Loading [MathJax]/jax/element/mml/optable/CombDiactForSymbols.js

On Lennard-Jones systems with finite range interactions and their asymptotic analysis

  • Received: 01 June 2017 Revised: 01 October 2017
  • Primary: 49J45, 74R10, 74G10, 74G65

  • The aim of this work is to provide further insight into the qualitative behavior of mechanical systems that are well described by Lennard-Jones type interactions on an atomistic scale. By means of $Γ$-convergence techniques, we study the continuum limit of one-dimensional chains of atoms with finite range interactions of Lennard-Jones type, including the classical Lennard-Jones potentials. So far, explicit formula for the continuum limit were only available for the case of nearest and next-to-nearest neighbour interactions. In this work, we provide an explicit expression for the continuum limit in the case of finite range interactions. The obtained homogenization formula is given by the convexification of a Cauchy-Born energy density.

    Furthermore, we study rescaled energies in which bulk and surface contributions scale in the same way. The related discrete-to-continuum limit yields a rigorous derivation of a one-dimensional version of Griffith' fracture energy and thus generalizes earlier derivations for nearest and next-to-nearest neighbors to the case of finite range interactions.

    A crucial ingredient to our proofs is a novel decomposition of the energy that allows for refined estimates.

    Citation: Mathias Schäffner, Anja Schlömerkemper. 2018: On Lennard-Jones systems with finite range interactions and their asymptotic analysis, Networks and Heterogeneous Media, 13(1): 95-118. doi: 10.3934/nhm.2018005

    Related Papers:

    [1] Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004
    [2] Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the $ (k, \psi) $-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622
    [3] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [4] Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for $ \psi $-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566
    [5] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for $ \Psi $-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [6] Jehad Alzabut, Yassine Adjabi, Weerawat Sudsutad, Mutti-Ur Rehman . New generalizations for Gronwall type inequalities involving a $ \psi $-fractional operator and their applications. AIMS Mathematics, 2021, 6(5): 5053-5077. doi: 10.3934/math.2021299
    [7] Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301
    [8] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
    [9] Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a $ \psi $-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434
    [10] Deepak B. Pachpatte . On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148
  • The aim of this work is to provide further insight into the qualitative behavior of mechanical systems that are well described by Lennard-Jones type interactions on an atomistic scale. By means of $Γ$-convergence techniques, we study the continuum limit of one-dimensional chains of atoms with finite range interactions of Lennard-Jones type, including the classical Lennard-Jones potentials. So far, explicit formula for the continuum limit were only available for the case of nearest and next-to-nearest neighbour interactions. In this work, we provide an explicit expression for the continuum limit in the case of finite range interactions. The obtained homogenization formula is given by the convexification of a Cauchy-Born energy density.

    Furthermore, we study rescaled energies in which bulk and surface contributions scale in the same way. The related discrete-to-continuum limit yields a rigorous derivation of a one-dimensional version of Griffith' fracture energy and thus generalizes earlier derivations for nearest and next-to-nearest neighbors to the case of finite range interactions.

    A crucial ingredient to our proofs is a novel decomposition of the energy that allows for refined estimates.



    Lately, fractional calculus has played a very significant role in various scientific fields; see for instance [1,2] and the references cited therein. As a result of this, fractional differential equations have caught the attention of many investigators working in different desciplines [3,4,5,6,7,8,9,10,11]. However, most of researchers works have been conducted by using fractional derivatives that mainly rely on Riemann-Liouville, Hadamard, Katugampola, Grunwald Letnikov and Caputo approaches.

    Fractional derivatives of a function with respect to another function have been considered in the classical monographs [1,12] as a generalization of Riemann-Liouville derivative. This fractional derivative is different from the other classical fractional derivative as the kernel appears in terms of another function $ \psi $. Thus, this type of derivative is referred to as $ \psi $-fractional derivative. Recently, this derivative has been reconsidered by Almeida in [14] where the Caputo-type regularization of the existing definition and some interesting properties are provided. Several properties of this operator could be found in [1,12,13,15,16]. For some particular cases of $ \psi $, one can realize that $ \psi $-fractional derivative can be reduced to the Caputo fractional derivative [1], the Caputo-Hadamard fractional derivative [17] and the Caputo-Erdélyi-Kober fractional derivative [18].

    On the other hand, the investigation of qualitative properties of solutions for different fractional differential (and integral) equations is the key theme of applied mathematics research. Numerous interesting results concerning the existence, uniqueness, multiplicity, and stability of solutions or positive solutions by applying some fixed point techniques are obtained. However, most of the proposed problems have been handled concerning the classical fractional derivatives of the Riemann-Liouville and Caputo [19,20,21,22,23,24,25,26,27,28,29].

    In parallel with the intensive investigation of fractional derivative, a normal generalization of the Langevin differential equation appears to be replacing the classical derivative by a fractional derivative to produce fractional Langevin equation (FLE). FLE was first introduced in [30] and then different types of FLE were the object of many scholars [31,32,33,34,35,36,37,38,39,40]. In particular, the authors studied a nonlinear FLE involving two fractional orders on different intervals with three-point boundary conditions in [40], whereas FLE involving a Hadamard derivative type was considered in [33,34,35].

    Alternatively, the stability problem of differential equations was discussed by Ulam in [41]. Thereafter, Hyers in [42] developed the concept of Ulam stability in the case of Banach spaces. Rassias provided a fabulous generalization of the Ulam-Hyers stability of mappings by taking into account variables. His approach was refered to as Ulam-Hyers-Rassias stability [43]. Recently, the Ulam stability problem of implicit differential equations was extended into fractional implicit differential equations by some authors [44,45,46,47]. A series of papers was devoted to the investigation of existence, uniqueness and U-H stability of solutions of the FLE within different kinds of fractional derivatives.

    Motivated by the recent developments on $ \psi $-fractional calculus, in the present work, we investigate the existence, uniqueness and stability in the sense Ulam–Hyers–Rassias of solutions for the following FLE within $ \psi $-Caputo fractional derivatives of different orders involving nonlocal boundary conditions

    $ {(cDα,ψa+,t)(cDβ,ψa+,t+λ)[u]=F(t,u(t),cDγ,ψa+,t[u]),t(a,T),u(a)=0,u(η)=0,u(T)=μ(Jγ,ψa+,ξ)[u],μ>0, $ (1.1)

    where $ \left(J_{a+, \xi }^{\gamma, \psi }\right) $ and $ \left(^{c}\mathfrak{D}_{a+, t}^{\theta, \psi }\right) $ are $ \psi $-fractional integral of order $ \gamma $, $ \ \psi $-Caputo fractional derivative of order $ \theta \in \{ \alpha, \beta, \gamma \} $ respectively, $ 0\leq a < \eta < \xi < T < \infty, \ 1 < \alpha \leq 2, \ 0 < \gamma < \beta \leq 1, \; \lambda $ is a real number and $ \mathfrak{F}:[a, T]\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{\ R}^{+} $ is a continuous function. We observe that problem (1.1) is designated within a general platform in the sense that general fractional derivative is considered with respect to different fractional orders, the forcing function depends on the general fractional derivative and boundary conditions involve integral fractional operators. Furthermore, the stability analysis in the sense of Ulam is investigated by the help of new versions of $ \psi $-fractional Gronwall inequality and $ \psi $-fractional integration by parts. It is worth mentioning here that the proposed results in this paper which rely on $ \psi $-fractional integrals and derivatives can generalize the existing results in the literature [31,40] and obtain them as particular cases.

