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Abstract: In this paper, we proved a new result for the celebrated velocity averaging lemma of the
free transport equation with general case

∂t f + a(v) · ∇x f = 0 .

After averaging with some weight functions φ(v), we proved that the average quantity ρφ(t, x) =∫
R3

v
f (t, x, v)φ(v) dv is in W1,p

x , p ∈ [1,+∞]. This result revealed the regularizing effect for the mean
value with respect to the velocity of the solution. Our strategy was taking advantage of a modified
vector field method to build up a bridge between the x-derivative and v-derivative. One significant
point was that we first observed that the operator t∇x +

(
[∇va(v)]T

)−1
∇v commuted with ∂t + a(v) · ∇x.

Keywords: velocity averaging lemma; regularity; vector field method; nonrelativistic transport
equation; relativistic transport equation

1. Introduction

1.1. The models and main results

Our goal of this paper is to consider the velocity averaging lemma of the following transport
equation with general case a(v):

∂t f + a(v) · ∇x f = 0 , (t, x, v) ∈ R+ ×Ωx × R
3
v , (1.1)

f (0, x, v) = fin(x, v) ≥ 0 , (x, v) ∈ Ωx × R
3
v , (1.2)

where the function f = f (t, x, v) ≥ 0 describes the gas density distribution of particles at time t ∈ R+,
position x = (x1, x2, x3) ∈ Ωx and the microscopic velocity v = (v1, v2, v3) ∈ R3

v . Here the spatial

https://https://www.aimspress.com/journal/nhm
https://dx.doi.org/10.3934/nhm.2024007


158

domain Ωx is either the whole space R3
x or the three-dimensional torus T3

x. The vector-valued function
a(v) = (a1(v), a2(v), a3(v)) : R3

v → R
3
v with ai(v) ∈ C2(R3

v) (i = 1, 2, 3) and det (∇va(v)) , 0, where
det (∇va(v)) is the determinant of the matrix ∇va(v).

For the later presentation, we need to give the following notations. Let m(v) > 0 be some given
positive weight function on R3

v . For the velocity variable v, we denote

∥ f ∥Lq
v (m(v)) =

(∫
R3

v

| f |q m(v)q dv
) 1

q

, q ∈ [1,+∞) ,

and
∥ f ∥L∞v (m(v)) = sup

v∈R3
v

| f (v)| m(v) .

Next, let’s consider the notations involving the space variable x. The higher-order Sobolev space Wσ,p
x

for σ ∈ N (N means the set of natural numbers) is defined by

∥ f ∥Wσ,px
:=

∑
|α|≤σ

∥∂αx f ∥Lp
x
.

Let C∞0 (R3
v) be the space of infinitely differentiable functions with compact support.

Finally, we denote Lq
v Lp

x(m(v)) with exponent p, q ∈ [1,+∞], through the norms

∥ f ∥Lq
v Lp

x (m(v)) :=
∥∥∥∥ f ∥Lp

x
m(v)

∥∥∥
Lq

v
.

Now, we state the main result on the velocity averaging lemma of the free transport problem (1.1)
and (1.2).

Theorem 1.1. Consider f ∈ L1([0,T ]; L1
v Lp

x(m(v))) and ∇v fin ∈ L1
v Lp

x(m(v)) with p ∈ [1,+∞] such that
the solution f satisfies the problem (1.1) and (1.2) in the weak sense. For any fixed weight fuction
φ(v) ∈ C∞0 (R3

v), let us define the average quantity with φ(v) as

ρφ(t, x) :=
∫
R3

v

f (t, x, v)φ(v) dv,

then ρφ satisfies:

∥ρφ∥W1,p
x
≤

1 + 3
√

3
t

 ∥φ∥W1,∞
v

(
∥ fin∥L1

v Lp
x (m(v)) + ∥∇v fin∥L1

v Lp
x (m(v))

)
,

where the function m(v) > 0 is defined in Eq (2.8) below.

Remark 1.1.
(1) This theorem extends the result of the velocity averaging lemma for the free transport equation
in [21] (see Lemma 4.17 for the non-relativistic case, that is, a(v) = v) to a more general case.
Furthermore, ρφ ∈ W1,p

x holds for whole space (see Theorem 2 in [25] for locally space with general
a(v) and a singular source term (−∆v)

α
2 g), but in this paper, we need assume some extra regularity in v

of the initial data fin.

