ 1. Further, we mention [26, 27], where formal asymptotic expansions are employed to
obtain limit models for the Richards equation and two-phase Darcy flow in the limit of vanishing
aperture, and [28], where a rigorous asymptotic approximation is presented for a convection-diffusion
problem in a thin graph-like network. Besides, rigorous error estimates for classical solutions of
discrete fracture models are obtained in [29, 30]. In particular, in [30], an asymptotic expansion based
on a Fourier transform is used to obtain the reduced model for one particular scaling of the fracture
hydraulic conductivity with respect to the fracture aperture. Further, the authors in [31] have
developed a mixed-dimensional functional analysis, which is utilized in [32] to obtain a
poromechanical discrete fracture model using a formal “top-down” approach. In addition, we also
mention phase-field models [33], which are convenient to track the propagation of fractures and can
be combined with discrete fracture models [34].

In this paper, we consider single-phase fluid flow in a porous medium with an isolated fracture.
Here, the term fracture refers to a thin heterogeneity inside the bulk porous medium which may itself
be described as another porous medium with a distinctly different permeability, e.g., a debris- or
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sediment-filled crack inside a porous rock. We assume that the flow is governed by Darcy’s law in
both bulk and fracture. Further, we introduce the characteristic width-to-length ratio ε > 0 of the
fracture as a scaling parameter. Given that the ratio Kf

⋆/Kb
⋆ of characteristic hydraulic conductivities

in the fracture and bulk domain scales with εα, we obtain five different limit models as ε → 0
depending on the value of the parameter α ∈ R. As the mathematical structure of the limit models is
different in each case and reaches from a simple boundary condition to a PDE on the interfacial limit
fracture, the different cases require different analytical approaches. Aside from delicate weak
compactness arguments, the convergence proofs rely on tailored parameterizations and a novel
coordinate transformation with controllable behavior with respect to the scaling parameter ε. Besides,
we show the wellposedness of the limit models and strong convergence.

The limit of vanishing width-to-length ratio ε → 0 is also considered in some of the works
mentioned above for systems with simple geometries and constant hydraulic conductivities. In
particular, for more simple systems, this is discussed in [20,22] for the case α = −1 and in [25] for the
case α = 1. Moreover, our approach is related to the approach in [21], where Richards equation is
considered for α < 1. However, while their focus is on dealing with the nonlinearity and
time-dependency of unsaturated flow, our focus is on the derivation of limit models for general
fracture geometries and spatially varying tensor-valued hydraulic conductivities for the whole range
of parameters α ∈ R. This aspect is not considered in [21]. In particular, in our case, the presence of
off-diagonal elements in the hydraulic conductivity matrix inside the fracture complicates the analysis
in the cases α = −1 and α = 1. Moreover, one of the limit models (α = −1) will explicitly depend on
these off-diagonal components.

The structure of this paper is as follows. In Section 2, we define the full-dimensional model problem
of Darcy flow in a porous medium with an isolated fracture and introduce the characteristic width-to-
length ratio ε of the fracture as a scaling parameter. Section 3 deals with the derivation of a-priori
estimates for the family of full-dimensional solutions parameterized by ε > 0. Further, in Section 4,
depending on the choice of parameters, we identify the limit models as ε → 0 and provide rigorous
proofs of convergence. A short summary of the geometric background is given in Appendix A.

2. Full-dimensional model and geometry

First, in Section 2.1, we define the geometric setting and introduce the full-dimensional model
problem of single-phase Darcy flow in a porous medium with an isolated fracture in dimensional form.
Then, in Section 2.2, dimensional quantities are rescaled by characteristic reference quantities to obtain
a non-dimensional problem. Section 2.3 discusses the dependence of the domains and parameters on
the width-to-length ratio ε of the fracture, which is introduced as a scaling parameter. Further, given an
atlas for the surface that represents the fracture in the limit ε→ 0, Section 2.4 introduces suitable local
parameterizations for the bulk and fracture domains, which, in Section 2.5, allow us to transform the
weak formulation of the non-dimensional problem from Section 2.2 into a problem with ε-independent
domains.

2.1. Full-dimensional model in dimensional form

In the following, dimensional quantities are denoted with a tilde to distinguish them from the non-
dimensional quantities that are introduced in Section 2.2. Constant reference quantities are marked by
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a star.
Let n ∈ N with n ≥ 2 denote the spatial dimension of a porous medium. Of pratical interest are

the cases n ∈ {2, 3} but we also allow n > 3. First, we introduce a technical domain G̃ ⊂ Rn, which
we suppose to be bounded with ∂G̃ ∈ C2 (see Figure 2). We write N ∈ C1(∂G̃;Rn) for the outer unit
normal field on ∂G̃. Subsequently, we will consider the limit of vanishing width-to-length ratio for
an isolated fracture in a porous medium such that γ̃ represents the closure of the interfacial fracture
in the limit model. It has to satisfy ∅ , γ̃ ⊂ ∂G̃ as a compact and connected C0,1-submanifold with
boundary ∂γ̃ and dimension n − 1. The interior of γ̃ is denoted by γ̃. We remark that γ̃ ⊂ ∂G̃ is in fact
a C2-submanifold without boundary, while γ̃ as a submanifold with boundary is only required to be of
class C0,1 (i.e., γ̃ can have corners for example). The domain G̃ plays a purely technical role: It induces
an orientation on γ̃. Besides, the domain G̃ (or rather its boundary ∂G̃) allows to us to directly apply
geometrical results for (compact) manifolds without boundary without worrying about γ̃ as a manifold
with boundary. In particular, ∂G̃ is endowed with a signed distance function d∂G̃↔ . Moreover, ∂G̃ has
bounded curvature. Thus, there exists a neighborhood of ∂G̃ where the orthogonal projection P∂G̃ and
the signed distance function d∂G̃↔ are well-defined and differentiable. We refer to Appendix A.1 for the
relevant geometric background.

In the following, we define the geometry of the full-dimensional model. Given aperture
functions ãi ∈ C

0,1(γ̃) for i ∈ {+,−} such that the total aperture ã := ã+ + ã− ≥ 0 is non-negative, we
define the fracture domain Ω̃f and its boundary segments γ̃± by

Ω̃f :=
{
π̃ + s̃N(π̃) ∈ Rn

∣∣∣ π̃ ∈ γ̃, −ã−(π̃) < s̃ < ã+(π̃)
}
, (2.1a)

γ̃± :=
{
π̃ ± ã±(π̃)N(π̃) ∈ Rn

∣∣∣ π̃ ∈ γ̃}. (2.1b)

Here and subsequently, we use the index ± as an abbreviation to simultaneously refer to two different
quantities or domains on the inside (−) and outside (+) of the domain G̃. Further, we distinguish
between the parts of the fracture interface γ̃ and the boundary segments γ̃± with non-zero and zero
aperture ã, i.e., γ̃ = Γ̃ ∪̇ Γ̃0

0 and γ̃± = Γ̃± ∪̇ Γ̃0, where

Γ̃ :=
{
π̃ ∈ γ̃

∣∣∣ ã(π̃) > 0
}
, Γ̃0

0 := γ̃ \ Γ̃, (2.2a)
Γ̃0 := γ̃+ ∩ γ̃−, Γ̃± := γ̃± \ Γ̃0. (2.2b)

We assume that Ω̃f is connected with λn(Ω̃f) > 0, where λn denotes the n-dimensional Lebesgue
measure. In addition, we assume that the aperture functions ã± are sufficiently small such that
Ω̃f ⊂ unpp(∂G̃) with unpp(∂G̃) ⊂ Rn as defined in Definition A.2. Besides, we denote by Ω̃± ⊂ Rn two
disjoint and bounded Lipschitz domains such that Ω̃± ∩ Ω̃f = ∅ and ∂Ω̃± ∩ ∂Ω̃f = γ̃±. Ω̃+ and Ω̃− are
bulk domains adjacent to the fracture domain Ω̃f. Further, we define the total domain

Ω̃ := Ω̃+ ∪ Ω̃− ∪ Ω̃f ∪ γ̃+ ∪ γ̃−, (2.3)

which we assume to be a Lipschitz domain. Moreover, we write

ϱ̃± := ∂Ω̃± \ γ̃± = ϱ̃±,D ∪̇ ϱ̃±,N, (2.4a)
ϱ̃f := ∂Ω̃ \

(
ϱ̃+ ∪ ϱ̃−

)
= ϱ̃f,D ∪̇ ϱ̃f,N ⊂ ∂Ω̃f (2.4b)
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Figure 1. Sketch of the geometry in the full-dimensional model (2.5) in dimensional form.
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Figure 2. Sketch of the technical domain G̃.

for the external boundaries of the bulk domains Ω̃i ⊂ Ω̃, i ∈ {+,−, f}, which are composed of disjoint
Dirichlet and Neumann segments ϱ̃i,D and ϱ̃i,N. The resulting geometric configuration is sketched in
Figure 1. Besides, the position of the technical domain G̃ is sketched in Figure 2.

Now, let K̃± ∈ L∞(Ω̃±;Rn×n) and K̃f ∈ L∞(Ω̃f;Rn×n) be symmetric and uniformly elliptic hydraulic
conductivity matrices. Further, for i ∈ {+,−, f}, let p̃i denote the pressure head in Ω̃i. Then, given the
source terms q̃± ∈ L2(Ω̃±) and q̃f ∈ L2(Ω̃f), we consider the following problem of Darcy flow in Ω̃.

Find p̃± : Ω̃± → R and p̃f : Ω̃f → R such that

−∇̃ ·
(
K̃i∇̃ p̃i

)
= q̃i in Ω̃i, i ∈ {+,−, f}, (2.5a)

p̃± = p̃f on Γ̃±, (2.5b)
K̃±∇̃ p̃± · n± = K̃f∇̃ p̃f · n± on Γ̃±, (2.5c)

p̃+ = p̃− on Γ̃0, (2.5d)
K̃+∇̃ p̃+ · n+ = −K̃−∇̃ p̃− · n− on Γ̃0, (2.5e)

p̃i = 0 on ϱ̃i,D, i ∈ {+,−, f}, (2.5f)
K̃i∇̃p̃i · n = 0 on ϱ̃i,N, i ∈ {+,−, f}. (2.5g)

Here, n is the outer unit normal on ∂Ω̃ and n± denotes the unit normal on γ̃± pointing into Ω̃±. We
remark that the choice of homogeneous boundary conditions in Eq (2.5) is only made for the sake of
simplicity. The extension to the inhomogeneous case is straightforward.
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2.2. Full-dimensional model in non-dimensional form

We write L⋆ [m] and a⋆ [m] for the characteristic values of the length and aperture of the fracture
given by

L⋆ := λ∂G̃(Γ̃)
1

n−1 and a⋆ :=
1

λ∂G̃(Γ̃)

∫
Γ̃

ã dλ∂G̃. (2.6)

Here, λ∂G̃ denotes the Riemannian measure on the submanifold ∂G̃ ⊂ Rn (cf. Appendix A.3). Then,
we define ε := a⋆/L⋆ > 0 as the characteristic width-to-length ratio of the fracture. Subsequently, in
Sections 3 and 4, we will treat ε as scaling parameter and analyze the limit behavior as ε→ 0.

Next, let K⋆b [m/s] and K⋆f [m/s] be characteristic values of the hydraulic conductivities K̃± and K̃f

in the bulk and fracture. In addition, we define the non-dimensional position vector x := x̃/L⋆. The
non-dimensionalization of the position vector x results in a rescaling of spatial derivative operators,
e.g., ∇ = L⋆∇̃. Besides, it necessitates the definition of non-dimensional domains (and boundary
interfaces), which will be denoted without tilde, e.g., Ω := Ω̃/L⋆. If a domain or interface depends
on the width-to-length ε of the fracture, this is indicated by an additional index, e.g., Ωε+ := Ω̃+/L⋆.
Moreover, we define

ϱεb,D := ϱε+,D ∪ ϱ
ε
−,D, ϱεD := ϱε+,D ∪ ϱ

ε
−,D ∪ ϱ

ε
f,D. (2.7)

We require λ∂Ω(ϱεb,D) > 0. Besides, we sometimes require the stronger assumption

λ∂Ω(ϱε+,D) > 0 and λ∂Ω(ϱε−,D) > 0, (A)

i.e., both bulk domains Ωε+ and Ωε− have a boundary part with Dirichlet conditions (and not possibly
only one of them). This is subsequently referred to as “assumption (A)”. Further, we define the non-
dimensional quantities

pε± :=
p̃±
p⋆b
, Kε± :=

K̃±
K⋆b
, qε± :=

q̃±
q⋆b
, a± :=

ã±
a⋆
, a :=

ã
a⋆
,

pεf :=
p̃f

p⋆f
, Kεf :=

K̃f

K⋆f
, qεf :=

q̃f

q⋆f
,

(2.8)

where p⋆b := L⋆, p⋆f := L⋆, and q⋆b := K⋆b /L
⋆. We assume that there exist parameters α ∈ R and β ≥ −1

such that the characteristic fracture quantities K⋆f and q⋆f scale like

K⋆f = ε
αK⋆b and q⋆f = ε

βq⋆b . (2.9)

The dimensional Darcy system in Eq (2.5) now corresponds to the following non-dimensional
problem.

Find pε± : Ωε± → R and pεf : Ωεf → R such that

−∇ ·
(
Kε±∇pε±

)
= qε± in Ωε±, (2.10a)

−∇ ·
(
εαKεf∇pεf

)
= εβqεf in Ωεf , (2.10b)

pε± = pεf on Γε±, (2.10c)
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Kε±∇pε± · n
ε
± = ε

αKεf∇pεf · n
ε
± on Γε±, (2.10d)

pε+ = pε− on Γε0, (2.10e)
Kε+∇pε+ · n

ε
+ = −Kε−∇pε− · n

ε
− on Γε0, (2.10f)

pεi = 0 on ϱεi,D, i ∈ {+,−, f}, (2.10g)
Kεi∇pεi · n = 0 on ϱεi,N, i ∈ {+,−, f}. (2.10h)

In Eq (2.10), n is the outer unit normal on ∂Ω and nε± denotes the unit normal on γε± pointing into Ωε±.
The geometry of the non-dimensional problem (2.10) with full-dimensional fracture Ωεf , as well as the
limit geometry as ε→ 0, are sketched in Figure 3.
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+
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$0
+
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Ω0
+

Ω0
−

γ

a−a+

N

Figure 3. Sketch of the geometry in the full-dimensional model (2.10) in non-dimensional
form (left) and in the limit of vanishing width-to-length ratio ε→ 0 (right).

Next, we define the space

Φε :=
{
(φε+, φ

ε
−, φ

ε
f ) ∈×i∈{+,−,f} H

1
0,ϱεi,D

(Ωεi )
∣∣∣∣φε+∣∣∣Γε0 = φε−∣∣∣Γε0 , φε±∣∣∣Γε± = φεf ∣∣∣Γε±} � H1

0,ϱεD
(Ω), (2.11)

where the equalities on Γε0 and Γε± are to be understood in the sense of traces. Then, a weak formulation
of the system in Eq (2.10) is given by the following problem.

Find
(
pε+, p

ε
−, p

ε
f

)
∈ Φε such that, for all

(
φε+, φ

ε
−, φ

ε
f

)
∈ Φε,∑

i=±

(
Kεi∇pεi ,∇φ

ε
i
)

L2(Ωεi ) + ε
α(Kεf∇pεf ,∇φ

ε
f
)

L2(Ωεf ) =
∑
i=±

(
qεi , φ

ε
i
)

L2(Ωεi ) + ε
β(qεf , φεf )L2(Ωεf ). (2.12)

As a consequence of the Lax-Milgram theorem, the Darcy problem (2.12) admits a unique
solution

(
pε+, p

ε
−, p

ε
f

)
∈ Φε.

2.3. Scaling of domains and parameters with respect to ε

Let κk ∈ C0(∂G), k ∈ {1, . . . , n − 1}, denote the principal curvatures on ∂G and set

κmax := max
π∈γ

max
k∈{1,...,n−1}

|κk(π)|. (2.13)

Then, we have κmax < ∞ due to the compactness of γ. Further, we define

ˆ̂ε := min
{

1,
1

3κmax
, reach(∂G)

}
> 0, ε̂ :=

ˆ̂ε
2

[
max

i=±

{
∥ai∥L∞(γ)

}]−1
> 0 (2.14)
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with reach(∂G) as defined in Definition A.2. In the following, we require ε ∈ (0, ε̂]. In Eq (2.14),
the condition ˆ̂ε ≤ 1 ensures that ˆ̂ε is finite and the condition ˆ̂ε < [3κmax]−1 guarantees the invertibility
of certain ε-perturbed identity operators on the tangent space TπΓ (cf. Lemma 2.2 below). Besides,
the condition ˆ̂ε < reach(∂G) allows us to use the results from Appendix A.1 on the regularity and
wellposedness of the orthogonal projection P∂G and the signed distance function d∂G↔ .

The dependence of the non-dimensional domains and quantities on the width-to-length ratio ε of the
fracture is made explicit in the notation. For the non-dimensional fracture domainΩεf , the ε-dependence
is evident. Specifically, we have

Ωεf =
{
π + sN(π) ∈ Rn

∣∣∣ π ∈ γ, −εa−(π) < s < εa+(π)
}
. (2.15)

Accordingly, the hydraulic conductivity Kεf and the source term qεf scale like

Kεf (x) = Kε̂f
(
Tεf (x)

)
, qεf (x) = qε̂f

(
Tεf (x)

)
, (2.16)

where the transformation Tεf : Ωεf → Ω
ε̂
f is given by

Tεf (x) = P∂G(x) −
ε̂

ε
d∂G↔ (x)N

(
P∂G(x)

)
. (2.17)

Further, we define

Ωε±,in := Ωε± ∩
{
π ± sN(π)

∣∣∣ π ∈ γ, εa±(π) < s < ˆ̂ε
}
, (2.18a)

Ω±,out := Ωε± \Ω
ε
±,in. (2.18b)

Note that only the inner region Ωε
±,in of the bulk domain Ωε± depends on the scaling parameter ε, while

the outer region Ω±,out does not. For the inner region Ωε
±,in, we impose a linear deformation in normal

direction with decreasing ε, i.e., the hydraulic conductivity Kε± and the source term qε± satisfy

Kε±(x) = K0
±

(
Tε±(x)

)
, qε±(x) = q0

±

(
Tε±(x)

)
(2.19)

for x ∈ Ωε
±,in, where the transformation Tε± : Ωε

±,in → Ω
0
±,in is given by

Tε±(x) := P∂G(x) + tε±
(
P∂G(x),−d∂G↔ (x)

)
N
(
P∂G(x)

)
, (2.20a)

tε±(π, λ) :=
ˆ̂ε

ˆ̂ε − εa±(π)
[
λ ∓ εa±(π)

]
. (2.20b)

It is now easy to see that the following lemma holds.

Lemma 2.1. Let ε ∈ (0, ε̂]. Then, Tεf : Ωεf → Ω
ε̂
f is a C1-diffeomorphism. Besides, Tε± : Ωε

±,in → Ω
0
±,in is

bi-Lipschitz. The inverses
¯
Tεf := (Tεf )−1 and

¯
Tε± := (Tε±)−1 are given by

¯
Tεf (x) = P∂G(x) −

ε

ε̂
d∂G↔ (x)N

(
P∂G(x)

)
, (2.21)

¯
Tε±(x) = P∂G(x) +

¯
tε±
(
P∂G(x),−d∂G↔ (x)

)
N
(
P∂G(x)

)
, (2.22a)

¯
tε±(π, λ) =

ˆ̂ε − εa±(π)
ˆ̂ε

λ ± εa±(π). (2.22b)
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2.4. Local parameterization

Subsequently, beginning with an atlas for the fracture interface Γ, we develop a suitable local
parameterization of the fracture domain Ωεf and the interior bulk domains Ωε

±,in. Further, we will
introduce transformations onto ε-independent domains and characterize how they depend on the
scaling parameter ε. Eventually, in Section 2.5, this will allow us to reformulate the Darcy
problem (2.10) in terms of ε-independent domains. In the following, we use the definitions and
notations from Appendix A.3.

We observe that Γ ⊂ ∂G is open so that Γ ⊂ Rn is itself a C2-submanifold of dimension n − 1.
Besides, Γ ⊂ Rn is a C0,1-submanifold with boundary. Now, let {(U j,ψ j,V j)} j∈J be a C2-atlas for Γ
consisting of charts ψ j : U j → V j, where U j ⊂ Γ and V j ⊂ R

n−1 are open. Then, for j ∈ J and
ε ∈ (0, ε̂], we write

¯
ψ j := ψ−1

j for the inverse charts and define

Uεf, j :=
{
π + sN(π)

∣∣∣ π ∈ U j,−εa−(π) < s < εa+(π)
}
, (2.23a)

Vf, j :=
{
(ϑ′, ϑn) ∈ Rn | ϑ′ ∈ V j, −a−

(
¯
ψ j(ϑ′)

)
< ϑn < a+

(
¯
ψ j(ϑ′)

)}
(2.23b)

for ε ∈ (0, ε̂], as well as

Uε±, j :=
{
π ± sN(π)

∣∣∣ π ∈ U j, εa±(π) < s < ˆ̂ε
}
, (2.24a)

V±, j :=
{
(ϑ′,±ϑn) ∈ Rn | ϑ′ ∈ V j, 0 < ϑn < ˆ̂ε

}
(2.24b)

for ε ∈ [0, ε̂]. In the following, we will also think of the subdomains Ωεf , Ω
ε
±,in ⊂ R

n as n-dimensional
C0,1-submanifolds. With the given atlas for Γ, we can construct a C0,1-atlas {(Uεf, j,ψ

ε
f, j,Vf, j)} j∈J for Ωεf

for ε ∈ (0, ε̂], as well as C0,1-atlases {(Uε
±, j,ψ

ε
±, j,V±, j)} j∈J for Ωε

±,in for ε ∈ [0, ε̂]. For j ∈ J, the
charts ψεf, j and ψε

±, j, as well as their inverses
¯
ψεf, j and

¯
ψε
±, j, are given by

ψεf, j : Uεf, j → Vf, j, x 7→
(
ψ j
(
P∂G(x)

)
, −ε−1d∂G↔ (x)

)
, (2.25a)

¯
ψεf, j : Vf, j → Uεf, j, (ϑ′, ϑn) 7→

¯
ψ j(ϑ′) + εϑnN

(
¯
ψ j(ϑ′)

)
, (2.25b)

ψε±, j : Uε±, j → V±, j, x 7→
(
ψ j
(
P∂G(x)

)
, tε±
(
P∂G(x),−d∂G↔ (x)

))
, (2.26a)

¯
ψε±, j : V±, j → Uε±, j, (ϑ′, ϑn) 7→

¯
ψ j(ϑ′) + ¯

tε±
(
¯
ψ j(ϑ′), ϑn

)
N
(
¯
ψ j(ϑ′)

)
. (2.26b)

Further, we introduce the product-like n-dimensional C2-submanifold

Γa :=
{
(π, ϑn) | π ∈ Γ, −a−(π) < ϑn < a+(π)

}
⊂ Rn × R. (2.27)

Then, Γa is the interior of the following C0,1-manifolds with boundary.

Γ
⊥

a :=
{
(π, ϑn) | π ∈ Γ, −a−(π) ≤ ϑn ≤ a+(π)

}
⊂ Rn × R, (2.28a)

Γ
∥

a :=
{
(π, ϑn) | π ∈ Γ, −a−(π) < ϑn < a+(π)

}
⊂ Rn × R. (2.28b)

Besides, we write

ϱa,D :=
{
(π, ϑn) ∈ Γ

∥

a

∣∣∣ π + ε̂ϑnN(π) ∈ ϱε̂f,D
}
⊂ ∂Γ

∥

a (2.29)

for the external boundary segment of Γ
∥

a with Dirichlet conditions. A C2-atlas of Γa is given by
{(Ua

j ,ψ
a
j ,Vf, j)} j∈J, where

Ua
j :=
{
(π, ϑn)

∣∣∣ π ∈ U j,−a−(π) < ϑn < a+(π)
}
, (2.30a)
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ψa
j : Ua

j → Vf, j, (π, ϑn) 7→
(
ψ j(π), ϑn

)
. (2.30b)

Further, for f ∈ H1(Γa), we decompose the gradient ∇Γa f into a tangential and a normal component,
i.e.,

∇Γa f = ∇Γ f + ∇N f , ∇N f (π, ϑn) :=
∂ f (π, ϑn)
∂ϑn

N(π). (2.31)

Next, we write Sψ j(ϑ′) ∈ R(n−1)×(n−1) for the matrix representation of the shape operator S
¯
ψ j(ϑ′) of Γ

at
¯
ψ j(ϑ′) with respect to the basis{∂

¯
ψ j(ϑ′)

∂ϑ1
, . . . ,

∂
¯
ψ j(ϑ′)

∂ϑn−1

}
⊂ T

¯
ψ j(ϑ′)Γ. (2.32)

Details on the shape operator S
¯
ψ j(ϑ′) can be found in Appendix A.2. In addition, for j ∈ J and

ϑ = (ϑ′, ϑn) ∈ Vf, j or V±, j, we introduce the abbreviations

Rεf, j(ϑ) := In−1 − εϑnSψ j(ϑ′), (2.33a)

Rε±, j(ϑ) := In−1 − ¯
tε±
(
¯
ψ j(ϑ′), ϑn

)
Sψ j(ϑ′), (2.33b)

where In−1 ∈ R
(n−1)×(n−1) is the identity matrix. Besides, we define the operators

¯
Rεf

∣∣∣
(π,ϑn)

: TπΓ→ TπΓ, (2.34a)

¯
Rε±

∣∣∣
x : TP∂G(x)Γ→ TP∂G(x)Γ, (2.34b)

R0
±

∣∣∣
x : TP∂G(x)Γ→ TP∂G(x)Γ (2.34c)

for all (π, ϑn) ∈ Γa and x ∈ Ω0
±,in by

¯
Rεf

∣∣∣
(π,ϑn)

:=
(
idTπΓ − εϑnSπ

)−1
, (2.35a)

¯
Rε±

∣∣∣
x :=
(
idT

P∂G (x)Γ
−

¯
tε±
(
P∂G(x),−d∂G↔ (x)

)
SP∂G(x)

)−1
, (2.35b)

R0
±

∣∣∣
x := idT

P∂G (x)Γ
+ d∂G↔ (x)SP∂G(x). (2.35c)

The operators in Eq (2.34) will appear when considering gradients of yet to be introduced
transformations “Ωε

±,in → Ω0
±,in” and “Ωεf → Γa” onto ε-independent domains (cf. Eq (2.45) and

Lemma 2.4 (iii) and (iv) below). Moreover, the operators in Eq (2.34) have the following properties.
In particular, we can characterize their behavior as ε→ 0.

Lemma 2.2. (i) The operators
¯
Rεf and

¯
Rε± exist for all ε ∈ (0, ε̂].

(ii) For all (π, ϑn) ∈ Γa and x ∈ Ω0
±,in, the operators

¯
Rεf

∣∣∣
(π,ϑn)
,

¯
Rε±

∣∣∣
x, and R0

±

∣∣∣
x

are self-adjoint for ε ∈ (0, ε̂]. In particular, for i ∈ {+,−, f}, it is

g|ψ j(ϑ′)Rεi, j(ϑ) =
[
Rεi, j(ϑ)

]tg|ψ j(ϑ′). (2.36)

Networks and Heterogeneous Media Volume 19, Issue 1, 114–156.



124

(iii) For j ∈ J and ε ∈ (0, ε̂], the matrix representations of the operators

¯
Rεf

∣∣∣
¯
ψa

j (ϑ)
,

¯
Rε±

∣∣∣
¯
ψ0
±, j(ϑ)
, and R0

±

∣∣∣
¯
ψ0
±, j(ϑ)

with respect to the basis (2.32) are given by
[
Rεf, j(ϑ)

]−1,
[
Rε
±, j(ϑ)

]−1, and R0
±, j(ϑ).

(iv) As ε→ 0, we have

(a) sup(π,ϑn)∈Γa

∥∥∥∥ idTπΓ − ¯
Rεf

∣∣∣
(π,ϑn)

∥∥∥∥ = O(ε), (2.37a)

(b) supx∈Ω0
±,in

∥∥∥∥ idT
P∂G (x)Γ

−
¯
Rε±

∣∣∣
x ◦ R

0
±

∣∣∣
x

∥∥∥∥ = O(ε) (2.37b)

for (π, ϑn) ∈ Γa and x ∈ Ω0
±,in.

Proof. (i) Using Eq (2.14) and the self-adjointness of Sπ, we find

∥εϑnSπ∥ ≤ εκmax max
i=±

{
∥ai∥L∞(γ)

}
≤

ˆ̂ε
2
κmax ≤

1
6
< 1.

Thus, the operator
¯
Rεf

∣∣∣
(π,ϑn)

exists for all (π, ϑn) ∈ Γa and ε ∈ (0, ε̂].

Further, with Eq (2.14) and the self-adjointness of Sπ, we have∥∥∥d∂G↔ (x)SP∂G(x)

∥∥∥ ≤ ˆ̂εκmax ≤
1
3
< 1

for all x ∈ Ω0
±,in so that R0

±

∣∣∣
x is invertible with∥∥∥∥[R0

±

∣∣∣
x

]−1
∥∥∥∥ ≤ 1

1 −
∥∥∥d∂G↔ (x)SP∂G(x)

∥∥∥ ≤ 3
2
.

Besides, it is ∥∥∥εa±(P∂G(x)
)[ ˆ̂ε−1d∂G↔ (x) ± 1

]
SP∂G(x)

∥∥∥ ≤ 3
2
ε∥a±∥L∞(γ)κmax ≤

1
4
<
∥∥∥∥[R0

±

∣∣∣
x

]−1
∥∥∥∥−1
,

where we have used that 0 ≤ | ˆ̂ε−1d∂G↔ (x) ± 1| ≤ 3
2 . Consequently, the operator

¯
Rε±

∣∣∣
x =
[
R0
±

∣∣∣
x − εa±

(
P∂G(x)

)[ ˆ̂ε−1d∂G↔ (x) ± 1
]
SP∂G(x)

]−1

exists for all x ∈ Ω0
±,in and ε ∈ (0, ε̂].

(ii) The result follows directly from the self-adjointness of the shape operator.

(iii) We have

∂
¯
ψ j(ϑ′)

∂ϑi
= D

¯
ψ j(ϑ′)Rεf, j(ϑ)

[
Rεf, j(ϑ)

]−1ei

=
(
idT

¯
ψ j(ϑ′)Γ

−εϑnS
¯
ψ j(ϑ′)

)(
D

¯
ψ j(ϑ′)

[
Rεf, j(ϑ)

]−1ei

)
for i ∈ {1, . . . , n − 1}, where ei ∈ R

n−1 denotes the ith unit vector, and hence

D
¯
ψ j(ϑ′)

[
Rεf, j(ϑ)

]−1ei = ¯
Rεf

∣∣∣
¯
ψa

j (ϑ)

(∂
¯
ψ j(ϑ′)

∂ϑi

)
.

The result for
¯
Rε± follows analogously. The result for R0

± is trivial.
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(iv-a) Using (ii), we find

sup
(π,ϑn)∈Γa

∥∥∥∥idTπΓ − ¯
Rεf

∣∣∣
(π,ϑn)

∥∥∥∥ = sup
(π,ϑn)∈Γa

max
k∈{1,...,n−1}

∣∣∣∣∣1 − 1
1 − εϑnκk(π)

∣∣∣∣∣ = O(ε).

Here, κk ∈ C0(∂G), k ∈ {1, . . . , n− 1}, denote the principal curvatures on ∂G, which are bounded due to
the compactness of ∂G.

(iv-b) Using Eq (2.14) and the self-adjointness of SP∂G(x), we find

sup
x∈Ω0

±,in

∣∣∣̄tε±(P∂G(x),−d∂G↔ (x)
)∣∣∣∥∥∥SP∂G(x)

∥∥∥ ≤ [ ˆ̂ε + 3
2
ε∥a±∥L∞(γ)

]
κmax ≤

7
12
< 1.