    The major contributions of the work are as follows: Some lemmas and definitions on $ \psi $-fractional calculus theory are recalled in Section $ 2 $. In Section $ 3 $, we prove the existence and uniqueness of solutions for problem (1.1) via applying fixed point theorems. Section $ 4 $ devotes to discuss different types of stability results for the problem (1.1) by the help of generalized $ \psi $-Gronwall's inequality [49] and $ \psi $-fractional integration by parts. The proposed results are examined via Maple using several numerical examples for different values of function $ \psi $, presented in several tables in Section $ 5 $, to check the applicability of the theoretical findings. We end the paper by a conclusion in Section $ 6 $.

    The standard Riemann-Liouville fractional integral of order $ \alpha $, $ \Re(\alpha) > 0 $, has the form

    $ (Jαa+,t)[u]=1Γ(α)ta(tτ)α1u(τ)dτ, t>a. $

    The left-sided factional integrals and fractional derivatives of a function $ u $ with respect to another function $ \psi $ in the sense of Riemann-Liouville are defined as follows [13,14]

    $ (Jα,ψa+,t)[u]=1Γ(α)taψ(τ)(ψ(t)ψ(τ))α1u(τ)dτ, $

    and

    $ (Dα,ψa+,t)[u]=(1ψ(t)ddt)n(Jnα,ψa+,t)[u], $

    respectively, where $ n = [\alpha ]+1. $

    Analogous formulas can be offered for the right fractional (integral and derivative) as follows:

    $ (Jα,ψt,b)[u]=1Γ(α)btψ(τ)(ψ(τ)ψ(t))α1u(τ)dτ, $

    and

    $ (Dα,ψt,b)[u]=(1ψ(t)ddt)n(Jnα,ψt,b)[u]. $

    The left (right) $ \psi $-Caputo fractional derivatives of $ u $ of order $ \alpha $ are given by

    $ (cDα,ψa+,t)[u]=(Jnα,ψa+,t)(1ψ(t)ddt)n[u] $

    and

    $ (cDα,ψt,b)[u]=(Jnα,ψt,b)(1ψ(t)ddt)n[u], $

    respectively. In particular, when $ \alpha \in (0, 1) $, we have

    $ (cDα,ψa+,t)[u]=(J1α,ψa+,t)(1ψ(t)ddt)[u] $

    and

    $ (cDα,ψt,b)[u]=(J1α,ψt,b)(1ψ(t)ddt)[u], $

    where $ u, \psi \in \mathcal{C}^{n}[a, b] $ two functions such that $ \psi $ is increasing and $ \psi ^{\prime }(t)\neq 0 $, for all $ t\in \lbrack a, b] $.

    Remark 2.1. We propose the remarkable paper [16] in which some generalizations using $ \psi $-fractional integrals and derivatives are described. In particular, we have

    $ {if  ψ(t)t,  then Jα,ψa+,tJαa+,t,  if  ψ(t)lnt,  then Jα,ψa+,tHJαa+,t,  if  ψ(t)tρ,  then, Jα,ψa+,tρJαa+,t, ρ>0,  $

    where $ J_{a+, t}^{\alpha }, ^{H}J_{a+, t}^{\alpha }, ^{\rho }J_{a+, t}^{\alpha } $ are classical Riemann-Liouville, Hadamard, and Katugampola fractional operators.

    Lemma 2.2. [14] Given $ u\in \mathcal{C}([a, b]) $ and $ v\in \mathcal{C} ^{n}([a, b]) $, we have that for all $ \alpha > 0 $

    $ bav(τ)(cDα,ψa+,τ)[u]dτ=bau(τ)(cDα,ψτ,b)[vψ]ddτψ(τ) dτ+n1k=0(1ψ(t)ddt)k(Jnα,ψτ,b)[vψ]u[nk1]ψ(τ)|τ=bτ=a, $

    where

    $ u[k]ψ(t)=(1ψ(t)ddt)ku(t). $

    Lemma 2.3. [1] Let $ \alpha > 0 $ and $ u, \ \psi \in \mathcal{C}([a, b]) $. Then

    $ Jα,ψa+,t[u]CKψuC, Kψ=1Γ(1+α)(ψ(b)ψ(a))α. $

    For all $ n-1 < \alpha < n $,

    $ cDα,ψa+,t[u]CKψuC[n]ψ, Kψ=1Γ(n+1α)(ψ(b)ψ(a))nα $

    where $ ||\cdot||_C $ is the Chebyshev norm defined on $ C([a, b]) $.

    The following results are well known and one can see [1,14] for further details.

    Lemma 2.4. [1] Let $ \alpha, \beta > 0 $, consider the functions

    $ (Jα,ψa+,t)[(ψ(τ)ψ(a))β1]=Γ(β)Γ(α+β)(ψ(t)ψ(a))α+β1, $
    $ (Jα,ψa+,t)[1]=1Γ(1+α)(ψ(t)ψ(a))α $

    and

    $ (cDα,ψa+,t)[(ψ(τ)ψ(a))β1]=Γ(β)Γ(βα)(ψ(t)ψ(a))βα1, $
    $ (cDα,ψa+,t)[1]=1Γ(1α)(ψ(t)ψ(a))α,α>0. $

    Note that

    $ (cDα,ψa+,t)[(ψ(τ)ψ(a))k]=0, k=0,..,n1. $

    The subsequent properties are valid: If $ \alpha, \beta > 0 $, then

    $ (Jα,ψa+,t)(Jβ,ψa+,t)[u]=(Jα+β,ψa+,t)[u]and (cDα,ψa+,t)(cDβ,ψa+,t)[u]=(cDα+β,ψa+,t)[u], $
    $ (cDα,ψa+,t)(Jβ,ψa+,t)[u]=(Jβα,ψa+,t)[u]. $ (2.1)

    Lemma 2.5. [1] Given a function $ u\in \mathcal{C}^{n}[a, b] $ and $ \alpha > 0 $, we have