Networks and Heterogeneous Media Volume 19, Issue 1, 157–168.



159

(2) If a(v) = v̂ = v√
1+|v|2

, this is the relativistic free transport equation. For this case, we can choose

m(v) =
(
1 + |v|2

) 3
2 in Theorem 1.1; see also [35], which includes a detailed argument.

(3) If a(v) = v
|v| , this is the massless relativistic free transport equation [17]. Because det

(
∇v

v
|v|

)
= 0,

our approach cannot be adapted to this case.

(4) Indeed, to avoid a lengthy discussion, we can extend our results to higher space dimension without
essential difficulty.

1.2. Review of previously known works

The celebrated velocity averaging lemmas concern the regularity results of solutions to the kinetic
transport equation developed in [16, 18, 20, 33, 38], which reveal that the combination of transport
operator and averaging in velocity variable v of the solution yields regularity with respect to the space
variable x. Such results are an interesting and powerful mathematical tool in kinetic theory that have
been extensively used to obtain regularity, global weak solutions, spectral analysis, and hydrodynamic
limits of the kinetic equations. It is worth mentioning that another major application consists in
showing the regularizing effect of solutions wherever the kinetic formulations exist, such as the
isentropic gas dynamics, the Ginzburg-Landau model, and scalar conservation
laws [15, 19, 24, 26, 31, 36]. There are several types of proof provided, such as the Fourier transform,
the Hörmander’s commutators, the commutator method, the Harmonic analysis, the energy method,
the real space method, and so on. For more on this topic, the reader may
consult [1–4, 13, 14, 25, 28, 29] for detailed discussion. There have been several variants, extensions
and generalizations of velocity averaging lemmas made available, such as the kinetic transport
equation with a force term, time discrete kinetic equations and stochastic case, and the phenomena of
dispersion and hypoellipticity. We refer to [5–10, 12, 22, 27, 37] and the references therein.

Now, we mention some literature that is relatively closer to our discussion. The velocity average
lemma of the nonrelativistic transport equation has been investigated in the L2 framework. If one
considers the solutions f ∈ L2 of the initial-value problem:

∂t f + v · ∇x f = 0 ,

with suitable initial data fin, then ρφ ∈ H
1
2
x for any φ(v) ∈ C∞0 (R3

v). Here, H
1
2
x = W

1
2 ,2
x denotes the usual

fractional order Sobolev space defined by the Fourier transform. We note that there is no regularity
assumption on fin. See also DiPerna, Lions and Meyer [16] for general Lp, 1 < p < +∞ by applying
the interpolation method. In [21], Gualdani, Mischler and Mouhot proved that ρφ ∈ W1,p

x , p ∈ [1,+∞].
They obtained that a full derivative in the x variable is stronger than the previous half-derivative, but
they assumed some additional regularity in v of the initial data fin.

Compared with the non-relativistic case, the version of the relativistic transport equation has a
relatively short history. In 2004, Rein [34] proved the global weak solution of the relativistic Vlasov-
Maxwell system by the velocity averaging. Huang and Jiang [23] investigated the average regularity of
the solution to the relativistic transport equation by adopting the same method in [18]. The analogous
result as in [21] also holds for the relativistic free transport equation in [35]. Moreover, the authors
also showed the quantitative effects of the particle mass and the speed of light.
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For the general case a(v), Eq (1.1) is typical of kinetic formulations for the multidimensional scalar
conservation laws, and also in kinetic models under relativistic and quantum setting. The hyperbolic
system can be reformulated as a kinetic equation by using an additional kinetic variable. Those
formulations were derived in [31] and in [11] for a more complicated situation. In [32], Lions,
Perthame, and Tadmor provide kinetic formulations for the isentropic gas dynamics and the
p-systems. The derivation of these regularity results employs a kinetic formulation like Eq (1.1). The
typical example of an application of velocity averaging lemmas to scalar conservation laws is [19,31].
The averaging lemmas for the Eq (1.1) were studied in [24,33]. In [27,28], Jabin and Vega introduced
a new method that is performed in the real space to prove the velocity averaging lemma. Zhu [39]
showed that in the setting of general transport operators, velocity averaging lemmas yield local
boundedness and Hölder regularity of solutions under a suitable nondegeneracy condition on the
rough vector field. Recently, Jabin, Lin, and Tadmor [25] found a commutator method with
multipliers to prove averaging lemmas, the regularizing effect for the velocity average of solutions.