Thus, we can express
¯
Rε±

∣∣∣
x as a Neumann series and obtain

¯
Rε±

∣∣∣
x ◦ R

0
±

∣∣∣
x =

[ ∞∑
k=0

¯
tε±
(
P∂G(x),−d∂G↔ (x)

)k
Sk
P∂G(x)

]
◦ R0

±

∣∣∣
x

= idT
P∂G (x)Γ

+
[̄
tε±
(
P∂G(x),−d∂G↔ (x)

)
+ d∂G↔ (x)

]
¯
Rε±

∣∣∣
x ◦ SP∂G(x),

where
¯
tε±
(
P∂G(x),−d∂G↔ (x)

)
+ d∂G↔ (x) = O(ε). □

Further, for j ∈ J, the Jacobians of the inverse charts
¯
ψεf, j, ¯

ψε
±, j are given by

D
¯
ψεf, j(ϑ) =

[ D
¯
ψ j(ϑ′)Rεf, j(ϑ) εN

(
¯
ψ j(ϑ′)

) ]
, (2.38a)

D
¯
ψε±, j(ϑ) = Aε±, j(ϑ) + εN

(
¯
ψ j(ϑ′)

)[
v±, j(ϑ)

]t
, (2.38b)

where

Aε±, j(ϑ) :=
[

D
¯
ψ j(ϑ′)Rε±, j(ϑ) N

(
¯
ψ j(ϑ′)

) ]
, (2.39a)

v±, j(ϑ) :=


[
±1 − ˆ̂ε−1ϑn

][
D

¯
ψ j(ϑ′)

]t
∇Γa±
(
¯
ψ j(ϑ′)

)
− ˆ̂ε−1a±

(
¯
ψ j(ϑ′)

)
 . (2.39b)

Consequently, with
[
D

¯
ψ j(ϑ′)

]tN(
¯
ψ j(ϑ′)

)
= 0, we find that the metric tensors of Ωεf and Ωε

±,in in
coordinates of the charts ψεf, j and ψε

±, j, j ∈ J, are given by

g|ψ
ε
f, j(ϑ) =


[
Rεf, j(ϑ)

]tg|ψ j(ϑ′)Rεf, j(ϑ) 0

0 ε2

 , (2.40a)

g|ψ
ε
±, j(ϑ) =


[
Rε
±, j(ϑ)

]tg|ψ j(ϑ′)Rε
±, j(ϑ) 0

0 1

 + (εv±, j(ϑ) + en
)(
εv±, j(ϑ) + en

)t
− enet

n, (2.40b)

where en ∈ R
n is the nth unit vector and g|ψ j denotes the metric tensor on Γ in coordinates of the

chart ψ j. Subsequently, for j ∈ J, we will use the notation

µ j :=
√

det g|ψ j , µε±, j :=
√

det g|ψ
ε
±, j , µεf, j :=

√
det g|ψ

ε
f, j . (2.41)

Moreover, we have the following result on the metric tensors.
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Lemma 2.3. Let ε ∈ (0, ε̂] and j ∈ J. As ε→ 0, we have

µεf, j(ϑ) = ε
[
1 + O(ε)

]
µ j(ϑ′), (2.42a)

µε±, j(ϑ) =
[
1 + O(ε)

]
µ0
±, j(ϑ). (2.42b)

The prefactors on the right-hand side of Eq (2.42) do not depend on j ∈ J.

Proof. Given the principal curvatures κk ∈ C0(∂G) on ∂G, k ∈ {1, . . . , n− 1}, which are bounded on the
compact submanifold ∂G, we have

det Rεf, j(ϑ) =
n−1∏
k=1

[
1 − εϑnκk

(
¯
ψ j(ϑ′)

)]
,

det Rε±, j(ϑ) =
n−1∏
k=1

[
1 −

¯
tε±
(
¯
ψ j(ϑ′), ϑn

)
κk
(
¯
ψ j(ϑ′)

)]
for j ∈ J, where

¯
tε±
(
¯
ψ j(ϑ′), ϑn

)
=

¯
t0
±

(
¯
ψ j(ϑ′), ϑn

)
+ O(ε). This yields

det Rεf, j(ϑ) = 1 + O(ε), (2.43a)

det Rε±, j(ϑ) =
[
1 + O(ε)

]
det R0

±, j(ϑ) (2.43b)

so that Eq (2.42a) follows. Moreover, as a consequence of Sylvester’s determinant theorem, the relation

det
(
A + cdt + e f t) = det(A)

[(
dtA−1c + 1

)(
f tA−1e + 1

)
− dtA−1e f tA−1c

]
. (2.44)

holds true for any invertible matrix A ∈ Rn×n and c, d, e, f ∈ Rn. Thus, with Eq (2.43b), we find

det g|ψ
ε
±, j(ϑ) =

(
1 − ε ˆ̂ε−1a±

(
¯
ψ j(ϑ′)

))2(
det Rε±, j(ϑ)

)2 det g|ψ j(ϑ′)

=
[
1 + O(ε)

](
det R0

±, j(ϑ)
)2 det g|ψ j(ϑ′) =

[
1 + O(ε)

]
det g|ψ

0
±, j(ϑ). □

Next, given a partition of unity {χ j} j∈J of Γ that is subordinate to the covering {U j} j∈J, we define the
partitions of unity

• {χε
±, j} j∈J on Ωε

±,in subordinate to {Uε
±, j} j∈J by χε

±, j := χ j ◦ P
∂G
∣∣∣
Ωε
±,in

,

• {χεf, j} j∈J on Ωεf subordinate to {Uεf, j} j∈J by χεf, j := χ j ◦ P
∂G
∣∣∣
Ωεf

,

• {χa
j} j∈J on Γa subordinate to {Ua

j } j∈J by χa
j(π, ϑn) := χ j(π).

Further, for ε ∈ (0, ε̂], we define the transformationsYε± : L2(Ω0
±)→ L2(Ωε±) andYεf : L2(Γa)→ L2(Ωεf )

by

(Yε±φ±)(x) :=

φ±
(
Tε±(x)

)
, if x ∈ Ωε

±,in,

φ±(x) if x ∈ Ω±,out,
(2.45a)

(Yεfφf)(x) 7→ φf
(
P∂G(x),−ε−1d∂G↔ (x)

)
. (2.45b)
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The inverse maps
¯
Yε± := (Yε±)

−1 and
¯
Yεf := (Yεf )−1 are given by

(
¯
Yε±φ

ε
±

)
(x) :=

φε±
(
¯
Tε±(x)

)
, if x ∈ Ω0

±,in,

φε±(x) if x ∈ Ω±,out,
(2.46a)(

¯
Yεfφ

ε
f
)
(π, ϑn) := φεf

(
π + εϑnN(π)

)
. (2.46b)

Moreover, we define the product map

Yε : L2(Ω0
+) × L2(Ω0

−) × L2(Γa)→ L2(Ωε+) × L2(Ωε−) × L2(Ωεf ),
(φ+, φ−, φf) 7→

(
Yε+φ+,Y

ε
−φ−,Y

ε
fφf
) (2.47)

and write
¯
Yε := (Yε)−1 for its inverse. Then, the following result for the asymptotics of the

transformations Yε±, Y
ε
f between the final domains Ω0

±, Γa and the ε-dependent original domains Ωε±,
Ωεf holds true as ε→ 0.

Lemma 2.4. There is an ε̄ > 0 such that the following results hold for all ε ∈ (0, ε̄].
(i) Yεf : L2(Γa)→ L2(Ωεf ) defines an isomorphism with∥∥∥Yεfφf

∥∥∥2
L2(Ωεf )

= ε
[
1 + O(ε)

]
∥φf∥

2
L2(Γa) (2.48)

for all φf ∈ L2(Γa).

(ii) Yε± : L2(Ω0
±)→ L2(Ωε±) defines an isomorphism with∥∥∥Yε±φ±∥∥∥L2(Ωε±)

=
[
1 + O(ε)

]
∥φ±∥L2(Ω0

±) (2.49)

for all φ± ∈ L2(Ω0
±).

(iii) Yεf
∣∣∣
H1(Γa)

: H1(Γa)→ H1(Ωεf ) is an isomorphism. In particular, we have

∇
(
Yεfφf

)(
π + εϑnN(π)

)
=
(
¯
Rεf∇Γφf

)
(π, ϑn) + ε−1∇Nφf(π, ϑn) (2.50)

for φf ∈ H1(Γa) and a.a. (π, ϑn) ∈ Γa and hence∥∥∥∇(Yεfφf)
∥∥∥2

L2(Ωεf )
=
[
1 + O(ε)

](
ε
∥∥∥∇Γφf

∥∥∥2
L2(Γa)

+ ε−1
∥∥∥∇Nφf

∥∥∥2
L2(Γa)

)
. (2.51)

(iv) Yε±
∣∣∣
H1(Ω0

±)
: H1(Ω0

±)→ H1(Ωε±) is an isomorphism. In particular, we have

∇
(
Yε±φ±

)(
¯
Tε±(x)

)
=Mε

±(x)∇φ±(x) (2.52)

for φ± ∈ H1(Ω0
±) and a.a. x ∈ Ω0

±,in, where

Mε
±(x) :=

[
DTε±
(
¯
Tε±(x)

)]t
=
[
D

¯
Tε±(x)

]−t
. (2.53)

Besides, it is

supx∈Ω0
±,in

∥∥∥Mε
±(x) − In

∥∥∥ = O(ε), (2.54)

where In ∈ R
n×n denotes the identity matrix. Thus, we obtain∥∥∥∇(Yε±φ±)

∥∥∥
L2(Ωε±)

=
[
1 + O(ε)

]∥∥∥∇φ±∥∥∥L2(Ω0
±)
. (2.55)
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Proof. (i) It is easy to see that Yεf is linear and bijective with inverse
¯
Yεf . Moreover, with

Lemma 2.3, we have∥∥∥Yεfφf

∥∥∥2
L2(Ωεf )

=
∑
j∈J

∫
Vf, j

[
χεf, j(Y

ε
fφf)2]∣∣∣

¯
ψεf, j(ϑ) µ

ε
f, j(ϑ) dλn(ϑ)

= ε
[
1 + O(ε)

]∑
j∈J

∫
Vf, j

[
χa

jφ
2
f
]∣∣∣

¯
ψa

j (ϑ)
µ j(ϑ′) dϑndλn−1(ϑ′)

= ε
[
1 + O(ε)

]
∥φf∥

2
L2(Γa).

(ii) Yε± is clearly linear and bijective with inverse
¯
Yε±. Further, we have∥∥∥Yε±φ±∥∥∥2L2(Ωε±)

= ∥φ±∥
2
L2(Ω±,out)

+
∥∥∥φ± ◦ Tε±

∥∥∥2
L2(Ωε

±,in)
.

Then, by using Lemma 2.3 and Tε± ◦
¯
ψε
±, j =

¯
ψ0
±, j, we find∥∥∥φ± ◦ Tε±

∥∥∥2
L2(Ωε

±,in)
=
∑
j∈J

∫
V±, j

[
χε±, j
(
φ± ◦ Tε±

)2]∣∣∣
¯
ψε
±, j(ϑ)
µε±, j(ϑ) dλn(ϑ)

=
[
1 + O(ε)

]∑
j∈J

∫
V±, j

[
χ0
±, jφ

2
±

]∣∣∣
¯
ψ0
±, j(ϑ)
µ0
±, j(ϑ) dλn(ϑ)

=
[
1 + O(ε)

]
∥φ±∥

2
L2(Ω0

±,in).

(iii) Let φf ∈ H1(Γa) and φεf := Yεfφf . Then, by using the Eqs (2.38a), (2.40a) and Lemma 2.2 (ii)
and (iii), we find

∇φεf
(
¯
ψεf, j(ϑ)

)
= D

¯
ψεf, j(ϑ) g−1|

ψεf, j(ϑ)∇
(
φεf ◦

¯
ψεf, j
)
(ϑ)

= D
¯
ψ j(ϑ′) g−1|ψ j(ϑ′)

[
Rεf, j(ϑ)

]−t
∇′
(
φεf ◦

¯
ψεf, j
)
(ϑ) + ε−1∇N

(
φεf ◦

¯
ψεf, j
)
(ϑ)

= D
¯
ψ j(ϑ′)

[
Rεf, j(ϑ)

]−1g−1|ψ j(ϑ′)∇′
(
φεf ◦

¯
ψεf, j
)
(ϑ) + ε−1∇N

(
φεf ◦

¯
ψεf, j
)
(ϑ)

=
¯
Rεf

∣∣∣
¯
ψa

j (ϑ)

(
∇Γφf
)(

¯
ψa

j(ϑ)
)
+ ε−1∇Nφf

(
¯
ψa

j(ϑ)
)
.

for j ∈ J and a.a. ϑ = (ϑ′, ϑn) ∈ Vf, j. Thus, with Lemma 2.2 (iv), we have∣∣∣∇φεf (π + εϑnN(π)
)∣∣∣2 = [1 + O(ε)

]∣∣∣∇Γφf(π, ϑn)
∣∣∣2 + ε−2

∣∣∣∇Nφf(π, ϑn)
∣∣∣2

for a.a. (π, ϑn) ∈ Γa so that Eq (2.51) follows with Lemma 2.3.

(iv) Equation (2.52) follows by applying the chain rule. Now, let φ± ∈ H1(Ω0
±) and φε± := Yε±φ±.

Then, by using that
¯
ψε
±, j = ¯

Tε± ◦
¯
ψ0
±, j, the chain rule yields

Mε
±

(
¯
ψ0
±, j(ϑ)

)
=
[
D

¯
Tε±
(
¯
ψ0
±, j(ϑ)

)]−t
=
[
D

¯
ψε±, j(ϑ)

]−t[D
¯
ψ0
±, j(ϑ)

]t
.

With Eq (2.38b) and the Sherman-Morrison formula, we obtain

[
D

¯
ψε±, j(ϑ)

]−1
=

(
In − ε

en
[
v±, j(ϑ)

]t
1 − ε ˆ̂ε−1a±

(
¯
ψ j(ϑ′)

))[Aε±, j(ϑ)
]−1
,
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where In ∈ R
n×n is the identity matrix and

[
Aε±, j(ϑ)

]−1
=


[
Rε
±, j(ϑ)

]−1g−1|ψ j(ϑ′) 0

0 1

 [ D
¯
ψ j(ϑ′) N

(
¯
ψ j(ϑ′)

) ]t
.

Consequently, with Lemma 2.2 (ii), we find

Mε
±

(
¯
ψ0
±, j(ϑ)

)
=
[
Aε±, j(ϑ)

]−t
(
In − ε

v±, j(ϑ) et
n

1 − ε ˆ̂ε−1a±
(
¯
ψ j(ϑ′)

))[A0
±, j(ϑ)

]t
= D

¯
ψ j(ϑ′)

[
Rε±, j(ϑ)

]−1R0
±, j(ϑ)g−1|ψ j(ϑ′)

[
D

¯
ψ j(ϑ′)

]t
+ wε±, j(ϑ)

[
N
(
¯
ψ j(ϑ′)

)]t
,

where we have used the abbreviation

wε±, j(ϑ) :=
ˆ̂εN
(
¯
ψ j(ϑ′)

)
− ε
[
± ˆ̂ε − ϑn

][
¯
Rε±|

¯
ψ0
±, j(ϑ)∇Γa±

(
¯
ψ j(ϑ′)

)]
ˆ̂ε − εa±

(
¯
ψ j(ϑ′)

) .

Thus, using that

In = D
¯
ψ j(ϑ′)g−1|ψ j(ϑ′)

[
D

¯
ψ j(ϑ′)

]t
+ N
(
¯
ψ j(ϑ′)

)[
N
(
¯
ψ j(ϑ′)

)]t
,

we find[
Mε
±

(
¯
ψ0
±, j(ϑ)

)
−In
]
z =
[
¯
Rε±

∣∣∣
¯
ψ0
±, j(ϑ)
◦R0
±

∣∣∣
¯
ψ0
±, j(ϑ)
−idT

¯
ψ j(ϑ′)Γ

](
Π
∣∣∣
¯
ψ j(ϑ′)

z
)
+
[
wε±, j(ϑ)−N

(
¯
ψ j(ϑ′)

)][
N
(
¯
ψ j(ϑ′)

)
· z
]

for all z ∈ Rn, where

Π|
¯
ψ j(ϑ′) : Rn → Rn, u 7→ D

¯
ψ j(ϑ′)g−1|ψ j(ϑ′)

[
D

¯
ψ j(ϑ′)

]tu
denotes the orthogonal projection onto T

¯
ψ j(ϑ′)Γ. Further, it is easy to see that

sup
j∈J

sup
ϑ∈Vf, j

∣∣∣wε±, j(ϑ) − N
(
¯
ψ j(ϑ′)

)∣∣∣ = O(ε).

Thus, the result follows with Lemma 2.2 (iv). □

2.5. Full-dimensional problem with ε-independent domains

Subsequently, we will rewrite the integrals in the weak formulation (2.12) onΩε± andΩεf as integrals
on Ω0

± and Γa by using the results on the transformations Yε± and Yεf from Lemma 2.4. In this way,
we avoid working with ε-dependent domains and can more easily identify the dominant behavior for
vanishing ε.

Let ε̄ > 0 be as in Lemma 2.4. Then, for ε ∈ (0, ε̄], we define the solution and test function space

Φ :=
¯
Yε
(
Φε
)
⊂
[
×i=± H1(Ω0

i )
]
× H1(Γa). (2.56)

As a consequence of Lemma 2.4 (iii) and (iv), the space Φ does not depend on ε (cf. Lemma 3.2). In
addition, we define

K̂f :=
¯
Yεf Kεf = ¯

Yε̂f Kε̂f ∈ L∞(Γa;Rn×n), (2.57a)
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q̂f :=
¯
Yεf qεf = ¯

Yε̂f qε̂f ∈ L2(Γa). (2.57b)

Next, for ε ∈ (0, ε̄], let (φ+, φ−, φf) ∈ Φ and set(
φε+, φ

ε
−, φ

ε
f
)

:= Yε(φ+, φ−, φf) ∈ Φε. (2.58)

Further, given the unique solution (pε+, p
ε
−, p

ε
f ) ∈ Φε of Eq (2.12), we define(

p̂ε+, p̂
ε
−, p̂

ε
f
)

:=
¯
Yε
(
pε+, p

ε
−, p

ε
f
)
∈ Φ. (2.59)

Then, with Lemma 2.3, we have∫
Ωεf

qεfφ
ε
f dλn =

∑
j∈J

∫
Vf, j

[
χεf, jq

ε
fφ
ε
f
]∣∣∣

¯
ψεf, j(ϑ)
µεf, j(ϑ) dλn(ϑ)

= ε
[
1 + O(ε)

]∑
j∈J

∫
Vf, j

[
χa

j q̂fφf
]∣∣∣

¯
ψa

j (ϑ)
µ j(ϑ′) dϑn dλn−1(ϑ′)

= ε
[
1 + O(ε)

] ∫
Γa

q̂fφf dλΓa .

(2.60)

In the same way, by additionally using Lemma 2.4 (iii), we obtain

[
1 + O(ε)

] ∫
Ωεf

Kεf∇pεf · ∇φ
ε
f dλn

= ε

∫
Γa

K̂f ¯
Rεf∇Γ p̂εf · ¯

Rεf∇Γφf dλΓa +

∫
Γa

K̂f∇N p̂εf · ¯
Rεf∇Γφf dλΓa

+

∫
Γa

K̂f ¯
Rεf∇Γ p̂εf · ∇Nφf dλΓa + ε

−1
∫
Γa

K̂f∇N p̂εf · ∇Nφf dλΓa .

(2.61)

Moreover, it is ∫
Ωε±

qε±φ
ε
± dλn =

∫
Ω±,out

q0
±φ± dλn +

∫
Ωε
±,in

qε±φ
ε
± dλn

=
[
1 + O(ε)

] ∫
Ω0
±

q0
±φ± dλn,

(2.62)

where we have used that Tε± ◦
¯
ψε
±, j =

¯
ψ0
±, j for j ∈ J and hence, with Lemma 2.3,∫

Ωε
±,in

qε±φ
ε
± dλn =

∑
j∈J

∫
V±, j

[
χε±, jq

ε
±φ
ε
±

]∣∣∣
¯
ψε
±, j(ϑ)
µε±, j(ϑ) dλn(ϑ)

=
[
1 + O(ε)

]∑
j∈J

∫
V±, j

[
χ0
±, jq

0
±φ±
]∣∣∣

¯
ψ0
±, j(ϑ)
µ0
±, j(ϑ) dλn(ϑ)

=
[
1 + O(ε)

] ∫
Ω0
±,in

q0
±φ± dλn.

(2.63)
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Analogously, by additionally using Lemma 2.4 (iv), we obtain∫
Ωε±

Kε±∇pε± · ∇φ
ε
± dλn =

∫
Ω±,out

K0
±∇ p̂ε± · ∇φ± dλn +

[
1 + O(ε)

] ∫
Ω0
±,in

K0
±M

ε
±∇ p̂ε± ·M

ε
±∇φ± dλn. (2.64)

Thus, by combining the Eqs (2.60)–(2.64), we find that, if (pε+, p
ε
−, p

ε
f ) ∈ Φε solves the weak

formulation (2.12), then ( p̂ε+, p̂
ε
−, p̂

ε
f ) ∈ Φ satisfies∑

i=±,f

Aεi ( p̂εi , φi) =
[
1 + O(ε)

][∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) + ε

β+1(q̂f, φf
)

L2(Γa)

]
(2.65)

for all φ = (φ+, φ−, φf) ∈ Φ as ε→ 0. The bilinear formsA± : Ω0
± ×Ω

0
± → R andAεf : Γa × Γa → R are

given by

Aε±( p̂ε±, φ±) :=
(
K0
±∇ p̂ε±,∇φ±

)
L2(Ω±,out) +

(
K0
±M

ε
±∇ p̂ε±,M

ε
±∇φ±
)

L2(Ω0
±,in), (2.66)

Aεf ( p̂εf , φf) := εα+1(K̂f
[
¯
Rεf∇Γ p̂εf +

1
ε
∇N p̂εf

]
,
[
¯
Rεf∇Γφf +

1
ε
∇Nφf
])

L2(Γa)

= εα+1(K̂f ¯
Rεf∇Γ p̂εf , ¯

Rεf∇Γφf
)

L2(Γa) + ε
α(K̂f∇N p̂εf , ¯

Rεf∇Γφf
)

L2(Γa)

+ εα
(
K̂f ¯
Rεf∇Γ p̂εf ,∇Nφf

)
L2(Γa) + ε

α−1(K̂f∇N p̂εf ,∇Nφf
)

L2(Γa).

(2.67)

3. A-priori estimates and weak convergence

In this section, we obtain a-priori estimates for the solution ( p̂ε+, p̂
ε
−, p̂

ε
f ) ∈ Φ of the transformed

weak formulation (2.65) and, consequently, can identify a weakly convergent subsequence as ε → 0.
The main results are developed in Section 3.3. They build on trace inequalities from Section 3.1 and
Poincaré-type inequalities from Section 3.2.

First, we introduce useful functions spaces on Γ and Γa, as well as averaging operators on Γa.
Given a λΓ-measurable, non-negative weight function w : Γ → R, we define the weighted Lebesgue
space L2

w(Γ) as the L2-space on Γ with measure wλΓ. Further, we define the weighted Sobolev
space H1

a(Γ) as the completion of {
f ∈ C0,1(Γ)

∣∣∣∣ ∥ f ∥H1
a (Γ) < ∞

}
(3.1)

with respect to the norm ∥ f ∥2H1
a (Γ) := ∥ f ∥2L2

a(Γ)+∥∇Γ f ∥2L2
a(Γ). Besides, we define the space H1

N(Γa) ⊂ L2(Γa)
as the closure of the space {

f ∈ C0,1(Γa)
∣∣∣∣ ∥ f ∥H1

N(Γa) < ∞
}

(3.2)

with respect to the norm ∥ f ∥2H1
N(Γa) := ∥ f ∥2L2(Γa) + ∥∇N f ∥2L2(Γa). Moreover, we introduce the averaging

operators

AΓ : L2(Γa)→ L2
a(Γ), (AΓ f )(π) :=

1
a(π)

∫ a+(π)

−a−(π)
f (π, ϑn) dϑn, (3.3a)

Af : L2(Γa)→ R, Af f :=
1∫

Γ
a dλΓ

∫
Γa

f dλΓa . (3.3b)
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3.1. Trace inequalities

We begin by introducing a trace operator T± on H1
N(Γa) for the lateral boundaries of Γ

⊥

a .

Lemma 3.1. There exists a uniquely defined bounded linear operator

T± : H1
N(Γa)→ L2

a(Γ) (3.4)

such that, for all f ∈ C0,1(Γ
⊥

a), we have(
T± f
)
(π) = f

(
π,±a±(π)

)
. (3.5)

Proof. W.l.o.g., we consider T+. The operator T− can be treated analogously.
Let f ∈ C0,1(Γ

⊥

a). Then, for all (π, ϑn) ∈ Γa, we have

f 2(π, a+(π)
)
= f 2(π, ϑn) + 2

∫ a+(π)

ϑn

f (π, ϑ̄n) ∂ϑn f (π, ϑ̄n) dϑ̄n.

An integration over Γa yields∫
Γ

a f 2(·, a+(·)) dλΓ ≤ ∫
Γa

f 2 dλΓa + 2
∫
Γa

a| f ||∂ϑn f | dλΓa .

By applying Hölder’s inequality, we obtain

∥T+ f ∥2L2
a(Γ) ≤ ∥ f ∥

2
L2(Γa) + 2∥a∥L∞(Γ)∥ f ∥L2(Γa)∥∇N f ∥L2(Γa) ≲ ∥ f ∥

2
H1

N(Γa).

The result now follows from the fact that C0,1(Γ
⊥

a) is dense in H1
N(Γa). □

Besides, we obtain the following characterization of the space Φ.

Lemma 3.2. We have

Φ =
{
(φ+, φ−, φf) ∈

[
×i=± H1

0,ϱ0
i,D

(Ω0
i )
]
× H1

0,ϱa,D
(Γa)
∣∣∣φ+∣∣∣Γ0

0
= φ−
∣∣∣
Γ0

0
, T±φf = φ±

∣∣∣
Γ

}
. (3.6)

In particular, for (φ+, φ−, φf) ∈ Φ, it is ∥∥∥T±φf

∥∥∥
L2

a(Γ)
≲ ∥φ±∥H1(Ω0

±). (3.7)

Proof. Using that C0,1(Ω0
±) ⊂ H1(Ω0

±) and C0,1(Γ
⊥

a) ⊂ H1
N(Γa) are dense, we find

φ±
∣∣∣
γ
= P∂G

([
Yε±φ±

]∣∣∣
γε±

)
, T±φf = P

∂G
([
Yεfφf

]∣∣∣
Γε±

)
almost everywhere for any ε ∈ (0, ε̄] for all φ± ∈ H1(Ω0

±) and φf ∈ H1(Γa). Thus, it is easy to see that

Φ =
¯
Yε
(
Φε
)
⊂ Φ′,

Yε
(
Φ′
)
⊂ Φε = Yε(Φ) ⇒ Φ′ ⊂ Φ,

where Φ′ denotes the space on the right-hand side of Eq (3.6). Besides, Eq (3.7) is a consequence of
the trace inequality in Ω0

±. □
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Further, it is easy to see that the following lemma holds, which introduces a trace operator on the
weighted Sobolev space H1

a(Γ).

Lemma 3.3. Let T
Γ
∥

a
: H1(Γ

∥

a)→ L2(∂Γ
∥

a) denote the trace operator on Γ
∥

a from Lemma A.3. Further,
we introduce the constant extension operator

Ea : H1
a(Γ)→ H1(Γa),

(
Ea f
)
(π, ϑn) := f (π). (3.8)

Then, the trace operator Ta
∥
: H1

a(Γ)→ L2
a(∂Γ) defined by

(
T

a
∥

f
)
(π) :=

0 if a(π) = 0,
1

a(π)

∫ a+(π)

−a−(π)
T
Γ
∥

a

(
Ea f
)
(π, ϑn) dϑn if a(π) , 0

(3.9)

is bounded and satisfies ∥∥∥Ta
∥

f − f
∣∣∣
∂Γ

∥∥∥
L2

a(∂Γ)
= 0 for all f ∈ C0(Γ). (3.10)

3.2. Poincaré-type inequalities

We obtain two Poincaré-type inequalities for functions in H1
N(Γa).

Lemma 3.4. Let i ∈ {+,−} and f ∈ H1
N(Γa). Then, we have∥∥∥Ti f − AΓ f

∥∥∥
L2

a(Γ)
≲ ∥∇N f ∥L2(Γa). (3.11)

Proof. We prove the inequality (3.11) for i = + and f ∈ C0,1(Γ
⊥

a). The case i = − is analogous. The
general case follows from a density argument. We now have

∥∥∥T+ f − AΓ f
∥∥∥2

L2
a(Γ)
=

∫
Γ

a(π)
[

f
(
π, a+(π)

)
−

1
a(π)

∫ a+(π)

a−(π)
f (π, ϑn) dϑn

]2
dλΓ(π)

=

∫
Γ

1
a(π)

[∫ a+(π)

−a−(π)

∫ a+(π)

ϑn

∂ϑn f (π, τn) dτn dϑn

]2
dλΓ(π) ≲ ∥∇N f ∥2L2(Γa). □

Lemma 3.5. Let i ∈ {+,−} and f ∈ H1
N(Γa). Then, we have

∥ f ∥L2(Γa) ≲ ∥∇N f ∥L2(Γa) + ∥Ti f ∥L2
a(Γ). (3.12)

Proof. Subsequently, we prove the inequality (3.12) for i = + and f ∈ C0,1(Γ
⊥

a). Then, the desired
inequality is obtained from a density argument. The case i = − follows by analogy. Now, let
(π, ϑn) ∈ Γa. Then, we have

f
(
π, a+(π)

)
− f (π, ϑn) =

∫ a+(π)

ϑn

∂ϑn f (π, τn) dτn

and hence, by using Hölder’s inequality,∣∣∣ f (π, a+(π)
)
− f (π, ϑn)

∣∣∣2 ≤ a(π)
∫ a+(π)

−a−(π)

∣∣∣∂ϑn f (π, τn)
∣∣∣2dτn.
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Consequently, we obtain∫ a+(π)

−a−(π)

∣∣∣ f (π, a+(π)
)
− f (π, ϑn)

∣∣∣2 dϑn ≤ a2(π)
∫ a+(π)

−a−(π)

∣∣∣∂ϑn f (π, ϑn)
∣∣∣2 dϑn.

An additional integration on Γ yields∥∥∥ f
(
·, a+(·)

)
− f
∥∥∥

L2(Γa)
≲
∥∥∥∇N f

∥∥∥
L2(Γa)
. (3.13)

Further, we have ∥ f (·, a+(·))∥L2(Γa) = ∥T+ f ∥L2
a(Γ) so that the result follows by applying the reverse triangle

inequality in Eq (3.13). □

We can now combine Poincaré’s inequality and the Lemmas 3.2 and 3.5 to obtain the following
estimate for function triples (φ+, φ−, φf) ∈ Φ, which fits the setting of the coupled Darcy problem in Eq
(2.65).

Lemma 3.6. Let (φ+, φ−, φf) ∈ Φ.
(i) There exists an ε∗ > 0 such that, for all ε ∈ (0, ε∗] and ν ≥ 0, we have∑

i=±

∥φi∥L2(Ω0
i ) + ε

ν∥φf∥L2(Γa) ≲
∑
i=±

∥∇φi∥L2(Ω0
i ) + ε

1
2 ∥∇Γφf∥L2(Γa) + ε

− 1
2 ∥∇Nφf∥L2(Γa). (3.14)

(ii) Let ν ≥ 0 and ε ∈ [0, 1]. Given additionally the assumption (A), we have∑
i=±

∥φi∥L2(Ω0
i ) + ε

ν∥φf∥L2(Γa) ≲
∑
i=±

∥∇φi∥L2(Ω0
i ) + ε

ν∥∇Nφf∥L2(Γa). (3.15)

Proof. (i) Let (φ+, φ−, φf) ∈ Φ and, for ε ∈ (0, ε̄], define φε ∈ H1
0,ϱεD

(Ω) by

φε(x) :=
{[
Yεi φi
]
(x) if x ∈ Ωεi , i ∈ {+,−, f}.

Then, with Lemma 2.4 (ii) and Poincaré’s inequality, we have∑
i=±

∥φi∥
2
L2(Ω0

i ) =
∑
i=±

[
1 + O(ε)

]∥∥∥Yεi φi

∥∥∥2
L2(Ωεi )

≲ ∥φε∥2L2(Ω) ≲ ∥∇φ
ε∥

2
L2(Ω)

if ε > 0 is sufficiently small. Moreover, Lemma 2.4 (iii) and (iv) yield

∥∇φε∥2L2(Ω) =
∑

i∈{+,−,f}

∥∥∥∇[Yεi φi
]∥∥∥2

L2(Ωεi )
=
[
1 + O(ε)

][∑
i=±

∥∇φi∥
2
L2(Ω0

i ) + ε∥∇Γφf∥
2
L2(Γa) + ε

−1∥∇Nφf∥
2
L2(Γa)

]
.

By using Poincaré’s inequality and the Lemmas 3.2 and 3.5, we obtain

∥φf∥L2(Γa) ≲ ∥∇Nφf∥L2(Γa) + ∥T+φf∥L2
a(Γ) ≲ ∥∇Nφf∥L2(Γa) + ∥∇φ+∥L2(Ω0

+).

(ii) Follows directly from Poincaré’s inequality and the Lemmas 3.2 and 3.5. □
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3.3. Results

Using Lemma 3.6, we can obtain the following a-priori estimates for the solution (p̂ε+, p̂
ε
−, p̂

ε
f ) ∈ Φ

of the transformed Darcy problem (2.65).

Proposition 3.7. Let β ≥ −1. Besides, let either α ≤ 0 or, given the assumption (A), let 2β ≥ α − 3.
Further, let 2ν ≥ max{0, α − 1}. Then, there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗], the solution
( p̂ε+, p̂

ε
−, p̂

ε
f ) ∈ Φ of the transformed Darcy problem (2.65) satisfies∑

i=±

∥∥∥∇ p̂εi
∥∥∥2

L2(Ω0
i )
+ εα+1

∥∥∥∇Γ p̂εf
∥∥∥2

L2(Γa)
+ εα−1

∥∥∥∇N p̂εf
∥∥∥2

L2(Γa)
≲ 1, (3.16a)∑

i=±

∥∥∥p̂εi ∥∥∥L2(Ω0
i )
+ εν
∥∥∥ p̂εf ∥∥∥L2(Γa)

≲ 1. (3.16b)

Proof. We use the solution (p̂ε+, p̂
ε
−, p̂

ε
f ) ∈ Φ as a test function in the transformed weak formulation Eq

(2.65). The uniform ellipticity of the hydraulic conductivity K0
± yields

Aε±
(
p̂ε±, p̂

ε
±

)
≳
∥∥∥∇ p̂ε±

∥∥∥2
L2(Ω0

±,out)
+
∥∥∥Mε

±∇ p̂ε±
∥∥∥2

L2(Ω0
±,in)
=
[
1 + O(ε)

]∥∥∥∇ p̂ε±
∥∥∥2

L2(Ω0
±)
.

Here, we have used that, as a consequence of Lemma 2.3 and Lemma 2.4 (iv), it is∥∥∥Mε
±∇ p̂ε±

∥∥∥2
L2(Ω0

±,in)
=
∑
j∈J

∫
V±, j

[
χ0
±, j

∣∣∣Mε
±∇ p̂ε±

∣∣∣2]∣∣∣∣
¯
ψ0
±, j(ϑ)
µ0
±, j(ϑ) dλn(ϑ)

=
[
1 + O(ε)

]∑
j∈J

∫
V±, j

[
χε±, j
∣∣∣∇(Yε± p̂ε±)

∣∣∣2]∣∣∣∣
¯
ψε
±, j(ϑ)
µε±, j(ϑ) dλn(ϑ)

=
[
1 + O(ε)

]∥∥∥∇(Yε± p̂ε±)
∥∥∥2

L2(Ωε
±,in)
=
[
1 + O(ε)

]∥∥∥∇ p̂ε±
∥∥∥2

L2(Ω0
±,in)
.

Besides, by using Lemma 2.2 (iv) and the uniform ellipticity of K̂f, we obtain

Aεf
(
p̂εf , p̂

ε
f
)
≳ εα+1

∥∥∥
¯
Rεf∇Γ p̂εf + ε

−1∇N p̂εf
∥∥∥2

L2(Γa)

= εα+1[1 + O(ε)
]∥∥∥∇Γ p̂εf

∥∥∥2
L2(Γa)

+ εα−1
∥∥∥∇N p̂εf

∥∥∥2
L2(Γa)
.

By applying Hölder’s inequality on the right-hand side of Eq (2.65), we find∑
i=±

∥∥∥∇ p̂εi
∥∥∥2

L2(Ω0
i )
+ εα+1

∥∥∥∇Γ p̂εf
∥∥∥2

L2(Γa)
+ εα−1

∥∥∥∇N p̂εf
∥∥∥2

L2(Γa)
≲
∑
i=±

∥∥∥p̂εi ∥∥∥L2(Ω0
±)
+ εβ+1

∥∥∥p̂εf ∥∥∥L2(Γa) (3.17)

if ε > 0 is sufficiently small. Thus, the inequality (3.16a) follows after applying Lemma 3.6 on
the right-hand side of Eq (3.17). Then, the inequality in Eq (3.16b) follows from Eq (3.16a) and
Lemma 3.6. □

As a consequence of Proposition 3.7, the solution families { p̂εi }ε∈(0,ε̂], i ∈ {+,−, f}, have weakly
convergent subsequences in the following sense as ε→ 0.

Proposition 3.8. Let β ≥ −1. Besides, let either α ≤ 0 or, given the assumption (A), let 2β ≥ α − 3.
Then, there exists a sequence {εk}k∈N ⊂ (0, ε̂] with εk ↘ 0 as k → ∞ such that

p̂εk± ⇀ p̂∗± in H1(Ω0
±), (3.18a)
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p̂εk± → p̂∗± in L2(Ω0
±), (3.18b)

p̂εkf ⇀ p̂∗f in H1(Γa) if α ≤ −1, (3.18c)
p̂εkf ⇀ p̂∗f in H1

N(Γa) if α ≤ 1, (3.18d)
AΓ p̂εkf ⇀ AΓ p̂∗f in L2

a(Γ) if α ≤ 1. (3.18e)

In particular, we have (p̂∗+, p̂
∗
−, p̂

∗
f ) ∈ Φ if α ≤ −1 and (p̂∗+, p̂

∗
−, p̂

∗
f ) ∈ Φ∗ if α ≤ 1, where Φ∗ denotes the

closure of Φ in H1(Ω0
+) × H1(Ω0

−) × H1
N(Γa).

Proof. The weak convergence statements (3.18a), (3.18b), (3.18c), and (3.18d) are a direct
consequence of the estimates in Proposition 3.7 and the Rellich-Kondrachov theorem. Further, the
weak convergence (3.18e) follows from Proposition 3.7 and

∥∥∥AΓ p̂εf
∥∥∥2

L2
a(Γ)
=

∫
Γ

1
a(π)

[∫ a+(π)

−a−(π)
p̂εf (π, ϑn) dϑn

]2
dλΓ(π) ≤

∥∥∥p̂εf ∥∥∥2L2(Γa)
.

Besides, we have (p̂∗+, p̂
∗
−, p̂

∗
f ) ∈ Φ if α ≤ −1 sinceΦ is convex and closed in H1(Ω0

+)×H1(Ω0
−)×H1(Γa).

Further,Φ∗ is convex and closed in H1(Ω0
+)×H1(Ω0

−)×H1
N(Γa) and hence (p̂∗+, p̂

∗
−, p̂

∗
f ) ∈ Φ∗ if α ≤ 1. □

Using Proposition 3.7, we can conclude that the limit solution p̂∗f in Γa is constant in ϑn-direction if
α < 1 and completely constant if α < −1.

Proposition 3.9. Let β ≥ −1. Besides, let either α ≤ 0 or, given the assumption (A), let 2β ≥ α − 3.
(i) Let α < −1. Then, for a.a. (π, ϑn) ∈ Γa, the limit function p̂∗f ∈ H1(Γa) from Proposition 3.8

satisfies

∇Γ p̂∗f (π, ϑn) = ∇N p̂∗f (π, ϑn) = 0 ⇒ p̂∗f (π, ϑn) = Af p̂∗f = const. (3.19)

(ii) Let α < 1. Then, for a.a. (π, ϑn) ∈ Γa, the limit function p̂∗f ∈ H1
N(Γa) from Proposition 3.8

satisfies

∇N p̂∗f (π, ϑn) = 0 ⇒ p̂∗f (π, ϑn) = (AΓ p̂∗f )(π). (3.20)

Proof. The results follow from the Propositions 3.7 and 3.8. □

If α < 1, we obtain continuity of the limit solution across the interface Γ.

Proposition 3.10. Let β ≥ −1. Besides, let either α ≤ 0 or, given the assumption (A), let 2β ≥ α − 3.
Then, if α < 1, the limit functions p̂∗± ∈ H1(Ω0

±) and p̂∗f ∈ H1
N(Γa) from Proposition 3.8 satisfy

p̂∗±
∣∣∣
Γ
= AΓ p̂∗f a.e. on Γ. (3.21)

Proof. Let ζ ∈ L2
a(Γ). Then, we have∣∣∣∣(p̂∗± − AΓ p̂∗f , ζ
)

L2
a(Γ)

∣∣∣∣ ≤ ∣∣∣∣(p̂∗± − p̂εk± , ζ
)

L2
a(Γ)

∣∣∣∣ + ∣∣∣∣( p̂εk± − AΓ p̂εkf , ζ
)

L2
a(Γ)

∣∣∣∣ + ∣∣∣∣(AΓ p̂εkf − AΓ p̂∗f , ζ
)

L2
a(Γ)

∣∣∣∣. (3.22)

Using a version of the Sobolev trace inequality [35, Thm. II.4.1], we obtain∥∥∥p̂∗± − p̂εk±
∥∥∥2

L2(Γ)
≲
∥∥∥p̂∗± − p̂εk±

∥∥∥
L2(Ω0

±)

∥∥∥p̂∗± − p̂εk±
∥∥∥

H1(Ω0
±)
,
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where, with Proposition 3.8, the first term vanishes as k → ∞ and the second term is bounded. Besides,
by using the Lemmas 3.2 and 3.4 and Proposition 3.7, we find∥∥∥p̂εk± − AΓ p̂εkf

∥∥∥
L2

a(Γ)
=
∥∥∥Tεk± p̂εkf − AΓ p̂εkf

∥∥∥
L2

a(Γ)
≲
∥∥∥∇N p̂εkf

∥∥∥
L2(Γa)

≲ ε
1−α

2
k → 0.

Further, the last term on the right-hand side of Eq (3.22) vanishes due to the weak convergence (3.18e)
in Proposition 3.8 as k → ∞. □

4. Limit models

In the following, we present the convergence proofs and resulting limit models for vanishing ε.
Depending on the value of the parameter α ∈ R, we obtain five different limit models. We distinguish
between the following cases that are discussed in separate subsections.

• Section 4.1 discusses the case α < −1 of a highly conductive fracture, where the limit pressure
head inside the fracture becomes completely constant.

• In Section 4.2, we discuss the case α = −1 of a conductive fracture, where the fracture pressure
head in the limit model solves a PDE of effective Darcy flow on the interface Γ.

• In Section 4.3, we examine the case α ∈ (−1, 1), where the fracture disappears in the limit model,
i.e., we have both the continuity of pressure and normal velocity across the interface Γ without any
effect of the fracture conductivity.

• Section 4.4 is concerned with the case α = 1, where the fracture turns into a permeable barrier
with a pressure jump across the interface Γ that scales with an effective conductivity.

• Section 4.5 discusses the case α > 1, where the fracture acts like a solid wall in the limit model.

The parameter α ∈ R determines the conductivity of the fracture in the limit ε → 0. In particular,
in accordance with Proposition 3.10, and in agreement with the models in [21, 26, 27], the pressure
will be continuous across the fracture interface Γ for α < 1, which is indicative for a conductive
fracture. Besides, for α > −1, the normal velocity will be continuous across Γ, which is indicative
for an obstructing fracture. Further, the parameter β ≥ −1 controls the presence of a source term for
the fracture in the limit model. For β = −1 a fracture source term will remain in the limit ε → 0,
while, for β > −1, the source term will vanish. The role of the parameters α ∈ R and β ≥ −1 and the
corresponding limit model regimes are briefly summarized in Table 1.

Each subsection is structured as follows. First, we state the strong formulation of the respective limit
model and introduce a corresponding weak formulation. Then, we prove weak convergence towards
the limit model for the subsequence {εk}k∈N as k → ∞ and express the limit solution in terms of the
limit functions from Proposition 3.8. In a second step, we show strong convergence for the whole
sequence {ε}ε∈(0,ε̂] as ε→ 0 and discuss the wellposedness of the limit model.

Further, for f± : Ω0
± → R and F± : Ω0

± → R
n with well-defined (normal) trace on Γ, we define the

jump operators

J f KΓ := f+
∣∣∣
Γ
− f−
∣∣∣
Γ
, JFKΓ :=

[
F+ · N

]∣∣∣
Γ
−
[
F− · N

]∣∣∣
Γ
. (4.1)

Besides, regarding the convergence of the bulk solution, we obtain the following result that will be
useful for all cases.
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Table 1. Summary of the limit model regimes as ε → 0 depending on the parameters α ∈ R
and β ≥ −1.

parameter limit model
β = −1 fracture source term
β > −1 no fracture source term
α < −1 fracture = major conduit
α = −1 fracture = conduit
α ∈ (−1, 1) fracture disappears
α = 1 fracture = permeable barrier
α > 1 fracture = impermeable barrier

Lemma 4.1. Let β ≥ −1. Besides, let either α ≤ 0 or, given the assumption (A), let 2β ≥ α − 3. Then,
for all φ± ∈ H1(Ω0

±), we have

A
εk
± ( p̂εk± , φ±)→

(
K0
±∇ p̂∗±,∇φ±

)
L2(Ω0

±) (4.2)

as k → ∞, where p̂∗± ∈ H1(Ω0
±) denote the limit functions from Proposition 3.8.

Proof. For all φ± ∈ H1(Ω0
±), we find(

K0
±M

εk
± ∇ p̂εk± ,M

εk
± ∇φ±

)
L2(Ω0

±,in) −
(
K0
±∇p̂∗±,∇φ±

)
L2(Ω0

±,in)

=
(
K0
±

[
Mεk
± − In

]
∇ p̂εk± ,M

εk
± ∇φ±

)
L2(Ω0

±,in)

+
(
K0
±∇ p̂εk± ,

[
Mεk
± − In

]
∇φ±
)

L2(Ω0
±,in) +

(
K0
±∇
[
p̂εk± − p̂∗±

]
,∇φ±

)
L2(Ω0

±,in).

As k → ∞, the first two terms on the right-hand side vanish due to Lemma 2.4 (iv), the third term due
to Proposition 3.8. Thus, the result follows with Proposition 3.8. □

As a consequence of Lemma 4.1, the bulk part of the limit problem as ε→ 0 will have the following
structure in all of the cases.

Find p± : Ω0
± → R such that

−∇ ·
(
K0
±∇p±

)
= q0

± in Ω0
±, (4.3a)

p+ = p− on Γ0
0, (4.3b)

K0
+∇p+ · N = K0

−∇p− · N on Γ0
0, (4.3c)

p± = 0 on ϱ0
±,D, (4.3d)

K0
±∇p± · n = 0 on ϱ0

±,N. (4.3e)

Here, the functions p± can be identified as the limit functions p̂∗± from Proposition 3.8. The bulk
problem (4.3) is incomplete and has to be supplemented with a fracture problem or suitable conditions
on the fracture interface Γ, which will depend on the choice of the parameter α ∈ R.

4.1. Case I: α < −1

If α < −1, the fracture conductivity is much larger than the bulk conductivity. As a result, the
pressure head p̂εf inside the fracture becomes constant as ε → 0, i.e., pressure fluctuations in the
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fracture are instantaneously equilibrated. This matches with the models obtained in [21, 27] for
Richards equation for α < −1. The range of achievable constants for the fracture pressure head in the
limit model may be constrained by the choice of Dirichlet conditions at the external fracture
boundary. For this reason, we define the set

W :=
{
φ∗ ∈ R

∣∣∣ ∃ (φ+, φ−, φf) ∈ Φ with φf ≡ φ
∗} (4.4)

of admissible constants for the limit pressure head in the fracture. Then, the set W can be characterized
as follows.

Remark 4.2. (i) It is either W = R or W = {0}.

(ii) If λ∂Ω(ϱε̂f,D) > 0, then we have W = {0}.

(iii) If λ∂Ω(ϱε̂f,D) = 0 and λ∂Ω(ϱ0
b,D ∩ Uδ(Γ)) = 0 for a constant δ > 0, then we have W = R.

The strong formulation of the limit problem for α < −1 and β ≥ −1 as ε→ 0 now reads as follows.
Find p± : Ω0

± → R and pΓ ∈ W such that

p± ≡ pΓ on Γ (4.5a)

and the bulk problem (4.3) is satisfied. Moreover, if W = R, the model is closed by the condition∫
Γ

JK0∇pKΓ dλΓ + A qΓ = 0. (4.5b)

Here, A ∈ R and qΓ ∈ R are defined by

A :=
∫
Γ

a dλΓ, qΓ :=

Afq̂f , if β = −1,
0, if β > −1.