    $ Jα,ψa+,t(cDα,ψa+,t)[u]=u(t)n1j=0[1j!(1ψ(t)ddt)ju(a)](ψ(t)ψ(a))j. $

    In particular, given $ \alpha \in (0, 1) $, we have

    $ Jα,ψa+,t(cDα,ψa+,t)[u]=u(t)u(a). $

    Lemma 2.6. Given a function $ u\in \mathcal{C}^{n}[a, b] $ and $ 1 > \alpha > 0 $, we have

    $ (Jα,ψa+,t2)[u](Jα,ψa+,t1)[u]2uΓ(α+1)(ψ(t2)ψ(t1))α. $

    Proof. Using Lemmas 2.3 and 2.4, we have

    $ |(Jα,ψa+,t2)[u](Jα,ψa+,t1)[u]|=1Γ(α)|t2aψ(τ)[(ψ(t2)ψ(τ))α1(ψ(t1)ψ(τ))α1]u(τ)dτ|+1Γ(α)|t2t1ψ(τ)(ψ(t2)ψ(τ))α1u(τ)dτ|uΓ(α+1)[(ψ(t2)ψ(t1))α+(ψ(t1)ψ(a))α(ψ(t2)ψ(a))α]+uΓ(α+1)(ψ(t2)ψ(t1))α2uΓ(α+1)(ψ(t2)ψ(t1))α. $

    Now we state here two important fixed point theorems, namely Banach and Krasnoselskii's fixed point theorems. These will help us to develop sufficient conditions for the existence and uniqueness of solutions.

    Theorem 2.7. [48] Let $ \mathcal{B}_{r} $ be the closed ball of radius $ r > 0 $, centred at zero, in a Banach space $ X $ with $ \Upsilon :\mathcal{B} _{r}\rightarrow X $ a contraction and $ \Upsilon (\partial \mathcal{\ B} _{r})\subseteq \mathcal{B}_{r} $. Then, $ \Upsilon $ has a unique fixed point in $ \mathcal{B}_{r} $.

    Theorem 2.8. [48] Let $ \mathcal{M} $ be a closed, convex, non-empty subset of a Banach space $ X\times X $. Suppose that $ \mathbb{E} $ and $ \mathbb{ \ F} $ map $ \mathcal{M} $ into $ X $ and that

    (i) $ \mathbb{E}u+\mathbb{F}v\in \mathcal{M} $ for all $ u, v\in \mathcal{ M} $;

    (ii) $ \mathbb{E} $ is compact and continuous;

    (iii) $ \mathbb{F} $ is a contraction mapping.

    Then the operator equation $ \mathbb{E}w+\mathbb{F}w = w $ has at least one solution on $ \mathcal{M} $.

    Definition 2.9. The problem (1.1) is U-H stable if there exists a real number $ c_{f} > 0 $ such that for each $ \epsilon > 0 $ and for each solution $ \tilde{u}\in \mathcal{C}\left([ a, T]\right) $ of the inequality

    $ |(cDα,ψa+,t)(cDβ,ψa+,t+λ)[˜u]F(t,u(t),cDγ,ψa+,t[˜u])|ϵ, t[a,T], $ (2.2)

    there exists a solution $ u\in \mathcal{C}\left[ a, T\right] $ of the problem (1.1) with

    $ |˜u(t)u(t)|ϵcf. $

    Definition 2.10. The problem (1.1) is generalized U-H stable if there exists $ \Phi \left(t\right) \in C\left(\mathbb{R} ^{+}, \mathbb{R} ^{+}\right) $, $ \Phi \left(0\right) = 0 $ such that for each $ \epsilon > 0 $ and for each solution $ \tilde{u}\in \mathcal{C}\left[ a, T\right] $ of inequality (2.2), there exists a solution $ u\in \mathcal{C}\left[ a, T\right] $ of problem (1.1) with

    $ |˜u(t)u(t)|Φ(ϵ), t[a,T], $

    where $ \Phi \left(\epsilon \right) $ is only dependent on $ \epsilon $.

    Definition 2.11. The problem (1.1) is U-H-R stable if there exists a real number $ c_{f} > 0 $ such that for each $ \epsilon > 0 $ and for each solution $ \tilde{u}\in \mathcal{C}\left[ a, T\right] $ of the inequality

    $ |(cDα,ψa+,t)(cDβ,ψa+,t+λ)[˜u]F(t,u(t),cDγ,ψa+,t[˜u])|ϵΦ(t), t[a,T], $

    there exists a solution $ u\in \mathcal{C}\left[ a, T\right] $ of the problem (1.1) with

    $ |˜u(t)u(t)|ϵcfΦ(t). $

    Definition 2.12. The problem (1.1) is generalized U-H-R stable with respect to $ \Phi $ if there exists $ c_{f} > 0 $ such that for each solution $ \tilde{u} \in \mathcal{C}\left[ a, T\right] $ of the inequality

    $ |cDα,ψa+,t(cDβ,ψa+,t+λ)[u]F(t,u(t),cDγ,ψa+,t[u])|Φ(t), t[a,T], $

    there exists a solution $ u\in \mathcal{C}\left[ a, T\right] $ of the problem (1.1) with

    $ |˜u(t)u(t)|cfΦ(t). $

    We adopt the following conventions:

    $ Fu(t)=F(t,u(t),cDγ,ψa+,t[u]) andK(t;a)=ψ(t)ψ(a). $

    We remark that, the following generalized $ \psi $-Gronwall Lemma is an important tool in proving the main results of this paper.

    Lemma 2.13. [49] Let $ u, v $ be two integrable functions on $ [a, b] $. Let $ \psi \in \mathcal{C}^{1}[a, b] $ be an increasing function such that $ \psi ^{\prime }\left(t\right) \neq 0 $, $ \forall\; t\in \lbrack a, b] $. Assume that

    (i) $ u $ and $ v $ are nonnegative;

    (ii) The functions $ \left(g_{i}\right) _{i = 1\cdots n}\ $are bounded and monotonic increasing functions on $ [a, b]; $

    (iii) The constants $ \alpha _{i} > 0\ \left(i = 1, 2, \ldots, n\right).\ $If

    $ u(t)v(t)+ni=1gi(t)taψ(τ)(K(t;τ))αi1u(τ)dτ, $

    then

    $ u(t)v(t)+k=1(n1,2,3,,k=1ki=1(gi(t)Γ(αi))Γ(ki=1αi)ta[ψ(τ)(K(t;τ))ki=1αi1]v(τ) dτ). $

    Remark 2.14. [49] For $ n = 2 $ in the hypotheses of Lemma 2.13. Let $ v(t) $ be a nondecreasing function for $ a\leq t < T $. Then we have

    $ u(t)v(t)[Eα1(g1(t)Γ(α1)(K(t;a))α1)+Eα2(g2(t)Γ(α2)(K(t;a))α2)], $

    where $ E_{\alpha _{i}}(i = 1, 2) $ is the Mittag-Leffler function defined below.