Motivated by the above works, the main contribution of the current paper is to render a simple
method with the vector field inspired from the methodological approach developed in [21]. We prove
a new result for the celebrated velocity averaging lemma of Eq (1.1). These results are completely new
and some of our calculations appear to be new too. The key point is employing the differential operator
Dt in Lemma 2.2.

1.3. Strategy of the proof of Theorem 1.1

One good strategy for the proof of the velocity averaging lemma, is to build up a bridge between the
x-derivative and v-derivative. Gualdani, Mischler and Mouhot [21] proved that the operator t∇x + ∇v

can commute with the nonrelativistic transport operator ∂t + v · ∇x. Thanks to this crucial differential
operator t∇x + ∇v, one can realize the exchange of regularity between the velocity variable v and
the space variable x. However, for the relativistic model, it’s difficult to find the associated operator
commutes with the relativistic transport operator ∂t + v̂ · ∇x, even for general case. Recently, Lin, Lyu
and Wu [30] significantly observed that the operator t∇x + [∇v(v̂)]−1∇v can commute with the operator
∂t + v̂ · ∇x. Motivated by [21, 30], we try to find out the corresponding operator that can commute
with ∂t + a(v) · ∇x. Indeed, the novelty of this paper is that we can also find an anticipant operator
t∇x +

(
[∇va(v)]T

)−1
∇v. This observation will play an important role in the proof of Theorem 1.1.

2. Preliminaries

In this section, we give the following lemma which will be used in the later proof. First, we will
present some basic properties. For the sake of brevity and readability, the proof of Lemma 2.1 is shown
in the Appendix.

Lemma 2.1. For any σ, τ is equal to x or v, we have

(a(v) · ∇σ)∇τ f =
[
∇σ (∇τ f )

]
a(v) , (2.1)

(a(v) · ∇x) B∇v f = B (a(v) · ∇x)∇v f = B
[
∇x (∇v f )

]
a(v) , (2.2)

∇x (a(v) · ∇x f ) =
[
∇x (∇x f )

]
a(v) , (2.3)
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and
∇v (a(v) · ∇x f ) = [∇va(v)]T

∇x f +
[
∇x (∇v f )

]
a(v) , (2.4)

where B is a 3 × 3 matrix and [∇va(v)]T is the transpose of the matrix ∇va(v).

By means of Lemma 2.1, we prove the crucial idea, which is the cornerstone of the proof of Theorem
1.1.

Lemma 2.2. Let us define the differential operator Dt := t∇x +
(
[∇va(v)]T

)−1
∇v , then we can prove

that Dt commutes with the operator ∂t + a(v) · ∇x, namely,

[∂t + a(v) · ∇x, Dt] = 0 ,

where [A, B] = AB − BA is the commutator.

Proof. Set B =
(
[∇va(v)]T

)−1
. Applying Eqs (2.1)–(2.4), we can get

[∂t + a(v) · ∇x, Dt] f = (∂t + a(v) · ∇x) Dt f − Dt (∂t + a(v) · ∇x) f

=∂t(t∇x f + B∇v f ) + (a(v) · ∇x) (t∇x f + B∇v f )
− t∇x (∂t f + a(v) · ∇x f ) − B∇v (∂t f + a(v) · ∇x f )

=∇x f + t∇x (∂t f ) + B∇v (∂t f ) + t (a(v) · ∇x)∇x f

+ (a(v) · ∇x) B∇v f − t∇x (∂t f ) − t∇x (a(v) · ∇x f )

− B∇v (∂t f ) − B∇v (a(v) · ∇x f )

=∇x f + t∇x (∂t f ) + B∇v (∂t f ) + t
[
∇x (∇x f )

]
a(v)

+ B
[
∇x (∇v f )

]
a(v) − t∇x (∂t f ) − t

[
∇x (∇x f )

]
a(v)

− B∇v (∂t f ) − B
[
∇x (∇v f )

]
a(v) − B [∇va(v)]T

∇x f

=∇x f − B [∇va(v)]T
∇x f .

Since det (∇va(v)) , 0, then B [∇va(v)]T = I. Therefore,

[∂t + a(v) · ∇x, Dt] f = 0 .

□

Next, we obtain a priori estimate.

