Research article

A remark on the velocity averaging lemma of the transport equation with general case

  • Received: 18 October 2023 Revised: 08 January 2024 Accepted: 25 January 2024 Published: 01 February 2024
  • In this paper, we proved a new result for the celebrated velocity averaging lemma of the free transport equation with general case

    $ \begin{equation*} \partial_{t}f+ a(v) \cdot \nabla_{x} f = 0\,. \end{equation*} $

    After averaging with some weight functions $ \varphi(v) $, we proved that the average quantity $ \rho_{\varphi}(t, x) = \int_{\mathbb{R}_{v}^{3}}f(t, x, v)\, \varphi(v)\, {\rm d} v $ is in $ W_{x}^{1, p} $, $ p\in[1, +\infty] $. This result revealed the regularizing effect for the mean value with respect to the velocity of the solution. Our strategy was taking advantage of a modified vector field method to build up a bridge between the $ x $-derivative and $ v $-derivative. One significant point was that we first observed that the operator $ t\, \nabla_{x}+\left(\left[ \nabla _{v} a(v) \right] ^{T}\right) ^{-1}\nabla_{v} $ commuted with $ \partial_{t}+ a(v) \cdot \nabla_{x} $.

    Citation: Ming-Jiea Lyu, Baoyan Sun. A remark on the velocity averaging lemma of the transport equation with general case[J]. Networks and Heterogeneous Media, 2024, 19(1): 157-168. doi: 10.3934/nhm.2024007

    Related Papers:

  • In this paper, we proved a new result for the celebrated velocity averaging lemma of the free transport equation with general case

    $ \begin{equation*} \partial_{t}f+ a(v) \cdot \nabla_{x} f = 0\,. \end{equation*} $

    After averaging with some weight functions $ \varphi(v) $, we proved that the average quantity $ \rho_{\varphi}(t, x) = \int_{\mathbb{R}_{v}^{3}}f(t, x, v)\, \varphi(v)\, {\rm d} v $ is in $ W_{x}^{1, p} $, $ p\in[1, +\infty] $. This result revealed the regularizing effect for the mean value with respect to the velocity of the solution. Our strategy was taking advantage of a modified vector field method to build up a bridge between the $ x $-derivative and $ v $-derivative. One significant point was that we first observed that the operator $ t\, \nabla_{x}+\left(\left[ \nabla _{v} a(v) \right] ^{T}\right) ^{-1}\nabla_{v} $ commuted with $ \partial_{t}+ a(v) \cdot \nabla_{x} $.