    Definition 2.15. [50] The Mittag-Leffler function is given by the series

    $ Eα(z)=k=0zkΓ(αk+1), $ (2.3)

    where $ \Re\left(\alpha \right) > 0 $ and $ \Gamma \left(z\right) $ is a Gamma function. In particular, if $ \alpha = 1/2 $ in (2.3) we have

    $ E1/2(z)=exp(z2)[1+erf(z)], $

    where $ erf \left(z\right) $ is the error function.

    In the remaining portion of the paper, we make use of the next suppositions:

    (A1) For each $ t\in \left[ a, T\right] $, there exist a constant $ L_{i} > 0\ \left(i = 1, 2\right) $ such that

    $ |F(t,u1,v1)F(t,u2,v2)|L1|u1v2|+L2|u1v2|,forallui,viR. $

    (A2) There exists an increasing function $ \chi \left(t\right) \in \left(\mathcal{C}\left[ a, T\right], \mathbb{R} ^{+}\right) $, for any $ t\in \left[ a, T\right], $

    $ |F(t,u,v)|χ(t),u,vR. $

    (A3) There exist a constant $ L > 0 $ such that

    $ |F(t,u,v)|L,foranyt[a,T],u,vR. $

    (A4) There exists an function $ \Phi \left(t\right) \in \left(\mathcal{C}\left[ a, T\right], \mathbb{R} ^{+}\right) $ and there exists $ l_{\alpha, \psi } > 0 $ such that for any $ t\in \left[ a, T\right], $

    $ (Jα,ψa+,t)[Φ]lα,ψΦ(t), α>0. $

    Denoting

    $ σ11=(Jβ,ψa+,η)[1]and σ12=(Jβ,ψa+,η)[K(τ;a)], $

    and

    $ σ21=(Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]and σ22=((Jβ,ψa+,T)[K(τ;a)]μ(Jβ+γ,ψa+,ξ)[K(τ;a)]). $

    Further, we assume

    $ |σ11σ22σ21σ12|0, $

    where $ \sigma _{ij} $ are constants.

    In order to study the nonlinear FLE (1.1), we first consider the linear associated FLE and conclude the form of the solution.

    The following lemma regards a linear variant of problem

    $ {(cDα,ψa+,t)(cDβ,ψa+,t+λ)[u]=F(t),t(a,T),u(a)=0,u(η)=0,u(T)=μ(Jγ,ψa+,ξ)[u],a<η<ξ<T, $ (3.1)

    where $ F\in \mathcal{C}([a, T], \mathbb{R}). $

    Lemma 3.1. The unique solution of the $ \psi $-Caputo linear problem (3.1) is given by the integral equation

    $ u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[F]+(K(t;a))β(K(t;η)Γ(β+2)Δ{(Jα+β,ψa+,T)[F]λ(Jβ,ψa+,T)[u]μ(Jα+β+γ,ψa+,ξ)[F]+μλ(Jβ+γ,ψa+,ξ)[u]}(K(t;a))βΔ(K(η;a))β((K(T;a))β(K(T;t))Γ(β+2)μ(K(ξ;a))β+γ[(β+1)(K(ξ;t))γ(K(t;a))]Γ(β+γ+2)(β+1))×{(Jα+β,ψa+,η)[F]λ(Jβ,ψa+,η)[u]}, $ (3.2)

    where

    $ \Delta=\left[\frac{(\mathcal{K}(T ; a))^{\beta} \mathcal{K}(T ; \eta)}{\Gamma(\beta+2)}-\frac{\mu(\mathcal{K}(\xi ; a))^{\beta+\gamma}\;[(\beta+1) \mathcal{K}(\xi ; \eta)-\gamma \mathcal{K}(\eta ; a)]}{\Gamma(\beta+\gamma+2)(\beta+1)}\right] \neq 0. $ (3.3)

    Proof. Applying $ \left(J_{a+, t}^{\alpha, \psi }\right) $ on both sides of (3.1-a), we have

    $ (cDβ,ψa+,t+λ)[u]=(Jα,ψa+,t)[F]+c1+c2(ψ(t)ψ(a)), $ (3.4)

    for $ c_{1}, \; c_{2}\in \mathbb{R}. $

    Now applying $ \left(J_{a+, t}^{\beta, \psi }\right) $ to both sides of (3.4), we get

    $ u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[F]+c1(Jβ,ψa+,t)[1]+c2(Jβ,ψa+,t)[K(τ;a)]+c3, $

    where $ c_{3}\in \mathbb{R}. $

    Using the boundary conditions in (3.1-b), we obtain $ c_{3}: = c_{3}\left(F\right) = 0 $ and

    $ Jδ,ψa+,t[u]=λ(Jβ+δ,ψa+,t)[u]+(Jα+β+δ,ψa+,t)[F]+c1(Jβ+δ,ψa+,t)[1]+c2(Jβ+δ,ψa+,t)[K(τ;a)]. $ (3.5)

    Further, we get a system of linear equations with respect to $ c_{1} $, $ c_{2} $ as follows

    $ (σ11σ12σ21σ22)(c1c2)=(b1b2), $

    where

    $ b1=λ(Jβ,ψa+,η)[u](Jα+β,ψa+,η)[F] $

    and

    $ b2=λ((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u])((Jα+β,ψa+,T)[F]μ(Jα+β+δ,ψa+,ξ)[F]). $

    We note

    $ Δdet(σ)=|σ11σ22σ21σ12|. $

    Because the determinant of coefficients for $ \Delta \neq 0.\ $Thus, we have

    $ c1:=c1(F)=σ22b1σ12b2Δandc2:=c2(F)=σ11b2σ21b1Δ. $

    Substituting these values of $ c_{1} $ and $ c_{2} $ in (3.5), we finally obtain (3.2) as

    $ u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[F]+σ22b1σ12b2Δ(Jβ,ψa+,t)[1]+σ11b2σ21b1Δ(Jβ,ψa+,t)[K(τ;a)]. $ (3.6)

    That is, the integral equation (3.6) can be written as (3.2) and

    $ (Jδ,ψa+,t)[u]=λ(Jβ+δ,ψa+,t)[u]+(Jα+β+δ,ψa+,t)[F]+σ22b1σ12b2Δ(Jβ+δ,ψa+,t)[1]+σ11b2σ21b1Δ(Jβ+δ,ψa+,t)[K(τ;a)]. $

    Differentiating the above relations one time we obtain (3.1-a), also it is easy to get that the condition (3.1-b) is satisfied. The proof is complete.

    For convenience, we define the following functions

    $ d11(t)=1Δ(σ22(Jβ,ψa+,t)[1]σ21(Jβ,ψa+,t)[K(τ;a)]),d21(t)=d11(t) $ (3.7)

    and

    $ d12(t)=1Δ(σ12(Jβ,ψa+,t)[1]σ11(Jβ,ψa+,t)[K(τ;a)]),d22(t)=d12(t). $ (3.8)

    The following result is an immediate consequence of Lemma 3.1.