(4.6)

A weak formulation of the system in the Eqs (4.3) and (4.5) is given by the following problem.
Find (p+, p−, pΓ) ∈ Φ0

I such that, for all (φ+, φ−, φΓ) ∈ Φ0
I ,∑

i=±

(
K0

i∇pi,∇φi)L2(Ω0
i ) =
∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) + A qΓφΓ. (4.7)

Here, the space Φ0
I is given by

Φ0
I :=
{
(φ+, φ−, φΓ) ∈

[
×i=± H1

0,ϱ0
i,D

(Ω0
i )
]
×W

∣∣∣∣ φ+∣∣∣Γ0
0
= φ−
∣∣∣
Γ0

0
, φ±
∣∣∣
Γ
≡ φΓ
}

�
{
φ ∈ H1

0,ϱ0
b,D

(Ω)
∣∣∣ φ|Γ ≡ const. ∈ W

}
.

(4.8)

Further, we obtain the following weak convergence result.

Theorem 4.3. Let α < −1 and β ≥ −1. Then, (p̂∗+, p̂
∗
−,Af p̂∗f ) ∈ Φ0

I is a weak solution of problem (4.7),
where p̂∗± ∈ H1(Ω0

±), p̂∗f ∈ H1(Γa) denote the limit functions from Proposition 3.8. Moreover, we have
p̂∗f (π, ϑn) = Af p̂∗f ∈ W for a.a. (π, ϑn) ∈ Γa.

Networks and Heterogeneous Media Volume 19, Issue 1, 114–156.



140

Proof. Take a test function triple (φ+, φ−, φf) ∈ Φ with φf ≡ φΓ ∈ W. By inserting (φ+, φ−, φf) into the
transformed weak formulation (2.65), we obtain∑

i=±

A
εk
i ( p̂εki , φi) =

[
1 + O(εk)

][∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) + ε

β+1
k A(Afq̂f)φΓ

]
.

Thus, by letting k → ∞ and using Lemma 4.1, we find that the limit solution (p̂∗+, p̂
∗
−,Af p̂∗f ) satisfies Eq

(4.7). Besides, with the Propositions 3.8 and 3.9, it is ( p̂∗+, p̂
∗
−, p̂

∗
f ) ∈ Φ with p̂∗f ≡ Af p̂∗f and hence

( p̂∗+, p̂
∗
−,Af p̂∗f ) ∈ Φ0

I . □

Moreover, we obtain strong convergence in the following sense.

Theorem 4.4. Let α < −1 and β ≥ −1. Then, for the whole sequence { p̂εi }ε∈(0,ε̂], i ∈ {+,−, f}, we have
strong convergence

p̂ε± → p̂∗± in H1(Ω0
±), (4.9a)

p̂εf → p̂∗f in H1(Γa) (4.9b)

as ε→ 0. Further, ( p̂∗+, p̂
∗
−,Af p̂∗f ) ∈ Φ0

I is the unique weak solution of problem (4.7).

Proof. The solution of Eq (4.7) is unique as a consequence of the Lax-Milgram theorem. Thus, the
weak convergence (3.18a) and (3.18c) in Proposition 3.8 hold for the whole sequence { p̂εi }ε∈(0,ε̂],
i ∈ {+,−, f}. This follows from Proposition 3.7 and the fact that every weakly convergent subsequence
has the same limit.

Now, in order to show the strong convergence (4.9), we define the norm |||·|||

on Φ ⊂ H1(Ω0
+) × H1(Ω0

−) × H1(Γa) by∣∣∣∣∣∣∣∣∣(φ+, φ−, φf)
∣∣∣∣∣∣∣∣∣2 :=

∑
i=±

(
K0

i∇φi,∇φi
)

L2(Ω0
i ) +
(
K̂f∇Γaφf ,∇Γaφf

)
L2(Γa).

Then, with Lemma 3.6, it is easy to see that the norm |||·||| on the space Φ is equivalent to the natural
product norm of H1(Ω0

+) × H1(Ω0
−) × H1(Γa). Moreover, with analogous arguments as in Lemma 4.1,

we find (
K0
±∇ p̂ε±,∇ p̂ε±

)
L2(Ω0

±,in) =
(
K0
±M

ε
±∇ p̂ε±,M

ε
±∇p̂ε±

)
L2(Ω0

±,in) + O(ε). (4.10)

The uniform ellipticity of K̂f and Proposition 3.7 yield(
K̂f∇Γa p̂εf ,∇Γa p̂εf

)
L2(Γa) ≲

∥∥∥∇Γ p̂εf
∥∥∥2

L2(Γa)
+
∥∥∥∇N p̂εf

∥∥∥2
L2(Γa)

= O(ε−α−1).

Thus, withAεf ( p̂εf , p̂
ε
f ) ≥ 0 and Eq (2.65), we have∣∣∣∣∣∣∣∣∣( p̂ε+, p̂
ε
−, p̂

ε
f )
∣∣∣∣∣∣∣∣∣2 ≤∑

i=±

Aεi ( p̂εi , p̂
ε
i ) +Aεf ( p̂εf , p̂

ε
f ) + O(ε)

=
[
1 + O(ε)

][∑
i=±

(
q0

i , p̂
ε
i
)

L2(Ω0
i ) + ε

β+1(q̂f , p̂εf
)

L2(Γa)

]
+ O(ε).
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With Proposition 3.8 and Theorem 4.3, we find

lim sup
ε→0

∣∣∣∣∣∣∣∣∣(p̂ε+, p̂
ε
−, p̂

ε
f )
∣∣∣∣∣∣∣∣∣2 ≤∑

i=±

(
q0

i , p̂
∗
i
)

L2(Ω0
i ) + A qΓ Af p̂∗f

=
∑
i=±

(
K0

i∇ p̂∗i ,∇p̂∗i )L2(Ω0
i ) ≤
∣∣∣∣∣∣∣∣∣( p̂∗+, p̂

∗
−, p̂

∗
f )
∣∣∣∣∣∣∣∣∣2.

Consequently, with the weak lower semicontinuity of the norm, we obtain

lim
ε→0

∣∣∣∣∣∣∣∣∣(p̂ε+, p̂
ε
−, p̂

ε
f )
∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣( p̂∗+, p̂

∗
−, p̂

∗
f )
∣∣∣∣∣∣∣∣∣.

□

4.2. Case II: α = −1

For α = −1 and β ≥ −1, the fracture pressure head in the limit models fulfills a Darcy-like PDE on
the interface Γ with an effective hydraulic conductivity matrix KΓ. The inflow from the bulk domains
into the fracture is modeled by an additional source term on the right-hand side of the interfacial
PDE. The bulk and interface solution are coupled by the continuity of the pressure heads across the
interface Γ, which corresponds to the case of a conductive fracture in accordance with the choice of
the parameter α = −1. We remark that the effective conductivity matrix KΓ for the limit fracture in
Eq (4.13) below explicitly depends on the off-diagonal entries of the full-dimensional conductivity
matrix K̂f , which is not accounted for in previous works with equivalent scaling of bulk and fracture
conductivities [20–22].

The resulting limit model for α = −1 resembles discrete fracture models for Darcy flow that are
derived by averaging methods [1, 15]. The averaging approach leads to a Darcy-like PDE on the
fracture interface Γ as in Eq (4.11a) below. However, the choice of coupling conditions between bulk
and interface solution does not occur naturally in this case, especially if the averaged model aspires to
describe both conductive and blocking fractures. Therefore, coupling conditions in averaged models
are typically obtained by making formal assumptions on the flow profile inside the fracture and usually
include a jump of pressure across the fracture interface. Here, only the conductive case corresponding
to α = −1 is considered. In particular, as a consequence of Proposition 3.10, the pressure is continuous
across the fracture interface Γ in the limit model.

The strong formulation of the limit problem for α = −1 and β ≥ −1 now reads as follows.
Find p± : Ω0

± → R and pΓ : Γ→ R such that

−∇Γ ·
(
aKΓ∇ΓpΓ

)
= aqΓ + JK0∇pKΓ in Γ, (4.11a)

p+ = p− = pΓ on Γ, (4.11b)
pΓ = 0 on ∂ΓD, (4.11c)

KΓ∇ΓpΓ · n = 0 on ∂ΓN, (4.11d)

and the bulk problem (4.3) is satisfied. Here, qΓ ∈ L2
a(Γ) and KΓ ∈ L∞(Γ;Rn×n) in Eq (4.11a) are given

by

qΓ(π) :=

(AΓq̂f)(π) if β = −1,
0 if β > −1,

(4.12)
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KΓ(π) :=
(
AΓ
[
K̂f −

[
K̂f N · N

]−1K̂f N ⊗ K̂f N
])

(π). (4.13)

In Eq (4.13), the application of the operator AΓ is to be understood componentwise. We remark that
KΓ agrees with Kf on TΓ if Kf is constant and N is an eigenvector of Kf , which is in agreement with
the models in [21, 22]. The boundary parts ∂ΓD, ∂ΓN in the Eqs (4.11d) and (4.11c) are given by

∂ΓD :=
{
π ∈ ∂Γ

∣∣∣ ∃Zπ ⊂ R, |Zπ| > 0, ∀ϑn ∈ Zπ : π + ε̂ϑnN(π) ∈ ϱε̂f,D
}
, (4.14a)

∂ΓN := ∂Γ \ ∂ΓD. (4.14b)

Generally, in particular, we have ∂ΓN \ ∂Ω , ∅, i.e., we also have a homogeneous Neumann condition
at closing points of the fracture inside the domain.

A weak formulation of the system in the Eqs (4.3) and (4.11) is given by the following problem.
Find (p+, p−, pΓ) ∈ Φ0

II such that, for all (φ+, φ−, φΓ) ∈ Φ0
II,∑

i=±

(
K0

i∇pi,∇φi
)

L2(Ω0
i ) +
(
aKΓ∇ΓpΓ,∇ΓφΓ

)
L2(Γ) =

∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) +
(
aqΓ, φΓ

)
L2(Γ). (4.15)

Here, the space Φ0
II is defined by

Φ0
II :=
{
(φ+, φ−, φΓ) ∈

[
×i=± H1

0,ϱ0
i,D

(Ω0
i )
]
× H1

a(Γ)
∣∣∣∣ φ+∣∣∣Γ0

0
= φ−
∣∣∣
Γ0

0
, φ±
∣∣∣
Γ
= φΓ, T

a
∥φΓ
∣∣∣
∂ΓD
≡ 0
}

�
{
φ ∈ H1

0,ϱ0
b,D

(Ω0)
∣∣∣∣ φΓ := φ

∣∣∣
Γ
∈ H1

a(Γ), Ta
∥φΓ
∣∣∣
∂ΓD
≡ 0
}
.

(4.16)

We now have the following weak convergence result.

Theorem 4.5. Let α = −1 and β ≥ −1. Then, ( p̂∗+, p̂
∗
−,AΓ p̂∗f ) ∈ Φ0

II is a weak solution of problem (4.15),
where p̂∗± ∈ H1(Ω0

±), p̂∗f ∈ H1(Γa) denote the limit functions from Proposition 3.8. Further, for a.a.
(π, ϑn) ∈ Γa, we have p̂∗f (π, ϑn) = (AΓ p̂∗f )(π).

Proof. According to Proposition 3.7, we have
∥∥∥ε−1∇N p̂εf

∥∥∥
L2(Γa)

≲ 1. Thus, there exists ζ∗ ∈ L2(Γa) such
that

ε−1
k ∇N p̂εkf ⇀ ζ

∗N in L2(Γa) (4.17)

as k → ∞. By multiplying the transformed weak formulation (2.65) by εk and taking the limit k → ∞,
we find (

K̂f∇Γ p̂∗f ,∇Nφf
)

L2(Γa) +
(
ζ∗K̂f N,∇Nφf

)
L2(Γa) = 0 (4.18)

for any test function triple (φ+, φ−, φf) ∈ Φ, where we have used Lemma 2.2 (iv). A solution for
ζ∗ ∈ L2(Γa) is now clearly given by

ζ∗ = −
[
K̂f N · N

]−1 K̂f∇Γ p̂∗f · N. (4.19)

Moreover, suppose that ζ̄∗ ∈ L2(Γa) is another solution of Eq (4.18). Then, with Eq (4.18), we find([
K̂f N · N

](
ζ∗ − ζ̄∗

)
, ∂ϑnφf

)
L2(Γa) = 0 for all (φ+, φ−, φf) ∈ Φ∗.
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Thus, by choosing φf ∈ H1
N(Γa) as

φf(π, ϑn) :=
∫ ϑn

−a−(π)

(
ζ∗ − ζ̄∗

)
(π, ϑ̄n) dϑ̄n,

we obtain ζ∗ = ζ̄∗ a.e. in Γa, i.e., ζ∗ is uniquely determined by Eq (4.19).
Next, we define the space

Φf :=
{
φf ∈ H1(Γa)

∣∣∣ ∇Nφf ≡ 0
}
� H1

a(Γ)

and take a test function triple (φ+, φ−, φf) ∈ Φ with φf ∈ Φf. Then, there is a function φΓ ∈ H1
a(Γ) with

φf(π, ϑn) = φΓ(π) a.e. in Γa. With Proposition 3.8, Lemma 4.1, and Eq (4.17), we obtain

A
εk
± (p̂εk± , φ±) →

(
K0
±∇ p̂∗±,∇φ

0
±

)
L2(Ω0

i ),

A
εk
f ( p̂εkf , φf) →

(
K̂f∇Γ p̂∗f ,∇Γφf

)
L2(Γa) +

(
ζ∗K̂f N,∇Γφf

)
L2(Γa)

as k → ∞. Here, we have used that(
K̂f ¯
R
εk
f ∇Γ p̂εkf , ¯

R
εk
f ∇Γφf

)
L2(Γa) −

(
K̂f∇Γ p̂∗f ,∇Γφf

)
L2(Γa)

=
(
K̂f
[
¯
R
εk
f − idTΓ

]
∇Γ p̂εkf , ¯

R
εk
f ∇Γφf

)
L2(Γa) +

(
K̂f∇Γ p̂εkf ,

[
¯
R
εk
f − idTΓ

]
∇Γφf
)

L2(Γa) +
(
K̂f∇Γ

[
p̂εkf − p̂∗f

]
,∇Γφf

)
L2(Γa)

for all φf ∈ H1(Γa), where the first two terms on the right-hand side vanish according to Lemma 2.2 (iv)
as k → ∞ and the third terms tends to zero with Proposition 3.8. Moreover, with Eq (4.19) and
Proposition 3.9 (ii), we have(

K̂f∇Γ p̂∗f ,∇Γφf
)

L2(Γa) +
(
ζ∗K̂f N,∇Γφf

)
L2(Γa) =

(
aKΓ∇Γ(AΓ p̂∗f ),∇ΓφΓ

)
L2(Γ),

where KΓ is defined by Eq (4.13). Thus, by inserting (φ+, φ−, φf) into the transformed weak
formulation (2.65) and letting k → ∞, it follows that the limit solution (p̂∗+, p̂

∗
−,AΓ p̂∗f ) satisfies Eq

(4.15). Besides, with Lemma 3.3 and Proposition 3.10, we have (p̂∗+, p̂
∗
−,AΓ p̂∗f ) ∈ Φ0

II. □

The effective hydraulic conductivity matrix KΓ has the following properties.

Lemma 4.6. (i) The effective hydraulic conductivity matrix KΓ from Eq (4.13) is symmetric and
positive semidefinite. In addition, for all π ∈ Γ and ξ ∈ TπΓ, we have ξ ·KΓ(π) ξ > 0.

(ii) If K̂f ∈ C
0(Γ

∥

a;Rn×n), then KΓ is uniformly elliptic on TΓ, i.e., for all p ∈ Γ and ξ ∈ TπΓ, we
have ξ ·KΓ(π) ξ ≳ |ξ|2.

Proof. (i) KΓ is symmetric by definition. Moreover, for ξ ∈ Rn, we have

ξ ·KΓξ = AΓ
(
ξK̂f · ξ −

[
K̂f N · N

]−1[K̂f N · ξ
]2)
.

With the Cauchy-Schwarz inequality, we obtain[
K̂f N · ξ

]2
=
[
K̂

1
2
f N · K̂

1
2
f ξ
]2
≤
(
K̂f N · N

)(
K̂fξ · ξ

)
with strict inequality if N ⊥ ξ.

Networks and Heterogeneous Media Volume 19, Issue 1, 114–156.



144

(ii) Suppose that, for all k ∈ N, there exist πk ∈ Γ and ξk ∈ TπkΓ such that

ξk ·KΓ(πk) ξk ≤
1
k
|ξk|

2.

W.l.o.g., we assume |ξk| = 1 for all k ∈ N. Then, with the Bolzano-Weierstraß theorem, there exists a
subsequence such that

πkl → π ∈ Γ, ξkl → ξ ∈ Tπ∂G

as l→ ∞. In particular, we have

ξkl ·KΓ(πkl) ξkl → ξ ·KΓ(π) ξ = 0

as l→ ∞, which is a contradiction to (i). □

Further, the following strong convergence result holds true.

Theorem 4.7. Let α = −1 and β ≥ −1. Then, we have strong convergence

p̂εk± → p̂∗± in H1(Ω0
±), (4.20a)

p̂εkf → p̂∗f in H1(Γa), (4.20b)
ε−1

k ∇N p̂εkf → ζ
∗N in L2(Γa) (4.20c)

as k → ∞, where ζ∗ ∈ L2(Γa) is given by Eq (4.19). Moreover, if KΓ is uniformly elliptic on TΓ,
( p̂∗+, p̂

∗
−,AΓ p̂∗f ) ∈ Φ0

II is the unique weak solution of the problem in Eq (4.15) and the strong convergence
in Eq (4.20) holds for the whole sequence { p̂εi }ε∈(0,ε̂], i ∈ {+,−, f}.

Proof. First, we define the norm∣∣∣∣∣∣∣∣∣(φ+, φ−, φf , ζ)
∣∣∣∣∣∣∣∣∣2 :=

∑
i=±

(
K0

i∇φi,∇φi
)

L2(Ω0
i )+
(
K̂f
[
∇Γφf+ζN

]
,
[
∇Γφf+ζN

])
L2(Γa)+

(
K̂f∇Nφf,∇Nφf

)
L2(Γa)

on Φ × L2(Γa). Then, with Lemma 3.6, it is easy to see that the norm |||·||| is equivalent to the product
norm on Φ × L2(Γa) ⊂ H1(Ω0

+) × H1(Ω0
−) × H1(Γa) × L2(Γa). With Lemma 2.2 (iv), Proposition 3.7,

and the Eqs (2.65) and (4.10), we find∣∣∣∣∣∣∣∣∣(p̂εk+ , p̂εk− , p̂εkf , ε
−1
k ∂ϑn p̂εkf

)∣∣∣∣∣∣∣∣∣2 =∑
i=±

A
εk
i ( p̂εki , p̂

εk
i ) +Af( p̂εkf , p̂

εk
f ) + O(εk)

=
[
1 + O(εk)

][∑
i=±

(
q0

i , p̂
εk
i
)

L2(Ω0
i ) + ε

β+1
k

(
q̂f , p̂

εk
f

)
L2(Γa)

]
+ O(εk).

Thus, with the Proposition 3.8 and Theorem 4.5, we obtain

lim
k→∞

∣∣∣∣∣∣∣∣∣(p̂εk+ , p̂εk− , p̂εkf , ε
−1
k ∂ϑn p̂εkf

)∣∣∣∣∣∣∣∣∣2 =∑
i=±

(
q0

i , p̂
∗
i
)

L2(Ω0
i ) +
(
aqΓ,AΓ p̂∗f

)
L2(Γ)

=
∑
i=±

(
K0

i∇ p̂∗i ,∇ p̂∗i
)

L2(Ω0
i ) +
(
aKΓ∇Γ

[
AΓp∗f

]
,∇Γ
[
AΓp∗f

])
L2(Γ).
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Additionally, with the Eqs (4.13) and (4.19) and Proposition 3.9, it is(
aKΓ∇Γ

[
AΓp∗f

]
,∇Γ
[
AΓp∗f

])
L2(Γ) =

(
K̂f
[
∇Γ p̂∗f + ζ

∗N
]
,
[
∇Γ p̂∗f + ζ

∗N
])

L2(Γa).

Thus, with Proposition 3.9, we have

lim
k→∞

∣∣∣∣∣∣∣∣∣( p̂εk+ , p̂
εk
− , p̂

εk
f , ε

−1
k ∂ϑn p̂εkf )

∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣( p̂∗+, p̂
∗
−, p̂

∗
f , ζ
∗)
∣∣∣∣∣∣∣∣∣.

Now, let KΓ be uniformly elliptic on TΓ and (φ+, φ−, φΓ) ∈ Φ0
II. Then, we have∑

i=±

(
K0

i∇φi,∇φi
)

L2(Ω0
i ) +
(
aKΓ∇ΓφΓ,∇ΓφΓ

)
L2(Γ) ≳

∑
i=±

∥∇φi∥
2
L2(Ω0

i ) + ∥∇ΓφΓ∥
2
L2(Γa).

Hence, we obtain coercivity on Φ0
II by applying Lemma 3.6. Thus, as a consequence of the

Lax-Milgram theorem, (p̂∗+, p̂
∗
−,AΓ p̂∗f ) ∈ Φ0

II is the unique weak solution of the problem in Eq (4.15).
Further, this implies the convergence of the whole sequence { p̂εi }ε∈(0,ε̂], i ∈ {+,−, f}, as ε → 0 since
every convergent subsequence has the same limit. □

4.3. Case III: α ∈ (−1, 1)

For α ∈ (−1, 1) and β ≥ −1, the hydraulic conductivities in bulk and fracture are of similar
magnitude such that the fracture disappears in the limit ε→ 0. No effect of the fracture conductivity
is visible in the limit model and pressure and normal velocity are continuous across the interface Γ
(except for source terms if β = −1). This fits the models derived in [21, 27] for α ∈ (−1, 1), where
Richards equation is considered. The strong formulation of the limit problem reads as follows.

Find p± : Ω0
± → R such that

p+ = p− on Γ, (4.21a)
JK0∇pKΓ + aqΓ = 0 on Γ, (4.21b)

and the bulk problem (4.3) is satisfied, where qΓ ∈ L2
a(Γ) is defined as in Eq (4.12).

A weak formulation of the system in the Eqs (4.3) and (4.21) is given by the following problem.
Find (p+, p−) ∈ Φ0

III such that, for all (φ−, φ+) ∈ Φ0
III with φΓ := φ±

∣∣∣
Γ
,∑

i=±

(
K0

i∇pi,∇φi)L2(Ω0
i ) =
∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) +
(
aqΓ, φΓ

)
L2(Γ). (4.22)

Here, the space Φ0
III is given by

Φ0
III :=

{
(φ+, φ−) ∈×i=± H1

0,ϱ0
i,D

(Ω0
i )
∣∣∣∣ φ+∣∣∣γ = φ−∣∣∣γ} � H1

0,ϱ0
b,D

(Ω). (4.23)

We now obtain the following convergence results.

Theorem 4.8. Let α ∈ (−1, 1) and β ≥ −1. Besides, let either α ≤ 0 or assume that (A) holds. Then,
given the limit functions p̂∗± ∈ H1(Ω0

±) and p̂∗f ∈ H1
N(Γa) from Proposition 3.8, we find that

( p̂∗+, p̂
∗
−) ∈ Φ

0
III is a weak solution of Eq (4.22). Moreover, we have p̂∗± = AΓ p̂∗f on Γ and

p̂∗f (π, ϑn) = (AΓ p̂∗f )(π) for a.a. (π, ϑn) ∈ Γa.
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Proof. Take a test function triple (φ+, φ−, φf) ∈ Φ such that φf(π, ϑn) = φΓ(π) a.e. in Γa. Then, by
inserting (φ+, φ−, φf) into the transformed weak formulation (2.65), we obtain∑

i=±

A
εk
i ( p̂εki , φi) + εα+1

k
(
K̂f ¯
R
εk
f ∇Γ p̂εkf , ¯

R
εk
f ∇Γφf

)
L2(Γa) + ε

α
k
(
K̂f∇N p̂εkf , ¯

R
εk
f ∇Γφf

)
L2(Γa)

=
[
1 + O(ε)

][∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) + ε

β+1
k

(
aqΓ, φΓ

)
L2(Γ)

]
.

(4.24)

Further, with Lemma 2.2 (iv) and Proposition 3.7, we have

εα+1
∣∣∣∣(K̂f ¯
Rεf∇Γ p̂εf , ¯

Rεf∇Γφf
)

L2(Γa)

∣∣∣∣ ≲ ε α+1
2
∥∥∥∇Γφf

∥∥∥
L2(Γa)
,

εα
∣∣∣∣(K̂f∇N p̂εf , ¯

Rεf∇Γφf
)

L2(Γa)

∣∣∣∣ ≲ ε α+1
2
∥∥∥∇Γφf

∥∥∥
L2(Γa)

if ε is sufficiently small. Thus, by using Proposition 3.8 and Lemma 4.1 and letting k → ∞ in Eq
(4.24), it follows that the limit solution pair (p̂∗+, p̂

∗
−) satisfies the weak formulation (4.22). Besides,

with Proposition 3.10, we have (p̂∗+, p̂
∗
−) ∈ Φ

0
III. □

Theorem 4.9. Let α ∈ (−1, 1) and β ≥ −1. Then, given the assumption (A), we have strong
convergence

p̂ε± → p̂∗± in H1(Ω0
±), (4.25a)

p̂εf → p̂∗f in H1
N(Γa) (4.25b)

as ε → 0 for the whole sequence { p̂εi }ε∈(0,ε̂], i ∈ {+,−, f} . Besides, (p̂∗+, p̂
∗
−) ∈ Φ

0
III is the unique weak

solution of Eq (4.22).

Proof. As consequence of the Lax-Milgram theorem, the problem in Eq (4.22) has a unique weak
solution. Thus, the weak convergence (3.18a) holds for the whole sequence { p̂ε±}ε∈(0,ε̂]. This follows
from Proposition 3.7 and the fact that every weakly convergent subsequent has the same limit.
Besides, with the Propositions 3.7, 3.9, and 3.10, the weak convergence (3.18d) is satisfied for the
whole sequence { p̂∗f }ε∈(0,ε̂].

Next, we equip the space Φ∗ with the norm |||·||| defined by∣∣∣∣∣∣∣∣∣(φ+, φ−, φf)
∣∣∣∣∣∣∣∣∣2 :=

∑
i=±

(
K0

i∇φi,∇φi
)

L2(Ω0
i ) +
(
K̂f∇Nφf ,∇Nφf

)
L2(Γa), (4.26)

which, as a consequence of Lemma 3.6, is equivalent to the usual product norm
on Φ∗ ⊂ H1(Ω0

+) × H1(Ω0
−) × H1

N(Γa). Besides, with Proposition 3.7, we have(
K̂f∇N p̂εf ,∇N p̂εf

)
L2(Γa) ≲

∥∥∥∇N p̂εf
∥∥∥2

L2(Γa)
= O(ε1−α).

Thus, using the Eqs (2.65) and (4.10) andAεf ( p̂εf , p̂
ε
f ) ≥ 0, we find∣∣∣∣∣∣∣∣∣( p̂ε+, p̂

ε
−, p̂

ε
f )
∣∣∣∣∣∣∣∣∣2 ≤∑

i=±

Aεi ( p̂εi , p̂
ε
i ) +Aεf ( p̂εf , p̂

ε
f ) + O(ε)

=
[
1 + O(ε)

][∑
i=±

(
q0

i , p̂
ε
i
)

L2(Ω0
i ) + ε

β+1(q̂f , p̂εf
)

L2(Γa)

]
+ O(ε).
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Further, Theorem 4.8 yields

lim sup
ε→0

∣∣∣∣∣∣∣∣∣(p̂ε+, p̂
ε
−, p̂

ε
f )
∣∣∣∣∣∣∣∣∣2 ≤∑

i=±

(
q0

i , p̂
∗
i
)

L2(Ω0
i ) +
(
aqΓ,AΓp∗f

)
L2(Γ)

=
∑
i=±

(
K0

i∇ p̂∗i ,∇ p̂∗i )L2(Ω0
i ) =
∣∣∣∣∣∣∣∣∣( p̂∗+, p̂

∗
−, p̂

∗
f )
∣∣∣∣∣∣∣∣∣2.

With the weak lower semicontinuity of the norm, we now have

lim
ε→0

∣∣∣∣∣∣∣∣∣(p̂ε+, p̂
ε
−, p̂

ε
f )
∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣( p̂∗+, p̂

∗
−, p̂

∗
f )
∣∣∣∣∣∣∣∣∣. □

4.4. Case IV: α = 1

For α = 1 and β ≥ −1, the fracture becomes a permeable barrier in limit ε → 0 with a jump of
pressure heads across the interface Γ but continuous normal velocity (except for source terms).

In the following, we will derive two different limit models for α = 1 and β ≥ −1. First, in
Section 4.4.1, we obtain a coupled limit problem, where the pressure head p̂∗f in the fracture satisfies a
parameter-dependent Darcy-type ODE inside the full-dimensional fracture domain Γa. The ODE is
formulated with respect to the normal coordinate ϑn, while the tangential coordinate π acts as a
parameter. This resembles the limit problem in [27] for Richards equation with the respective scaling
of hydraulic conductivities. However, in Section 4.4.2, it then turns out that the bulk problem can be
solved independently from the fracture problem. This is akin to the limit model in [25], where the
Laplace equation is considered. In the decoupled bulk limit problem, the jump of pressure heads
across the interface Γ scales with an effective hydraulic conductivity, that is defined as a non-trivial
mean value of the fracture conductivity in normal direction and reminds of a result from
homogenization theory. In particular, if one is still interested in the fracture solution, it is possible to
first solve the decoupled bulk limit problem in Section 4.4.2, which will then provide the boundary
conditions to solve the ODE for the fracture pressure head in Section 4.4.1.

4.4.1. Coupled limit problem

The strong formulation of the coupled limit problem for α = 1 and β ≥ −1 reads as follows.
Find p± : Ω0

± → R and pf : Γa → R such that

−∂ϑn

(
K̂⊥f ∂ϑn pf

)
= q∗f in Γa, (4.27a)

p± = T±pf on Γ, (4.27b)
K0
±∇p0

± · N = T±
(
K̂⊥f ∂ϑn pf

)
on Γ (4.27c)

and the bulk problem (4.3) is satisfied. Here, q̂∗f ∈ L2(Γa) and K̂⊥f ∈ L∞(Γa) are defined by

q̂∗f (π, ϑn) :=

q̂f(π, ϑn) if β = −1,
0 if β > −1,

(4.28)

K̂⊥f (π, ϑn) := K̂f(π, ϑn)N(π) · N(π). (4.29)

A weak formulation of the system in the Eqs (4.3) and (4.27) is given by the following problem.
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Find (p+, p−, pf) ∈ Φ∗ such that, for all (φ+, φ−, φf) ∈ Φ∗,∑
i=±

(
K0

i∇pi,∇φi)L2(Ω0
i ) +
(
K̂f∇N pf ,∇Nφf

)
L2(Γa) =

∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) +
(
q̂∗f , φf

)
L2(Γa). (4.30)

We obtain the following convergence results.

Theorem 4.10. Let α = 1 and β ≥ −1. Then, given the assumption (A), the triple ( p̂∗+, p̂
∗
−, p̂

∗
f ) ∈ Φ∗ is a

weak solution of problem (4.30), where p̂∗± ∈ H1(Ω0
±) and p̂∗f ∈ H1

N(Γa) denote the limit functions from
Proposition 3.8.

Proof. According to Proposition 3.7, we have∥∥∥p̂εf ∥∥∥H1
N(Γa)
+ ε
∥∥∥∇Γ p̂εf

∥∥∥
L2(Γa)

≲ 1

and hence

εk p̂εkf → 0 in H1
N(Γa), εk∇Γ p̂εkf ⇀ 0 in L2(Γa) (4.31)

as k → ∞. As a result, we have

εk
(
K̂f ¯
R
εk
f ∇Γ p̂εkf ,∇Nφf

)
L2(Γa) = εk

(
K̂f
[
¯
R
εk
f − idTΓ

]
∇Γ p̂εkf ,∇Nφf

)
L2(Γa) + εk

(
K̂f∇Γ p̂εkf ,∇Nφf

)
L2(Γa),

where, as k → ∞, the first term vanishes with Lemma 2.2 (iv) and the second term with Eq (4.31). Thus,
with the Propositions 3.7 and 3.8 and the Lemmas 2.2 (iv) and 4.1, we conclude that (p̂∗+, p̂

∗
−, p̂

∗
f ) ∈ Φ∗

solves Eq (4.30) by taking the limit k → ∞ in the transformed weak formulation (2.65). □

Theorem 4.11. Let α = −1 and β ≥ −1. Then, given the assumption (A), we have strong convergence

p̂ε± → p̂∗± in H1(Ω0
±), (4.32a)

p̂εf → p̂∗f in H1
N(Γa), (4.32b)

ε∇Γ p̂εf → 0 in L2(Γa) (4.32c)

as ε → 0 for the whole sequence { p̂εi }ε∈(0,ε̂], i ∈ {+,−, f}. Besides, we find that ( p̂∗+, p̂
∗
−, p̂

∗
f ) ∈ Φ∗ is the

unique weak solution of the problem in Eq (4.30).