    加载中


    [1] D. Arsénio, N. Lerner, An energy method for averaging lemmas, Pure Appl. Anal., 3 (2021), 319–362. https://doi.org/10.2140/paa.2021.3.319 doi: 10.2140/paa.2021.3.319
    [2] D. Arsénio, N. Masmoudi, A new approach to velocity averaging lemmas in Besov spaces, J. Math. Pures Appl., 101 (2014), 495–551. https://doi.org/10.1016/j.matpur.2013.06.012 doi: 10.1016/j.matpur.2013.06.012
    [3] D. Arsénio, N. Masmoudi, Maximal gain of regularity in velocity averaging lemmas, Anal. PDE, 12 (2019), 333–388. https://doi.org/10.2140/apde.2019.12.333 doi: 10.2140/apde.2019.12.333
    [4] D. Arsénio, L. Saint-Raymond, Compactness in kinetic transport equations and hypoellipticity, J. Funct. Anal., 261 (2011), 3044–3098. https://doi.org/10.1016/j.jfa.2011.07.020 doi: 10.1016/j.jfa.2011.07.020
    [5] N. Ayi, T. Goudon, Regularity of velocity averages for transport equations on random discrete velocity grids, Anal. PDE, 10 (2017), 1201–1225. https://doi.org/10.2140/apde.2017.10.1201 doi: 10.2140/apde.2017.10.1201
    [6] F. Berthelin, S. Junca, Averaging lemmas with a force term in the transport equation, J. Math. Pures Appl., 93 (2010), 113–131. https://doi.org/10.1016/j.matpur.2009.10.009 doi: 10.1016/j.matpur.2009.10.009
    [7] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl., 81 (2002), 1135–1159. https://doi.org/10.1016/S0021-7824(02)01264-3 doi: 10.1016/S0021-7824(02)01264-3
    [8] F. Bouchut, L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 19–36. https://doi.org/10.1017/S030821050002744X doi: 10.1017/S030821050002744X
    [9] N. Bournaveas, S. Gutiérrez, On the regularity of averages over spheres for kinetic transport equations in hyperbolic Sobolev spaces, Rev. Mat. Iberoam., 23 (2007), 481–512. https://doi.org/10.4171/RMI/503 doi: 10.4171/RMI/503
    [10] N. Bournaveas, B. Perthame, Averages over spheres for kinetic transport equations; hyperbolic Sobolev spaces and Strichartz inequalities, J. Math. Pures Appl., 80 (2001), 517–534. https://doi.org/10.1016/S0021-7824(00)01191-0 doi: 10.1016/S0021-7824(00)01191-0
    [11] Y. Brenier, L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 169–190. https://doi.org/10.1016/S0294-1449(97)89298-0 doi: 10.1016/S0294-1449(97)89298-0
    [12] I. K. Chen, P. H. Chuang, C. H. Hsia, J. K. Su, A revisit of the velocity averaging lemma: on the regularity of stationary Boltzmann equation in a bounded convex domain, J. Stat. Phys., 189 (2022), Article No. 17. https://doi.org/10.1007/s10955-022-02977-5 doi: 10.1007/s10955-022-02977-5
    [13] C. De Lellis, M. Westdickenberg, On the optimality of velocity averaging lemmas, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1075–1085. https://doi.org/10.1016/S0294-1449(03)00024-6 doi: 10.1016/S0294-1449(03)00024-6
    [14] R. DeVore, G. Petrova, The averaging lemma, J. Amer. Math. Soc., 14 (2001), 279–296. https://doi.org/10.1090/S0894-0347-00-00359-3
    [15] R. J. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729–757. https://doi.org/10.1002/cpa.3160420603 doi: 10.1002/cpa.3160420603
    [16] R. J. DiPerna, P.-L. Lions, Y. Meyer, $L^p$ regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 271–287. https://doi.org/10.1016/S0294-1449(16)30264-5 doi: 10.1016/S0294-1449(16)30264-5
    [17] D. Fajman, J. Joudioux, J. Smulevici, A vector field method for relativistic transport equations with applications, Anal. PDE, 10 (2017), 1539–1612. https://doi.org/10.2140/apde.2017.10.1539 doi: 10.2140/apde.2017.10.1539
    [18] F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments for the solution of a transport equation, J. Funct. Anal., 76 (1988), 110–125. https://doi.org/10.1016/0022-1236(88)90051-1 doi: 10.1016/0022-1236(88)90051-1
    [19] F. Golse, B. Perthame, Optimal regularizing effect for scalar conservation laws, Rev. Mat. Iberoam., 29 (2013), 1477–1504. https://doi.org/10.4171/RMI/765 doi: 10.4171/RMI/765