    Lemma 3.2. Let $ \ \lambda \in \mathbb{R}. $ Then problem (1.1) is equivalent to the integral equation

    $ u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu]+ϕu(F), $ (3.9)

    where

    $ ϕu(F)=d11(t)(Jα+β,ψa+,η)[Fu]+d12(t)((Jα+β,ψa+,T)[Fu]μ(Jα+β+γ,ψa+,ξ)[Fu])+λd21(t)(Jβ,ψa+,η)[u]λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+γ,ψa+,ξ)[u]) $ (3.10)

    and $ d_{ij} $ are defined in (3.7) and (3.8).

    From the expression of (1.1-a) and (3.9), we can see that if all the conditions in Lemmas 3.1 and 3.2 are satisfied, the solution is a $ \mathcal{C}\left[ a, T\right] $ solution of the $ \psi $-Caputo fractional boundary value problem (1.1).

    In order to lighten the statement of our result, we adopt the following notation.

    $ ς11=supt[a,T]|λ(Jβ,ψa+,t)[1]+ρ11+L1((Jα+β,ψa+,t)[1]+ρ12)|, $ (3.11)
    $ ς12=L2ς13whereς13=supt[a,T]|(Jα+β,ψa+,t)[1]|+ρ12, $ (3.12)
    $ ς21=supt[a,T]|λ(Jβγ,ψa+,t)[1]+ρ21+L1((Jα+βγ,ψa+,t)[1]+ρ22)|, $ (3.13)
    $ ς22=L2ς23whereς23=supt[a,T]|(Jα+βγ,ψa+,t)[1]|+ρ22, $

    with

    $ ρ11=|λ|supt[a,T](|d21(t)|(Jβ,ψa+,η)[1]+|d22(t)|((Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1])), $ (3.14)
    $ ρ12=supt[a,T](|d11(t)|(Jα+β,ψa+,η)[1]+|d12(t)|((Jα+β,ψa+,T)[1]μ(Jα+β+γ,ψa+,ξ)[1])), $ (3.15)
    $ ρ21=|λ|supt[a,T](|(cDγ,ψa+,t)[d21]|(Jβ,ψa+,η)[1]+|(cDγ,ψa+,t)[d22]|(Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]), $ (3.16)

    and

    $ ρ22=supt[a,T](|(cDγ,ψa+,t)[d11]|(Jα+β,ψa+,η)[1]+|(cDγ,ψa+,t)[d12]|(Jα+β,ψa+,T)[1]μ(Jα+β+γ,ψa+,ξ)[1]). $ (3.17)

    We are now in a position to establish the existence and uniqueness results. Fixed point theorems are the main tool to prove this.

    Let $ \mathcal{C} = \mathcal{C}([a, T], \mathbb{R}) $ be a Banach space of all continuous functions defined on $ [a, T] $ endowed with the usual supremum norm$. $ Define the space

    $ E={u:uC3([a,T],R), (cDγ,ψa+,t)[u]C}, $ (3.18)

    equipped with the norm

    $ uE=max{u,(cDγ,ψa+,t)[u]}. $

    Then, we may conclude that $ \left(E, \left \Vert.\right \Vert _{E}\right) $ is a Banach space.

    To introduce a fixed point problem associated with (3.9) we consider an integral operator $ \Psi :E\rightarrow E $ defined by

    $ (Ψu)(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu]+ϕu(F). $ (3.19)

    Theorem 3.3. Assume that $ \mathfrak{F}:[a, T]\times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} ^{+} $ is a continuous function that satisfies (A$ _{1} $). If we suppose that

    $ 0<ς=max{ς11,ς12,ς21,ς22}<1, $ (3.20)

    holds. Then the problem (1.1) has a unique solution on $ E. $

    Proof. The proof will be given in two steps.

    Step 1. The operator $ \Psi $ maps bounded sets into bounded sets in $ E $.

    For our purpose, consider a function $ u\in E. $ It is clear that $ \Psi u\in E. $ Also by (2.1), (3.10) and (3.19), we have

    $ (cDδ,ψa+,t)(Ψu)=λ(Jβδ,ψa+,t)[u]+(Jα+βδ,ψa+,t)[Fu]+(cDδ,ψa+,t)[ϕu(F)]. $ (3.21)

    Indeed, it is sufficient to prove that for any $ r > 0 $, for each $ u\in B_{r} = \left \{ u\in E:\left \Vert u\right \Vert _{E}\leq r\right \}, $ we have $ \left \Vert \Psi u\right \Vert _{E}\leq r. $

    Denoting

    $ L0=supt[a,T]{|F(t,0,0|:t[a,T]}<andLB=L1supt[a,T]|u(t)|+L2supt[a,T]|(cDδ,ψa+,t)[u]|+L0. $

    By (A$ _{1} $) we have for each $ t\in \left[ a, T\right] $

    $ |Fu(t)|=|Fu(t)F0(t)+F0(t)||Fu(t)F0(t)|+|F0(t)|LB. $

    Firstly, we estimate $ \left \vert \phi _{u}\left(\mathfrak{F}\right) \right \vert $ as follows

    $ |ϕu(F)|=|λd21(t)(Jβ,ψa+,η)[u]|+|d12(t)((Jα+β,ψa+,T)[|FuF0|+F0]μ(Jα+β+δ,ψa+,ξ)[|FuF0|+F0])|+|λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u])|+|d11(t)(Jα+β,ψa+,η)[|FuF0|+F0]|. $

    Then

    $ |ϕu(F)||d11(t)(Jα+β,ψa+,η)[LB]|+|d12(t)((Jα+β,ψa+,T)[LB]μ(Jα+β+δ,ψa+,ξ)[LB])|+|λd21(t)(Jβ,ψa+,η)[u]|+|λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u])|. $

    Taking the maximum over $ \left[ a, T\right], $ we get

    $ supt[a,T]|ϕu(F)|ρ11supt[a,T]|u(t)|+ρ12(L1supt[a,T]|u(t)|+L2supt[a,T]|(cDδ,ψa+,t)[u]|+L0), $ (3.22)

    where $ \phi _{u} $, $ d_{ij}\left(t\right) $ and $ \rho _{ij} $ defined by (3.10), (3.7), (3.8) and (3.14–3.17) respectively. Using (3.19) and (3.22), we obtain

    $ (Ψu)ς11supt[a,T]|u(t)|+ς12supt[a,T]|(cDδ,ψa+,t)[u]|+ς13L0, $ (3.23)

    where $ \varsigma _{ij} $ defined by (3.11) and (3.12). On the other hand

    $ (cDδ,ψa+,t)[ϕu(F)]=(cDδ,ψa+,t)[d11](Jα+β,ψa+,η)[Fu]+(cDδ,ψa+,t)[d12]((Jα+β,ψa+,T)[Fu]μ(Jα+β+δ,ψa+,ξ)[Fu])+λ(cDδ,ψa+,t)[d21](Jβ,ψa+,η)[u]λ(cDδ,ψa+,t)[d22]((Jβ,ψa+,T)[u]μ(Jβ+δ,ψa+,ξ)[u]). $