Lemma 2.3. For any positive weight function ω(v) > 0, and for any t ≥ 0, 1 ≤ p, q ≤ +∞, then the
solution f of the problem (1.1) and (1.2) verifies

∥ f (t, x, v)∥Lq
v Lp

x (ω(v)) = ∥ fin(x, v)∥Lq
v Lp

x (ω(v)) , (2.5)

and
∥Dt f (t, x, v)∥Lq

v Lp
x (ω(v)) = ∥B∇v fin(x, v)∥Lq

v Lp
x (ω(v)) . (2.6)

Proof. We consider first that 1 ≤ p, q < +∞,

d
dt
∥ f ∥Lq

v Lp
x (ω(v)) =

d
dt

∫
R3

v

(∫
Ωx

| f |p dx
) q

p

ω(v)q dv


1
q
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=∥ f ∥1−q
Lq

v Lp
x (ω(v))

∫
R3

v

∥ f ∥q−p
Lp

x

( ∫
Ωx

| f |p−1 sign( f ) ∂t f dx
)
ω(v)q dv

= − ∥ f ∥1−q
Lq

v Lp
x (ω(v))

∫
R3

v

∥ f ∥q−p
Lp

x

( ∫
Ωx

1
p

a(v) · ∇x(| f |p) dx
)
ω(v)q dv

=0 . (2.7)

Following the integration by parts, the term involving a(v) · ∇x vanishes.
Similarly, by taking the limits p → +∞ and q → +∞ in Eq (2.7), the cases p = +∞ and q = +∞

are still holds.
Thus,

∥ f ∥Lq
v Lp

x (ω(v)) = ∥ fin∥Lq
v Lp

x (ω(v)) .

According to Lemma 2.2, we know that the differential operator Dt := t∇x + B∇v can commute with
∂t + a(v) · ∇x. Thus,

∂t(Dt f ) + a(v) · ∇x(Dt f ) = 0 .

By taking the similar arguments as employed in Eq (2.7), it turns out that

d
dt
∥Dt f ∥Lq

v Lp
x (ω(v)) = − ∥Dt f ∥1−q

Lq
v Lp

x (ω(v))

∫
R3

v

∥Dt f ∥q−p
Lp

x

( ∫
Ωx

1
p

a(v) · ∇x(|Dt f |p) dx
)
ω(v)q dv

=0 .

Consequently, we have

∥Dt f ∥Lq
v Lp

x (ω(v)) = ∥Dt=0 fin∥Lq
v Lp

x (ω(v)) = ∥B∇v fin∥Lq
v Lp

x (ω(v)) .

Thus, we conclude the proof of Lemma 2.3. □

Finally, let’s introduce the weight function m(v) > 0 in Theorem 1.1. For clarity, we write

[∇va(v)]T = (ai j(v))1≤i, j≤3

=


∂v1a1(v) ∂v1a2(v) ∂v1a3(v)
∂v2a1(v) ∂v2a2(v) ∂v2a3(v)
∂v3a1(v) ∂v3a2(v) ∂v3a3(v)

 ,
where the entry ai j(v) = ∂via j(v), i, j = 1, 2, 3.

A straightforward computation gives

B =
(
[∇va(v)]T

)−1
= (bi j(v))1≤i, j≤3

=
1

det
(
[∇va(v)]T

)


a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22

a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23

a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21

 .
Next, we set

m(v) = max
{

max
1≤i, j≤3

{
|bi j(v)|

}
, max

1≤i, j≤3

{
|∂v jbi j(v)|

}}
> 0. (2.8)
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3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In order to present it clear, we shall divide it
into two steps.

Proof. Step 1: We estimate the Lp
x-norm of ρφ. By using the Minkowski’s integral inequality and

estimate Eq (2.5), we obtain that, for any 1 ≤ p < +∞,

∥ρφ∥Lp
x
=

(∫
Ωx

∣∣∣∣∣∣
∫
R3

v

f (t, x, v)φ(v) dv

∣∣∣∣∣∣p dx
) 1

p

≤

∫
R3

v

(∫
Ωx

| f (t, x, v)φ(v)|p dx
) 1

p

dv

≤ ∥φ∥L∞v ∥ f ∥L1
v Lp

x

= ∥φ∥L∞v ∥ fin∥L1
v Lp

x
. (3.1)

The case p = +∞ can be proved by the straightforward calculations as the reasoning above; hence, we
omit the details.