Proof. Clearly, the bilinear form of the weak formulation (4.30) is continuous and coercive with
respect to the norm defined by Eq (4.26). Thus, with the Lax-Milgram theorem, we obtain that
( p̂∗+, p̂

∗
−, p̂

∗
f ) ∈ Φ∗ is the unique solution of Eq (4.30). As a result, every weakly convergent

subsequence has the same limit and hence, with Proposition 3.7, the weak convergence
statements (3.18a) and (3.18d) in Proposition 3.8 hold for the whole sequence { p̂εi }ε∈(0,ε̂], i ∈ {+,−, f}.

Further, we define the space

L2
Γ(Γa) :=

{
ξ ∈ L2(Γa)

∣∣∣ ξ(π, ϑn) · N(π) = 0 for a.a. (π, ϑn) ∈ Γa
}

and equip the product space Φ∗ × L2
Γ
(Γa) with the norm∣∣∣∣∣∣∣∣∣(φ+, φ−, φf , ξ

)∣∣∣∣∣∣∣∣∣2 :=
∑
i=±

(
K0

i∇φi,∇φi
)

L2(Ω0
i ) +
(
K̂f
[
∇Nφf + ξ

]
,
[
∇Nφf + ξ

])
L2(Γa).
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Then, with Lemma 3.6, it is easy to see that the norm |||·||| is equivalent to the standard product norm on
Φ∗ × L2

Γ
(Γa). Moreover, with Lemma 2.2 (iv) and the Eq (2.65) and (4.10), we have∣∣∣∣∣∣∣∣∣(p̂ε+, p̂ε−, p̂εf , ε∇Γ p̂εf

)∣∣∣∣∣∣∣∣∣2 =∑
i=±

Aεi ( p̂εi , p̂
ε
i
)
+Af(p̂εf , p̂

ε
f ) + O(ε)

=
[
1 + O(ε)

][∑
i=±

(
q0

i , p̂
ε
i
)

L2(Ω0
i ) + ε

β+1(q̂f , p̂εf
)

L2(Γa)

]
+ O(ε).

Thus, with Proposition 3.8 and Theorem 4.10, we find

lim
ε→0

∣∣∣∣∣∣∣∣∣(p̂ε+, p̂ε−, p̂εf , ε∇Γ p̂εf
)∣∣∣∣∣∣∣∣∣2 =∑

i=±

(
q0

i , p̂
∗
i
)

L2(Ω0
i ) +
(
q̂∗f , p̂

∗
f
)

L2(Γa)

=
∣∣∣∣∣∣∣∣∣( p̂∗+, p̂∗−, p̂∗f , 0)∣∣∣∣∣∣∣∣∣2. □

4.4.2. Decoupled limit problem

Starting from the coupled limit problem (4.30), we will subsequently derive a decoupled limit
problem for the bulk solution only. The strong formulation of the decoupled bulk limit problem reads
as follows.

Find p± : Ω0
± → R such that

JK0∇pKΓ + aqΓ = 0 on Γ, (4.33a)
K0
+∇p+ · N = K⊥Γ

(
JpKΓ − aQΓ

)
on Γ (4.33b)

and the bulk problem (4.3) is satisfied, where qΓ ∈ L2
a(Γ) is given by Eq (4.12). QΓ ∈ L2(Γ) and the

effective hydraulic conductivity K⊥
Γ

: Γ→ R with aK⊥
Γ
∈ L∞(Γ) are defined by

QΓ(π) :=


(
AΓQ̂f

)
(π) if β = −1,

0 if β > −1,
(4.34a)

Q̂f(π, ϑn) := q̂f(π, ϑn)
∫ ϑn

−a−(π)

[
K̂⊥f
]−1(π, ϑ̄n) dϑ̄n, (4.34b)

K⊥Γ (π) :=
[
a(π)AΓ

(
[K̂⊥f ]−1)(π)

]−1
. (4.35)

A weak formulation of the system in the Eqs (4.3) and (4.33) is given by the following problem.
Find (p+, p−) ∈ Φ0

IV such that, for all (φ+, φ−) ∈ Φ0
IV,∑

i=±

(
K0

i∇pi,∇φi)L2(Ω0
i ) +
(
K⊥Γ JpKΓ , JφKΓ

)
L2(Γ)

=
∑
i=±

(
q0

i , φi
)

L2(Ω0
i ) +
(
aqΓ, φ−

)
L2(Γ) +

(
aK⊥Γ QΓ, JφKΓ

)
L2(Γ).

(4.36)

Here, the space Φ0
IV is given by

Φ0
IV :=

{
(φ+, φ−) ∈×i=± H1

0,ϱ0
i,D

(Ω0
i )
∣∣∣∣ JφKΓ ∈ L2

a−1(Γ), φ+
∣∣∣
Γ0

0
= φ−
∣∣∣
Γ0

0

}
. (4.37)

We require the following auxiliary result.
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Lemma 4.12. The map

(φ+, φ−, φf) 7→ (φ+, φ−) (4.38)

defines a continuous embedding Φ∗ ↪→ Φ0
IV.

Proof. With Lemma 3.2, we have

JφK2
Γ (π) =

[∫ a+(π)

a−(π)
∂ϑnφf(π, ϑn) dϑn

]2
≤ a(π)

∫ a+(π)

a−(π)

[
∂ϑnφf(π, ϑn)

]2 dϑn

for a.a. (π, ϑn) ∈ Γa. Thus, an additional integration on Γ yields∥∥∥ JφKΓ ∥∥∥L2
a−1 (Γ)

≤ ∥φf∥H1
N(Γa). □

We now obtain the following convergence result.

Theorem 4.13. Let α = 1 and β ≥ −1. Then, given that the assumption (A) holds true, (p̂∗+, p̂
∗
−) ∈ Φ

0
IV

is the unique solution of problem (4.36), where p̂∗± ∈ H1(Ω0
±) denote the limit functions from

Proposition 3.8.

Proof. Let (φ+, φ−) ∈ Φ0
IV. We define φf ∈ H1

N(Γa) by

φf(π, ϑn) := φ−
∣∣∣
Γ
(π) + JφKΓ (π)K⊥Γ (π)

∫ ϑn

−a−(π)
[K̂⊥f ]−1(π, ϑ̄n) dϑ̄n,

where K⊥
Γ
∈ L∞a (Γ) is given by Eq (4.35). It is easy to check that (φ+, φ−, φf) ∈ Φ∗. In particular, we

have

∂ϑnφf(π, ϑn) = JφKΓ (π)K⊥Γ (π)[K̂⊥f ]−1(π, ϑn).

Thus, by inserting the test function triple (φ+, φ−, φf) into the weak formulation (4.30) and by using
that (

K̂f∇N p̂∗f ,∇Nφf
)

L2(Γa) =
(
K⊥Γ ∂ϑn p̂∗f , JφKΓ

)
L2(Γa) =

(
K⊥Γ Jp̂∗KΓ , JφKΓ

)
L2(Γ),

we find that (p̂∗+, p̂
∗
−) satisfies Eq (4.36). With Lemma 4.12, we have (p̂∗+, p̂

∗
−) ∈ Φ

0
IV. The uniqueness of

the solution follows from the Lax-Milgram theorem. □

4.5. Case V: α > 1

For α > 1 and 2β ≥ α − 3, the fracture becomes a solid wall as ε → 0, i.e., the interface Γ is an
impermeable barrier with zero flux across Γ. This matches the formally derived limit model in [27] in
the case α > 1, where the Richards equation is considered. The strong formulation of the limit problem
reads as follows.

Find p± : Ω0
± → R such that

K0
±∇p± · N = 0 on Γ (4.39)
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and the bulk problem (4.3) is satisfied. A weak formulation of the system in the Eqs (4.3) and (4.39) is
given by the following problem.

Find (p+, p−) ∈ Φ0
V such that, for all (φ+, φ−) ∈ Φ0

V,∑
i=±

(
K0

i∇pi,∇φi)L2(Ω0
i ) =
∑
i=±

(
q0

i , φi
)

L2(Ω0
i ). (4.40)

Here, the space Φ0
V is given by

Φ0
V :=
{
(φ+, φ−) ∈×i=± H1

0,ϱ0
i,D

(Ω0
i )
∣∣∣∣ φ+∣∣∣Γ0

0
= φ−
∣∣∣
Γ0

0

}
� H1

0,ϱ0
b,D

(Ω0 \ Γ). (4.41)

We now have the following convergence results.

Theorem 4.14. Let α > 1 and 2β ≥ α − 3. Then, given the assumption (A), (p̂∗+, p̂
∗
−) ∈ Φ

0
V is a weak

solution of problem (4.40), where p̂∗± ∈ H1(Ω0
±) denote the limit functions from Proposition 3.8.

Proof. With Proposition 3.7, we have

εα
∥∥∥∇N p̂εf

∥∥∥
L2(Γa)

≲ εα−1
∥∥∥∇N p̂εf

∥∥∥
L2(Γa)

≲ ε
α−1

2 ,

εα+1
∥∥∥∇Γ p̂εf

∥∥∥
L2(Γa)

≲ εα
∥∥∥∇Γ p̂εf

∥∥∥
L2(Γa)

≲ ε
α−1

2 .

Thus, with the Lemmas 2.2 (iv) and 4.1, the result follows by letting k → ∞ in the transformed weak
formulation (2.65). □

Theorem 4.15. Let α > −1 and 2β ≥ α − 3. Then, given the assumption (A), we have strong
convergence

p̂ε± → p̂∗± in H1(Ω0
±) (4.42)

as ε→ 0 for the whole sequence { p̂ε±}ε∈(0,ε̂]. Moreover, ( p̂∗+, p̂
∗
−) ∈ Φ

0
V is the unique weak solution of the

problem in Eq (4.40).

Proof. The result follows with analogous arguments as in the cases above. □
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25. E. Sanchez-Palencia, Problèmes de perturbations liés aux phénomènes de conduction à travers des
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Appendix A Geometric background

In the following, we summarize useful definitions and results related to the geometry of Euclidean
submanifolds.

Definition A.1. Let n ∈ N and m ∈ N0 with m ≤ n. Besides, let k ∈ N ∪ {∞} and l ∈ [0, 1]. Then,
M ⊂ Rn is called an m-dimensional submanifold of class Ck,l if, for all π ∈ M, there exists U ⊂ Rn

open with π ∈ U and a Ck,l-diffeomorphism h : U → V , where V = h(U) ⊂ Rn open, such that

h(U ∩ M) = V ∩
(
Rm × {0n−m}

)
. (A.1)

Here, 0n−m ∈ R
n−m denotes the zero vector.

A.1 Orthogonal projection and signed distance function

We introduce the orthogonal projection and (signed) distance function of a set and state selected
properties and regularity results. For details, we refer to [36].

Networks and Heterogeneous Media Volume 19, Issue 1, 114–156.

http://dx.doi.org/https://doi.org/10.1137/20M1312125
http://dx.doi.org/https://doi.org/10.1007/s10231-020-01013-1
http://dx.doi.org/https://doi.org/10.1007/s00707-022-03378-1
http://dx.doi.org/https://doi.org/10.1007/s10596-015-9532-5
http://dx.doi.org/https://doi.org/10.1016/j.cma.2022.115699
http://dx.doi.org/https://doi.org/10.1007/s10455-021-09788-z


155

Definition A.2. Let ∅ , M ⊂ Rn.
(i) We write dM : Rn → [0,∞), dM(x) := infπ∈M |x − π| for the distance function of M. If M = ∂A ,

∅ for a set A ⊂ Rn, we can define the signed distance function of M by

dM
↔ : Rn → R, dM

↔(x) :=

dM(x) if x ∈ A,

−dM(x) if x ∈ Rn \ A.
(A.2)

(ii) A set A ⊂ Rn is said to have the unique nearest point property with respect to M if, for all x ∈ A,
there exists a unique π ∈ M such that dM(x) = |x − π|. We write unpp(M) for the maximal set with this
property.

(iii) We define the orthogonal projection onto M by

PM : unpp(M)→ M, x 7→ arg min
π∈M

|x − π|. (A.3)

(iv) Let δ > 0. Then, we define the δ-neighborhood of M by

Uδ(M) :=
{
x ∈ Rn

∣∣∣ dM(x) < δ
}
. (A.4)

For x ∈ Rn, we also write Uδ(x) := Uδ({x}).

(v) We define the reach of M by

reach(M) := sup
{
δ > 0

∣∣∣ Uδ(M) ⊂ unpp(M)
}
. (A.5)

Let M ⊂ Rn be a Ck-submanifold, k ∈ N. Then, the orthogonal projection PM is Ck−1-differentiable
on unpp(M)◦ [36, Thm. 2]. If k ≥ 2, we have PM(π + n) = π for π ∈ M and n ⊥ TπM with
π + n ∈ unpp(M)◦ [36, Prop. 2]. Besides, if M is compact and k ≥ 2, we have reach(M) > 0 [36, Prop.
6]. Moreover, if M = ∂A for a set A ⊂ Rn of class Ck, k ≥ 2, the signed distance function d∂A↔ is
Ck-differentiable on unpp(∂A)◦ (cf. [37, Thm. 7.8.2] and [36, Thm. 2]).

A.2 Shape operator

Let 2 ≤ k ∈ N and M ⊂ Rn be an (n − 1)-dimensional Ck-submanifold with a global unit normal
vector field N ∈ Ck−1(M;Rn). We define the shape operator Sπ of M at π ∈ M for each v ∈ TπM as the
negative directional derivativeSπ(v) := −∇vN(π). Then, for each π ∈ M, the shape operatorSπ is a self-
adjoint linear operator Sπ : TπM → TπM. The eigenvalues κ1(π), . . . , κn−1(π) of the shape operator Sπ
are called the principal curvatures of M at π ∈ M. In particular, we have κ1, . . . , κn−1 ∈ C

k−2(M).

A.3 Function spaces on manifolds

Let M ⊂ Rn be an m-dimensional C0,1-submanifold with boundary ∂M. We denote charts for M as
triples (U,ψ,V), i.e., U ⊂ M and V ⊂ Rm (or V ⊂ Rm−1 × [0,∞) for charts with boundary) are open
and ψ : U → V is bi-Lipschitz. For the inverse chart ψ−1, we also use the symbol

¯
ψ. Besides, we

write g|ψ for the metric tensor in coordinates of the chart ψ, i.e., g|ψ(ϑ) = [D
¯
ψ(ϑ)]tD

¯
ψ(ϑ) ∈ Rm×m. For

p ∈ [1,∞], we write Lp(M) for the Lebesgue space on M with respect to the Riemannian measure λM.
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Moreover, we define Lp(M) := Lp(M)m. Following [38], we define the first-order Sobolev space H1(M)
as the completion of {

f ∈ C0,1(M)
∣∣∣ ∥ f ∥H1(M) < ∞

}
(A.6)

with respect to the norm ∥ f ∥2H1(M) := ∥ f ∥2L2(M) + ∥∇M f ∥2L2(M), where ∇M f denotes the gradient of f . In
local coordinates, we have

∇M f
(
¯
ψ(ϑ)
)
= D

¯
ψ(ϑ) g−1

∣∣∣ψ(ϑ)∇( f ◦
¯
ψ)(ϑ). (A.7)

Besides, H1(M) is a reflexive Hilbert space. For the more general case of Sobolev spaces Wk,p(M) of
arbitrary order k ∈ N and 1 ≤ p < ∞ on Riemannian manifolds, we refer to [38]. Further, if M is
compact, we can alternatively define the Sobolev space H1(M) by using local coordinates [39]. Given
a finite atlas {(Ui,ψi,Vi)}i∈I of M and a subordinate partition of unity {χi}i∈I ⊂ C

0,1(M), we define the
space

H1(M) :=
{
f ∈ L2(M)

∣∣∣ (χi f ) ◦
¯
ψi ∈ H1(Vi)

}
(A.8)

with the norm ∥ f ∥2H1(M) :=
∑

i∈I

∥∥∥(χi f ) ◦
¯
ψi

∥∥∥2
H1(Vi)

. It is easy to check that the two definitions for H1(M)
are equivalent. Consequently, it is H1(M) = H1(Int(M)), where Int(M) denotes the interior of M.
Moreover, with analogous arguments as in [40, §11], one can prove the following trace theorem.

Lemma A.3. Let ∂M be compact. Then, there exists a unique bounded linear operator
TM : H1(M)→ L2(∂M) such that TM f = f |∂M for all f ∈ H1(M) ∩ C0(M).
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