    Taking the maximum over $ \left[ a, T\right], $ we get

    $ supt[a,T]|(cDδ,ψa+,t)[ϕu(F)]|ρ21supt[a,T]|u(t)|+ρ22(L1supt[a,T]|u(t)|+L2supt[a,T]|(cDδ,ψa+,t)[u]|+L0). $ (3.24)

    Using (3.21) and (3.24), we obtain

    $ (cDδ,ψa+,t)(Ψu)ς21supt[a,T]|u(t)|+ς22supt[a,T]|(cDδ,ψa+,t)[u]|+ς23L0. $ (3.25)

    Consequently, by (3.23) and (3.25), we have

    $ (Ψu)EςuE+L0max{ς13,ς23}ςr+(1ς)r=r, $

    where $ \varsigma $ is defined by (3.20) and choose

    $ r>L0max{ς13,ς23}(1ς), 0<ς<1. $

    The continuity of the functional $ \mathfrak{F}_{u} $ would imply the continuity of $ \left(\Psi u\right) $ and $ \left(^{c}\mathfrak{D}_{a+, t}^{\delta, \psi }\right) \left(\Psi u\right) $ Hence, $ \Psi $ maps bounded sets into bounded sets in $ E $.

    Step 2.Now we show that $ \Psi $ is a contraction. By (A$ _{1} $) and (3.19), for $ u, v\in E $ and $ t\in \left[ a, T\right] $, we have

    $ |(Ψu)(t)(Ψv)(t)||λ||(Jβ,ψa+,t)[uv]|+|(Jα+β,ψa+,t)[FuFv]|+|ϕu(F)ϕv(F)|, $

    where

    $ |(Jα+β,ψa+,t)[FuFv]||(Jα+β,ψa+,t)[1]|(L1|uv|+L2|(cDδ,ψa+,t)[uv]|) $

    and

    $ ϕu(F)ϕv(F)=d11(t)(Jα+β,ψa+,η)[FuFv]+d12(t)((Jα+β,ψa+,T)[FuFv]μ(Jα+β+δ,ψa+,ξ)[FuFv])+λd21(t)(Jβ,ψa+,η)[uv]λd22(t)((Jβ,ψa+,T)[uv]μ(Jβ+δ,ψa+,ξ)[uv]), $

    for all $ t\in \left[ a, T\right] $, which implies

    $ |ϕu(F)ϕv(F)|(ρ11+L1ρ12)supt[a,T]|u(t)v(t)|+ρ12L2supt[a,T]|(cDδ,ψa+,t)[uv]|. $

    Hence, we get

    $ |(Ψu)(t)(Ψv)(t)||λ||supt[a,T](Jβ,ψa+,t)[1]|supt[a,T]|u(t)v(t)|+supt[a,T]|(Jα+β,ψa+,t)[1]|(L1supt[a,T]|u(t)v(t)|+L2supt[a,T]|(cDδ,ψa+,t)[uv]|)+supt[a,T]|ϕu(F)ϕv(F)|.       $

    Consequently,

    $ (Ψu)(Ψv)ς11supt[a,T]|u(t)v(t)|+ς12supt[a,T]|(cDδ,ψa+,t)[uv]|. $ (3.26)

    A similar argument shows that

    $ |(cDδ,ψa+,t)[(Ψu)(Ψv)]|=|λ||(Jβδ,ψa+,t)[uv]|+|(Jα+βδ,ψa+,t)[FuFv]|+|(cDδ,ψa+,t)[ϕu(F)ϕv(F)]|, $ (3.27)

    where

    $ supt[a,T]|(cDδ,ψa+,t)[ϕu(F)ϕv(F)]|(ρ21+L1ρ22)supt[a,T]|u(t)v(t)|+ρ22L2supt[a,T]|(cDδ,ψa+,t)[uv]|+ρ22L0. $ (3.28)

    Combining (3.27) and (3.28), we obtain

    $ (cDδ,ψa+,t)(Ψu)(cDδ,ψa+,t)(Ψv)ς21supt[a,T]|u(t)v(t)|+ς22supt[a,T]|(cDδ,ψa+,t)[uv]|. $ (3.29)

    Consequently, by (3.26) and (3.29), we have

    $ (Ψu)(Ψv)EςuvE $

    and choose $ \varsigma = \max \left \{ \varsigma _{11}, \varsigma _{12}, \varsigma _{21}, \varsigma _{22}\right \} < 1.\ $Hence, the operator $ \Psi $ is a contraction, therefore $ \Psi $ maps bounded sets into bounded sets in $ E $. Thus, the conclusion of the theorem follows by the contraction mapping principle.

    For simplicity of presentation, we let

    $ Λ11=(Jα+β,ψa+,T)[1]+(Jα+βγ,ψa+,T)[1]+(d11(T)+(cDγ,ψa+,T)[d11])(Jα+β,ψa+,η)[1], $
    $ Λ12=(d12(T)+(cDγ,ψa+,T)[d12])((Jα+β,ψa+,T)[1]μ(Jα+β+γ,ψa+,ξ)[1]), $
    $ Λ21=(Jβ,ψa+,T)[1]+d21(T)(Jβ,ψa+,η)[1]+d22(T)((Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]), $
    $ Λ22=(Jβγ,ψa+,T)[1]+(cDγ,ψa+,T)[d21](Jβ,ψa+,η)[1]+(cDγ,ψa+,T)[d22]((Jβ,ψa+,T)[1]μ(Jβ+γ,ψa+,ξ)[1]). $

    We consider the space defined by (3.18) equipped with the norm

    $ uE=u+(cDγ,ψa+,t)[u]. $ (3.30)

    It is easy to know that $ \left(E, \left \Vert.\right \Vert _{E}\right) $ is a Banach space with norm (3.30). On this space, by virtue of Lemma 3.2, we may define the operator $ \Psi :E\longrightarrow E $ by

    $ (Ψu)(t)=(Ψ1u)(t)+(Ψ2u)(t)=(λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu]+ϕu(F)), $

    where $ \Psi _{1} $ and $ \Psi _{2} $ are the two operators defined on $ B_{r} $ by

    $ (Ψ1u)(t)=(Jα+β,ψa+,t)[Fu]+d11(t)(Jα+β,ψa+,η)[Fu]+d12(t)((Jα+β,ψa+,T)[Fu]μ(Jα+β+γ,ψa+,ξ)[Fu]) $ (3.31)

    and

    $ (Ψ2u)(t)=λ(Jβ,ψa+,t)[u]+λd21(t)(Jβ,ψa+,η)[u]λd22(t)((Jβ,ψa+,T)[u]μ(Jβ+γ,ψa+,ξ)[u]), $ (3.32)

    where $ d_{ij}\left(t\right) $ are defined by (3.7) and (3.8).