Step 2: We estimate the derivatives in x. We first compute the x-derivatives of ρφ as follows, for any
i ∈ {1, 2, 3},

∂xiρφ =

∫
R3

v

∂xi f φ(v) dv

=

∫
R3

v

1
t

[
Dti − (bi1∂v1 + bi2∂v2 + bi3∂v3)

]
f φ(v) dv

=
1
t

∫
R3

v

Dti f φ(v) dv +
1
t

∫
R3

v

f
[
∂v1(bi1φ(v)) + ∂v2(bi2φ(v)) + ∂v3(bi3φ(v))

]
dv

≤
1
t

∫
R3

v

∣∣∣Dti f
∣∣∣ |φ(v)| dv

+
1
t

∫
R3

v

| f |m(v)
[(
|∂v1φ(v)| + |∂v2φ(v)| + |∂v3φ(v)|

)
+ |φ(v)|

]
dv

≤
1
t
∥φ(v)∥L∞v ∥Dti f ∥L1

v
+

1
t
∥φ(v)∥W1,∞

v
∥ f ∥L1

v (m(v)) .

Next, we continue by the Minkowski’s integral inequality once again and the equality (2.6). It holds
that

∥∂xiρφ∥Lp
x
≤

1
t
∥φ(v)∥L∞v

(∫
Ωx

∥Dti f ∥p
L1

v
dx

) 1
p

+
1
t
∥φ(v)∥W1,∞

v

(∫
Ωx

∥ f ∥p
L1

v (m(v))
dx

) 1
p

≤
1
t
∥φ(v)∥L∞v ∥Dti f ∥L1

v Lp
x
+

1
t
∥φ(v)∥W1,∞

v
∥ f ∥L1

v Lp
x (m(v))

=
1
t
∥φ(v)∥L∞v ∥

(
bi1∂v1 + bi2∂v2 + bi3∂v3

)
fin∥L1

v Lp
x

+
1
t
∥φ(v)∥W1,∞

v
∥ fin∥L1

v Lp
x (m(v))
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≤

√
3

t
∥φ(v)∥L∞v ∥∇v fin∥L1

v Lp
x (m(v)) +

1
t
∥φ(v)∥W1,∞

v
∥ fin∥L1

v Lp
x (m(v))

≤

√
3

t
∥φ(v)∥W1,∞

v

(
∥ fin∥L1

v Lp
x (m(v)) + ∥∇v fin∥L1

v Lp
x (m(v))

)
. (3.2)

We now gather the above estimates Eqs (3.1) and (3.2) together to deduce that, for any p ∈ [1,+∞],

∥ρφ∥W1,p
x
=∥ρφ∥Lp

x
+

3∑
i=1

∥∂xiρφ∥Lp
x

≤

1 + 3
√

3
t

 ∥φ(v)∥W1,∞
v

(
∥ fin∥L1

v Lp
x (m(v)) + ∥∇v fin∥L1

v Lp
x (m(v))

)
.

Hence the proof of Theorem 1.1 is finished. □
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Appendix A

In this appendix, we shall give a complete proof of Lemma 2.1.
Proof of the equality (2.1). We only show for the case σ = x and τ = v. Since

(a(v) · ∇x)∇v f =
(
a1(v)∂x1 + a2(v)∂x2 + a3(v)∂x3

) 
∂v1 f
∂v2 f
∂v3 f


=


a1(v)∂x1∂v1 f + a2(v)∂x2∂v1 f + a3(v)∂x3∂v1 f
a1(v)∂x1∂v2 f + a2(v)∂x2∂v2 f + a3(v)∂x3∂v2 f
a1(v)∂x1∂v3 f + a2(v)∂x2∂v3 f + a3(v)∂x3∂v3 f


=


∂x1∂v1 f ∂x2∂v1 f ∂x3∂v1 f
∂x1∂v2 f ∂x2∂v2 f ∂x3∂v2 f
∂x1∂v3 f ∂x2∂v3 f ∂x3∂v3 f




a1(v)
a2(v)
a3(v)

 ,
then we have

(a(v) · ∇x)∇v f =
[
∇x (∇v f )

]
a(v) .

Proof of the equality (2.2).

(a(v) · ∇x) B∇v f =
(
a1(v)∂x1 + a2(v)∂x2 + a3(v)∂x3

) 
b11 b12 b13

b21 b22 b23

b31 b32 b33



∂v1 f
∂v2 f
∂v3 f


=

(
a1(v)∂x1 + a2(v)∂x2 + a3(v)∂x3

) 
b11∂v1 f + b12∂v2 f + b13∂v3 f
b21∂v1 f + b22∂v2 f + b23∂v3 f
b31∂v1 f + b32∂v2 f + b33∂v3 f


=


a1(v)b11∂x1∂v1 f + a1(v)b12∂x1∂v2 f + · · · + a3(v)b12∂x3∂v2 f + a3(v)b13∂x3∂v3 f
a1(v)b21∂x1∂v1 f + a1(v)b22∂x1∂v2 f + · · · + a3(v)b22∂x3∂v2 f + a3(v)b23∂x3∂v3 f
a1(v)b31∂x1∂v1 f + a1(v)b32∂x1∂v2 f + · · · + a3(v)b32∂x3∂v2 f + a3(v)b33∂x3∂v3 f


=


b11 b12 b13

b21 b22 b23

b31 b32 b33



∂x1∂v1 f ∂x2∂v1 f ∂x3∂v1 f
∂x1∂v2 f ∂x2∂v2 f ∂x3∂v2 f
∂x1∂v3 f ∂x2∂v3 f ∂x3∂v3 f




a1(v)
a2(v)
a3(v)


=B

[
∇x (∇v f )

]
a(v) .

Proof of the equality (2.3).

∇x (a(v) · ∇x f ) =


∂x1

(
a1(v)∂x1 f + a2(v)∂x2 f + a3(v)∂x3 f

)
∂x2

(
a1(v)∂x1 f + a2(v)∂x2 f + a3(v)∂x3 f

)
∂x3

(
a1(v)∂x1 f + a2(v)∂x2 f + a3(v)∂x3 f

)

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=


a1(v)∂x1∂x1 f + a2(v)∂x1∂x2 f + a3(v)∂x1∂x3 f
a1(v)∂x2∂x1 f + a2(v)∂x2∂x2 f + a3(v)∂x2∂x3 f
a1(v)∂x3∂x1 f + a2(v)∂x3∂x2 f + a3(v)∂x3∂x3 f


=


∂x1∂x1 f ∂x1∂x2 f ∂x1∂x3 f
∂x2∂x1 f ∂x2∂x2 f ∂x2∂x3 f
∂x3∂x1 f ∂x3∂x2 f ∂x3∂x3 f




a1(v)
a2(v)
a3(v)


=∇x (∇x f ) a(v) .

Proof of the equality (2.4).

∇v (a(v) · ∇x f ) =


∂v1

(
a1(v)∂x1 f + a2(v)∂x2 f + a3(v)∂x3 f

)
∂v2

(
a1(v)∂x1 f + a2(v)∂x2 f + a3(v)∂x3 f

)
∂v3

(
a1(v)∂x1 f + a2(v)∂x2 f + a3(v)∂x3 f

)


=


∂v1a1(v)∂x1 f + ∂v1a2(v)∂x2 f + ∂v1a3(v)∂x3 f
∂v2a1(v)∂x1 f + ∂v2a2(v)∂x2 f + ∂v2a3(v)∂x3 f
∂v3a1(v)∂x1 f + ∂v3a2(v)∂x2 f + ∂v3a3(v)∂x3 f


+


a1(v)∂v1∂x1 f + a2(v)∂v1∂x2 f + a3(v)∂v1∂x3 f
a1(v)∂v2∂x1 f + a2(v)∂v2∂x2 f + a3(v)∂v2∂x3 f
a1(v)∂v3∂x1 f + a2(v)∂v3∂x2 f + a3(v)∂v3∂x3 f


=


∂v1a1(v) ∂v1a2(v) ∂v1a3(v)
∂v2a1(v) ∂v2a2(v) ∂v2a3(v)
∂v3a1(v) ∂v3a2(v) ∂v3a3(v)



∂x1 f
∂x2 f
∂x3 f


+


∂x1∂v1 f ∂x2∂v1 f ∂x3∂v1 f
∂x1∂v2 f ∂x2∂v2 f ∂x3∂v2 f
∂x1∂v3 f ∂x2∂v3 f ∂x3∂v3 f




a1(v)
a2(v)
a3(v)


= [∇va(v)]T

∇x f +
[
∇x (∇v f )

]
a(v) .
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