    [20] F. Golse, L. Saint-Raymond, Velocity averaging in $L^1$ for the transport equation, C. R. Acad. Sci. Paris, 334 (2002), 557–562. https://doi.org/10.1016/S1631-073X(02)02302-6 doi: 10.1016/S1631-073X(02)02302-6
    [21] M. P. Gualdani, S. Mischler, C. Mouhot, Factorization of non-symmetric operators and exponential $H$-theorem, Mém. Soc. Math. Fr., 153 (2017), 137. https://doi.org/10.24033/msmf.461 doi: 10.24033/msmf.461
    [22] D. Han-Kwan, $L^1$ averaging lemma for transport equations with Lipschitz force fields, Kinet. Relat. Models, 3 (2010), 669–683. https://doi.org/10.3934/krm.2010.3.669 doi: 10.3934/krm.2010.3.669
    [23] J. Huang, Z. Jiang, Average regularity of the solution to an equation with the relativistic-free transport operator, Acta Math. Sci., 37 (2017), 1281–1294. https://doi.org/10.1016/S0252-9602(17)30073-5 doi: 10.1016/S0252-9602(17)30073-5
    [24] P. E. Jabin, Averaging lemmas and dispersion estimates for kinetic equations, Riv. Mat. Univ. Parma, 1 (2009), 71–138.
    [25] P. E. Jabin, H. Y. Lin, E. Tadmor, Commutator method for averaging lemmas, Anal. PDE, 15 (2022), 1561–1584. https://doi.org/10.2140/apde.2022.15.1561 doi: 10.2140/apde.2022.15.1561
    [26] P. E. Jabin, B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math., 54 (2001), 1096–1109. https://doi.org/10.1002/cpa.3005 doi: 10.1002/cpa.3005
    [27] P. E. Jabin, L. Vega, Averaging lemmas and the $X$-ray transform, C. R. Math. Acad. Sci. Paris, 337 (2003), 505–510. https://doi.org/10.1016/j.crma.2003.09.004 doi: 10.1016/j.crma.2003.09.004
    [28] P. E. Jabin, L. Vega, A real space method for averaging lemmas, J. Math. Pures Appl., 83 (2004), 1309–1351. https://doi.org/10.1016/j.matpur.2004.03.004 doi: 10.1016/j.matpur.2004.03.004
    [29] M. Lazar, D. Mitrović, Velocity averaging-a general framework, Dyn. Partial Differ. Equ., 9 (2012), 239–260. https://dx.doi.org/10.4310/DPDE.2012.v9.n3.a3 doi: 10.4310/DPDE.2012.v9.n3.a3
    [30] Y. C. Lin, M. J. Lyu, K. C. Wu, Relativistic Boltzmann equation: large time behavior and finite speed of propagation, SIAM J. Math. Anal., 52 (2020), 5994–6032. https://doi.org/10.1137/20M1332761 doi: 10.1137/20M1332761
    [31] P. L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), 169–191. https://doi.org/10.1090/S0894-0347-1994-1201239-3 doi: 10.1090/S0894-0347-1994-1201239-3
    [32] P. L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems, Comm. Math. Phys., 163 (1994), 415–431. https://doi.org/10.1007/BF02102014 doi: 10.1007/BF02102014
    [33] B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc., 41 (2004), 205–244. https://doi.org/10.1090/S0273-0979-04-01004-3 doi: 10.1090/S0273-0979-04-01004-3
    [34] G. Rein, Global weak solutions to the relativistic Vlasov-Maxwell system revisited, Comm. Math. Sci., 2 (2004), 145–158. https://dx.doi.org/10.4310/CMS.2004.v2.n2.a1 doi: 10.4310/CMS.2004.v2.n2.a1
    [35] B. Sun, M. Wu, A new result for the velocity averaging lemma of the relativistic free transport equation, work in progress.
    [36] E. Tadmor, T. Tao, Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm. Pure Appl. Math., 60 (2007), 1488–1521. https://doi.org/10.1002/cpa.20180 doi: 10.1002/cpa.20180
    [37] A. Vasseur, Kinetic semidiscretization of scalar conservation laws and convergence by using averaging lemmas, SIAM J. Numer. Anal., 36 (1999), 465–474. https://doi.org/10.1137/S003614299631361 doi: 10.1137/S003614299631361
    [38] M. Westdickenberg, Some new velocity averaging results, SIAM J. Math. Anal., 33 (2002), 1007–1032. https://doi.org/10.1137/S0036141000380760 doi: 10.1137/S0036141000380760
    [39] Y. Zhu, Velocity averaging and Hölder regularity for kinetic Fokker-Planck equations with general transport operators and rough coefficients, SIAM J. Math. Anal., 53 (2021), 2746–2775. https://doi.org/10.1137/20M1372147 doi: 10.1137/20M1372147
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(351) PDF downloads(125) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog