On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime

  • Received: 01 March 2014 Revised: 01 October 2014
  • Primary: 74R10, 49J45, 70G75.

  • We consider a two-dimensional atomic mass spring system and show that in the small displacement regime the corresponding discrete energies can be related to a continuum Griffith energy functional in the sense of $\Gamma$-convergence. We also analyze the continuum problem for a rectangular bar under tensile boundary conditions and find that depending on the boundary loading the minimizers are either homogeneous elastic deformations or configurations that are completely cracked generically along a crystallographic line. As applications we discuss cleavage properties of strained crystals and an effective continuum fracture energy for magnets.

    Citation: Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime[J]. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321

    Related Papers:

    [1] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [2] Valerii Maksimov, Luca Placidi, Francisco James León Trujillo, Chiara De Santis, Anil Misra, Dmitry Timofeev, Francesco Fabbrocino, Emilio Barchiesi . Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence. Networks and Heterogeneous Media, 2024, 19(3): 1058-1084. doi: 10.3934/nhm.2024047
    [3] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [4] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [5] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
    [6] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [7] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [8] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [9] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [10] Jose Manuel Torres Espino, Emilio Barchiesi . Computational study of a homogenized nonlinear generalization of Timoshenko beam proposed by Turco et al.. Networks and Heterogeneous Media, 2024, 19(3): 1133-1155. doi: 10.3934/nhm.2024050
  • We consider a two-dimensional atomic mass spring system and show that in the small displacement regime the corresponding discrete energies can be related to a continuum Griffith energy functional in the sense of $\Gamma$-convergence. We also analyze the continuum problem for a rectangular bar under tensile boundary conditions and find that depending on the boundary loading the minimizers are either homogeneous elastic deformations or configurations that are completely cracked generically along a crystallographic line. As applications we discuss cleavage properties of strained crystals and an effective continuum fracture energy for magnets.


    [1] G. Alberti and C. Mantegazza, A note on the theory of $SBV$ functions, Boll. Un. Mat. Ital. B (7), 11 (1989), 375-382.
    [2] R. Alicandro, M. Focardi and M. S. Gelli, Finite-difference approximation of energies in fracture mechanics, Ann. Scuola Norm. Sup., 29 (2000), 671-709.
    [3] L. Ambrosio, A compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital. B (7), 3 (1989), 857-881.
    [4] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal., 111 (1990), 291-322. doi: 10.1007/BF00376024
    [5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford 2000.
    [6] A. Braides, $\Gamma$-convergence for Beginners, Oxford University Press, Oxford 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
    [7] A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Math. Models Methods Appl. Sci., 17 (2007), 985-1037. doi: 10.1142/S0218202507002182
    [8] A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case, Arch. Ration. Mech. Anal., 146 (1999), 23-58. doi: 10.1007/s002050050135
    [9] A. Braides and M. S. Gelli, Limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229
    [10] A. Braides and M. S. Gelli, Limits of discrete systems with long-range interactions, J. Convex Anal., 9 (2002), 363-399.
    [11] A. Braides, A. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes, Arch. Ration. Mech. Anal., 180 (2006), 151-182. doi: 10.1007/s00205-005-0399-9
    [12] A. Braides, M. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567. doi: 10.3934/nhm.2007.2.551
    [13] A. Chambolle, A. Giacomini and M. Ponsiglione, Piecewise rigidity, J. Funct. Anal. Solids, 244 (2007), 134-153. doi: 10.1016/j.jfa.2006.11.006
    [14] S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$, J. Eur Math. Soc., (JEMS) 8 (2006), 515-530. doi: 10.4171/JEMS/65
    [15] G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies, Nonlinear Analysis, 38 (1999), 585-604. doi: 10.1016/S0362-546X(98)00132-1
    [16] G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin 1993. doi: 10.1007/978-1-4612-0327-8
    [17] E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), 199-210.
    [18] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
    [19] M. Focardi and M. S. Gelli, Approximation results by difference schemes of fracture energies: The vectorial case, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 469-495. doi: 10.1007/s00030-003-1002-4
    [20] G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342. doi: 10.1016/S0022-5096(98)00034-9
    [21] M. Friedrich and B. Schmidt, An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem, J. Nonlin. Sci., 24 (2014), 145-183. doi: 10.1007/s00332-013-9187-0
    [22] G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506. doi: 10.1002/cpa.10048
    [23] G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478. doi: 10.1007/s00332-002-0495-z
    [24] A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Differential Equations, 22 (2005), 129-172. doi: 10.1007/s00526-004-0269-6
    [25] C. Mora-Corral, Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension, C. R. Acad. Sci. Paris, 348 (2010), 1045-1048. doi: 10.1016/j.crma.2010.09.005
    [26] M. Negri, Finite element approximation of the Griffith's model in fracture mechanics, Numer. Math., 95 (2003), 653-687. doi: 10.1007/s00211-003-0456-y
    [27] B. Schmidt, On the derivation of linear elasticity from atomistic models, Netw. Heterog. Media, 4 (2009), 789-812. doi: 10.3934/nhm.2009.4.789
  • This article has been cited by:

    1. Andrea Braides, Maria Stella Gelli, Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2017, 51, 0764-583X, 1903, 10.1051/m2an/2017011
    2. Manuel Friedrich, Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials, 2020, 2, 2640-3501, 75, 10.3934/mine.2020005
    3. Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro, Derivation of Linear Elasticity for a General Class of Atomistic Energies, 2021, 53, 0036-1410, 5060, 10.1137/21M1397179
    4. Manuel Friedrich, Leonard Kreutz, Konstantinos Zemas, From atomistic systems to linearized continuum models for elastic materials with voids, 2023, 36, 0951-7715, 679, 10.1088/1361-6544/aca5de
    5. Sabine Jansen, Wolfgang König, Bernd Schmidt, Florian Theil, Distribution of Cracks in a Chain of Atoms at Low Temperature, 2021, 22, 1424-0637, 4131, 10.1007/s00023-021-01076-7
    6. Manuel Friedrich, A Derivation of Linearized Griffith Energies from Nonlinear Models, 2017, 225, 0003-9527, 425, 10.1007/s00205-017-1108-1
    7. Rufat Badal, Manuel Friedrich, Joscha Seutter, Existence of quasi-static crack evolution for atomistic systems, 2022, 9, 26663597, 100138, 10.1016/j.finmec.2022.100138
    8. Bernd Schmidt, A Griffith–Euler–Bernoulli theory for thin brittle beams derived from nonlinear models in variational fracture mechanics, 2017, 27, 0218-2025, 1685, 10.1142/S0218202517500294
    9. Manuel Friedrich, A compactness result in GSBVp
    and applications to Γ
    -convergence for free discontinuity problems, 2019, 58, 0944-2669, 10.1007/s00526-019-1530-3
    10. A. Braides, M.S. Gelli, Asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2016, 96, 00225096, 235, 10.1016/j.jmps.2016.07.016
    11. Stefano Almi, Elisa Davoli, Manuel Friedrich, Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture, 2023, 00217824, 10.1016/j.matpur.2023.05.001
    12. Bernd Schmidt, Jiří Zeman, A continuum model for brittle nanowires derived from an atomistic description by Γ
    -convergence, 2023, 62, 0944-2669, 10.1007/s00526-023-02562-y
    13. Manuel Friedrich, Manuel Seitz, Ulisse Stefanelli, Discrete-to-continuum linearization in atomistic dynamics, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024115
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4594) PDF downloads(46) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog