Citation: Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime[J]. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
[1] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[2] | Valerii Maksimov, Luca Placidi, Francisco James León Trujillo, Chiara De Santis, Anil Misra, Dmitry Timofeev, Francesco Fabbrocino, Emilio Barchiesi . Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence. Networks and Heterogeneous Media, 2024, 19(3): 1058-1084. doi: 10.3934/nhm.2024047 |
[3] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[4] | Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115 |
[5] | Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004 |
[6] | Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667 |
[7] | Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026 |
[8] | Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879 |
[9] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[10] | Jose Manuel Torres Espino, Emilio Barchiesi . Computational study of a homogenized nonlinear generalization of Timoshenko beam proposed by Turco et al.. Networks and Heterogeneous Media, 2024, 19(3): 1133-1155. doi: 10.3934/nhm.2024050 |
[1] | G. Alberti and C. Mantegazza, A note on the theory of $SBV$ functions, Boll. Un. Mat. Ital. B (7), 11 (1989), 375-382. |
[2] | R. Alicandro, M. Focardi and M. S. Gelli, Finite-difference approximation of energies in fracture mechanics, Ann. Scuola Norm. Sup., 29 (2000), 671-709. |
[3] | L. Ambrosio, A compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital. B (7), 3 (1989), 857-881. |
[4] |
L. Ambrosio, Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal., 111 (1990), 291-322. doi: 10.1007/BF00376024
![]() |
[5] | L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford 2000. |
[6] |
A. Braides, $\Gamma$-convergence for Beginners, Oxford University Press, Oxford 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
![]() |
[7] |
A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Math. Models Methods Appl. Sci., 17 (2007), 985-1037. doi: 10.1142/S0218202507002182
![]() |
[8] |
A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case, Arch. Ration. Mech. Anal., 146 (1999), 23-58. doi: 10.1007/s002050050135
![]() |
[9] |
A. Braides and M. S. Gelli, Limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229
![]() |
[10] | A. Braides and M. S. Gelli, Limits of discrete systems with long-range interactions, J. Convex Anal., 9 (2002), 363-399. |
[11] |
A. Braides, A. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes, Arch. Ration. Mech. Anal., 180 (2006), 151-182. doi: 10.1007/s00205-005-0399-9
![]() |
[12] |
A. Braides, M. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567. doi: 10.3934/nhm.2007.2.551
![]() |
[13] |
A. Chambolle, A. Giacomini and M. Ponsiglione, Piecewise rigidity, J. Funct. Anal. Solids, 244 (2007), 134-153. doi: 10.1016/j.jfa.2006.11.006
![]() |
[14] |
S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$, J. Eur Math. Soc., (JEMS) 8 (2006), 515-530. doi: 10.4171/JEMS/65
![]() |
[15] |
G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies, Nonlinear Analysis, 38 (1999), 585-604. doi: 10.1016/S0362-546X(98)00132-1
![]() |
[16] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin 1993. doi: 10.1007/978-1-4612-0327-8
![]() |
[17] | E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), 199-210. |
[18] | H. Federer, Geometric Measure Theory, Springer, New York, 1969. |
[19] |
M. Focardi and M. S. Gelli, Approximation results by difference schemes of fracture energies: The vectorial case, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 469-495. doi: 10.1007/s00030-003-1002-4
![]() |
[20] |
G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342. doi: 10.1016/S0022-5096(98)00034-9
![]() |
[21] |
M. Friedrich and B. Schmidt, An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem, J. Nonlin. Sci., 24 (2014), 145-183. doi: 10.1007/s00332-013-9187-0
![]() |
[22] |
G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506. doi: 10.1002/cpa.10048
![]() |
[23] |
G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478. doi: 10.1007/s00332-002-0495-z
![]() |
[24] |
A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Differential Equations, 22 (2005), 129-172. doi: 10.1007/s00526-004-0269-6
![]() |
[25] |
C. Mora-Corral, Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension, C. R. Acad. Sci. Paris, 348 (2010), 1045-1048. doi: 10.1016/j.crma.2010.09.005
![]() |
[26] |
M. Negri, Finite element approximation of the Griffith's model in fracture mechanics, Numer. Math., 95 (2003), 653-687. doi: 10.1007/s00211-003-0456-y
![]() |
[27] |
B. Schmidt, On the derivation of linear elasticity from atomistic models, Netw. Heterog. Media, 4 (2009), 789-812. doi: 10.3934/nhm.2009.4.789
![]() |
1. | Andrea Braides, Maria Stella Gelli, Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2017, 51, 0764-583X, 1903, 10.1051/m2an/2017011 | |
2. | Manuel Friedrich, Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials, 2020, 2, 2640-3501, 75, 10.3934/mine.2020005 | |
3. | Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro, Derivation of Linear Elasticity for a General Class of Atomistic Energies, 2021, 53, 0036-1410, 5060, 10.1137/21M1397179 | |
4. | Manuel Friedrich, Leonard Kreutz, Konstantinos Zemas, From atomistic systems to linearized continuum models for elastic materials with voids, 2023, 36, 0951-7715, 679, 10.1088/1361-6544/aca5de | |
5. | Sabine Jansen, Wolfgang König, Bernd Schmidt, Florian Theil, Distribution of Cracks in a Chain of Atoms at Low Temperature, 2021, 22, 1424-0637, 4131, 10.1007/s00023-021-01076-7 | |
6. | Manuel Friedrich, A Derivation of Linearized Griffith Energies from Nonlinear Models, 2017, 225, 0003-9527, 425, 10.1007/s00205-017-1108-1 | |
7. | Rufat Badal, Manuel Friedrich, Joscha Seutter, Existence of quasi-static crack evolution for atomistic systems, 2022, 9, 26663597, 100138, 10.1016/j.finmec.2022.100138 | |
8. | Bernd Schmidt, A Griffith–Euler–Bernoulli theory for thin brittle beams derived from nonlinear models in variational fracture mechanics, 2017, 27, 0218-2025, 1685, 10.1142/S0218202517500294 | |
9. |
Manuel Friedrich,
A compactness result in GSBVp and applications to Γ -convergence for free discontinuity problems,
2019,
58,
0944-2669,
10.1007/s00526-019-1530-3
|
|
10. | A. Braides, M.S. Gelli, Asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2016, 96, 00225096, 235, 10.1016/j.jmps.2016.07.016 | |
11. | Stefano Almi, Elisa Davoli, Manuel Friedrich, Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture, 2023, 00217824, 10.1016/j.matpur.2023.05.001 | |
12. |
Bernd Schmidt, Jiří Zeman,
A continuum model for brittle nanowires derived from an atomistic description by Γ -convergence,
2023,
62,
0944-2669,
10.1007/s00526-023-02562-y
|
|
13. | Manuel Friedrich, Manuel Seitz, Ulisse Stefanelli, Discrete-to-continuum linearization in atomistic dynamics, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024115 |