    Applying $ \left(^{c}\mathfrak{D}_{a+, t}^{\gamma, \psi }\right) $ on both sides of (3.31) and (3.32), we have

    $ (cDγ,ψa+,t)[Ψ1u]=(Jα+βγ,ψa+,t)[Fu]+(cDγ,ψa+,t)[d11](Jα+β,ψa+,η)[Fu]+(cDγ,ψa+,t)[d12]((Jα+β,ψa+,T)[Fu]μ(Jα+β+γ,ψa+,ξ)[Fu]) $

    and

    $ (cDγ,ψa+,t)[Ψ2u]=λ(Jβγ,ψa+,t)[u]+λ(cDγ,ψa+,t)[d21](Jβ,ψa+,η)[u]λ(cDγ,ψa+,t)[d22]((Jβ,ψa+,T)[u]μ(Jβ+γ,ψa+,ξ)[u]). $ (3.33)

    Thus, $ \Psi $ is well-defined because $ \Psi _{1} $ and $ \Psi _{2} $ are well-defined. The continuity of the functional $ \mathfrak{F}_{u} $ confirms the continuity of $ \left(\Psi u\right) (t) $ and $ \left(^{c}\mathfrak{D}_{a+, t}^{\gamma, \psi }\right) \left[ \Psi u\right] (t) $, for each $ t\in \left[ a, T\right]. $ Hence the operator $ \Psi $ maps $ E $ into itself.

    In what follows, we utilize fixed point techniques to demonstrate the key results of this paper. In light of Lemma 3.2, we rewrite problem (3.9) as

    $ u=Ψu, uE. $ (3.34)

    Notice that problem (3.9) has solutions if the operator $ \Psi $ in (3.34) has fixed points. Conversely, the fixed points of $ \Psi $ are solutions of (1.1). Consider the operator $ \Psi :E\longrightarrow E.\ $ For $ u, v\in B_{r}, $ we find that

    $ ΨuE=Ψ1uE+Ψ2uE. $

    Theorem 3.4. Assume that $ \mathfrak{F}:[a, T]\times \mathbb{R}\times \mathbb{R} \longrightarrow \mathbb{R}^{+} $ is a continuous function and the assumption (A$ _{3} $) holds. If

    $ 0<|λ|(Λ21+Λ22)<1, $ (3.35)

    then, problem (1.1) has at least one fixed point on $ [a, T] $.

    Proof. The proof will be completed in four steps:

    Step 1. Firstly, we prove that, for any $ u, v\in B_{r} $, $ \Psi _{1}u+\Psi _{2}v\in B_{r} $, it follows that

    $ (Ψ1u)E=(Ψ1u)+(cDδ,ψa+,t)(Ψ1u)[(Jα+β,ψa+,T)[1]+d11(T)(Jα+β,ψa+,η)[1]+d12(T)((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]Fu+[(Jα+βδ,ψa+,T)[1]+(cDδ,ψa+,t)[d11](Jα+β,ψa+,η)[1]]Fu+[(cDδ,ψa+,t)[d12]((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]Fu, $

    we obtain

    $ (Ψ1u)E×Fu1=(Jα+β,ψa+,T)[1]+(Jα+βδ,ψa+,T)[1]+(d11(T)+(cDδ,ψa+,t)[d11])(Jα+β,ψa+,η)[1]+(d12(T)+(cDδ,ψa+,t)[d12])((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1]). $

    Then, we have

    $ (Ψ1u)E(Λ11+Λ12)×Fu, Λ11+Λ12<, $ (3.36)

    which yields that $ \Psi _{1} $ is bounded. On the opposite side

    $ 1|λ|(Ψ2v)E×v1E(Jβ,ψa+,T)+d21(T)(Jβ,ψa+,η)[1]+d22(T)((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1])+(Jβδ,ψa+,T)[1]+(cDδ,ψa+,t)[d21](Jβ,ψa+,η)[1]+(cDδ,ψa+,t)[d22]((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1]), $

    which implies

    $ (Ψ2v)E|λ|(Λ21+Λ22)×vE. $ (3.37)

    Then, from (3.36) and (3.37), it follows that

    $ Ψ(u,v)E(Λ11+Λ12)×Fu+|λ|(Λ21+Λ22)×vE. $ (3.38)

    By (A$ _{3} $) and (3.38), we have that

    $ (Λ11+Λ12)×Fu+|λ|(Λ21+Λ22)×vE(Λ11+Λ12)×L+|λ|(Λ21+Λ22)×rr. $

    Then

    $ r>(Λ11+Λ12)×L1|λ|(Λ21+Λ22), 0<|λ|(Λ21+Λ22)<1, $

    which concludes that $ \Psi _{1}u+\Psi _{2}v\in B_{r} $ for all $ u, v\in B_{r}. $

    Step 2. Next, for $ u, v\in B_{r}, \ \Psi _{2} $ is a contraction. From (3.32) and (3.33), we have

    $ (Ψ2u)(Ψ2v)E=(Ψ2u)(Ψ2v)+(cDδ,ψa+,t)(Ψ2u)(cDδ,ψa+,t)(Ψ2v), $

    where

    $ (Ψ2u)(Ψ2v)|λ|((Jβ,ψa+,t)[1]+d21(T)(Jβ,ψa+,η)[1]+d22(T)((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1]))uv. $ (3.39)

    From (3.39), we can write

    $ (Ψ2u)(Ψ2v)|λ|Λ21×uv. $ (3.40)

    On the other hand

    $ (cDδ,ψa+,t)(Ψ2u)(cDδ,ψa+,t)(Ψ2v)×uv1|λ|((Jβδ,ψa+,t)[1]+(cDδ,ψa+,T)[d21](Jβ,ψa+,η)[1]+(cDδ,ψa+,T)[d22]((Jβ,ψa+,T)[1]μ(Jβ+δ,ψa+,ξ)[1])), $

    which yields

    $ (cDδ,ψa+,t)(Ψ2u)(cDδ,ψa+,t)(Ψ2v)|λ|Λ22×uv. $ (3.41)

    Thus, using (3.40) and (3.41), it follows that

    $ (Ψ2u)+(Ψ2v)E|λ|(Λ21+Λ22)×uvE, $

    and choose $ 0 < \left \vert \lambda \right \vert \left(\Lambda _{21}+\Lambda _{22}\right) < 1.\ $Hence, the operator $ \Psi _{2} $ is a contraction.

    Step 3. The continuity of $ \Psi _{1} $ follows from that of $ \mathfrak{F}_{u}.\ $Let $ \left \{ u_{n}\right \} $ be a sequence such that $ u_{n} \longrightarrow u $ in $ E $. Then for each $ t\in \left[ a, T\right] $

    $ |(Ψ1un)(t)(Ψ1u)(t)|=(Jα+β,ψa+,t)[FunFu]+d11(t)(Jα+β,ψa+,η)[FunFu]+d12(t)((Jα+β,ψa+,T)[FunFu]μ(Jα+β+δ,ψa+,ξ)[FunFu]). $

    By last equality with Eq (3.31), we can write

    $ |(Ψ1un)(t)(Ψ1u)(t)|[(Jα+β,ψa+,t)[1]+d11(t)(Jα+β,ψa+,η)[1]+d12(t)((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]supt[a,T]|FunFu|. $

    It follows that

    $ (Ψ1un)(Ψ1u)E=(Ψ1un)(Ψ1u)+(cDδ,ψa+,t)((Ψ1un)(Ψ1u))[(Jα+β,ψa+,T)+d11(T)(Jα+β,ψa+,η)+d12(T)((Jα+β,ψa+,T)μ(Jα+β+δ,ψa+,ξ))]FunFu+[(Jα+βδ,ψa+,T)+(cDδ,ψa+,t)[d11](Jα+β,ψa+,η)+(cDδ,ψa+,t)[d12]((Jα+β,ψa+,T)μ(Jα+β+δ,ψa+,ξ))]FunFu. $ (3.42)

    By (3.42), we have

    $ (Ψ1un)(Ψ1u)EFunFu1(Jα+β,ψa+,T[1])+(Jα+βδ,ψa+,T[1])+(d11(T)+(cDδ,ψa+,t)[d11])(Jα+β,ψa+,η[1])+(d12(T)+(cDδ,ψa+,t)[d12])((Jα+β,ψa+,T[1])μ(Jα+β+δ,ψa+,ξ[1])). $ (3.43)

    Consequently, by (3.43), we have

    $ (Ψ1un)(Ψ1u)(Λ11+Λ12)×FunFu, Λ11+Λ12<. $

    Since $ \mathfrak{F}_{u} $ is a continuous function, then by Lebesgue's dominated convergence theorem it follows that

    $ (Ψ1un)(Ψ1u)0asn. $

    Furthermore, $ \Psi _{1} $ is uniformly bounded on $ B_{r} $ as $ \left \Vert \left(\Psi _{1}u\right) \right \Vert _{E}\leq \left(\Lambda _{11}+\Lambda _{12}\right) \times \left \Vert \mathfrak{F}_{u}\right \Vert _{\infty }, $ due to (3.36).

    Step 4. Finally, we establish the compactness of $ \Psi _{1}. $ Let $ u, v\in B_{r} $, for $ t_{1}, t_{2}\in \left[ a, T\right], \; t_{1} < t_{2}, $ we have

    $ (Ψ1u)(t2)(Ψ1u)(t1)[(Jα+β,ψa+,t2)[1]+d11(t2)(Jα+β,ψa+,η)[1]+d12(t2)((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]Fu[(Jα+β,ψa+,t1)[1]+d11(t1)(Jα+β,ψa+,η)[1]+d12(t1)((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ))[1]]Fu[((Jα+β,ψa+,t2)[1](Jα+β,ψa+,t1)[1])+Λ41(Jα+β,ψa+,η)[1]+Λ42((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]Fu. $ (3.44)

    On the other hand

    $ (cDδ,ψa+,t)(Ψ1u)(t2)(cDδ,ψa+,t)(Ψ1u)(t1)[(Jα+βδ,ψa+,t2)+(cDδ,ψa+,t2)[d11](Jα+β,ψa+,η)+(cDδ,ψa+,t2)[d12]((Jα+β,ψa+,T)μ(Jα+β+δ,ψa+,ξ))]Fu[(Jα+βδ,ψa+,t1)+(cDδ,ψa+,t1)[d11](Jα+β,ψa+,η)+(cDδ,ψa+,t1)[d12]((Jα+β,ψa+,T)μ(Jα+β+δ,ψa+,ξ))]Fu[((Jα+βδ,ψa+,t2)(Jα+βδ,ψa+,t1))+Λ43(Jα+β,ψa+,η)+Λ44((Jα+β,ψa+,T)μ(Jα+β+δ,ψa+,ξ))]Fu. $ (3.45)

    Using (3.44) and (3.45), we get

    $ (Ψ1u)(t2)(Ψ1u)(t1)E[((Jα+β,ψa+,t2)[1](Jα+β,ψa+,t1)[1])+((Jα+βδ,ψa+,t2)(Jα+βδ,ψa+,t1))+(Λ41+Λ43)(Jα+β,ψa+,η)[1]+(Λ42+Λ44)((Jα+β,ψa+,T)[1]μ(Jα+β+δ,ψa+,ξ)[1])]Fu, $

    where

    $ Λ41=d11(t2)d11(t1),Λ42=d12(t2)d12(t1) $

    and

    $ Λ43=(cDδ,ψa+,t2)[d11](cDδ,ψa+,t1)[d11],Λ44=(cDδ,ψa+,t2)[d12](cDδ,ψa+,t1)[d11]. $

    Consequently, we have

    $ (Ψ1u)(t2)(Ψ1u)(t1)×Fu10ast1t2. $

    Thus, $ \Psi _{1} $ is relatively compact on $ B_{r} $. Hence, by the Arzela-Ascoli Theorem, $ \Psi _{1} $ is completely continuous on $ B_{r} $. Therefore, according to Theorem 2.8, the Problem (1.1) has at least one solution on $ B_{r} $. This completes the proof.

    Hereafter, we discuss the Ulam–Hyers and Ulam–Hyers–Rassias stability of solutions of the FLE (1.1). In the proofs of Theorems 4.4 and 4.9, we use integration by parts in the settings of $ \psi $-fractional operators. Denoting

    $ φ1(t)=(Jβ,ψa+,t)[1]andφ2(t)=(Jβ,ψa+,t)[K(τ;a)]. $ (4.1)

    Remark 4.1. For every $ \epsilon > 0, $ a function $ \tilde{u}\in \mathcal{C} $ is a solution of of the inequality

    $ |(cDα,ψa+,t)(cDβ,ψa+,t+λ)[˜u]F(t,˜u(t),cDγ,ψa+,t[˜u])|ϵΦ(t), t[a,T], $ (4.2)

    where $ \Phi \left(t\right) \geq 0 $ if and only if there exists a function $ g\in \mathcal{C}, $ (which depends on $ \tilde{u} $) such that

    $ (\textbf{i}) \; \left \vert g\left(t\right) \right \vert \leq \epsilon \Phi \left(t\right), \ \forall t\in \left[ a, T\right]; $

    $ (\textbf{ii}) \; \left(^{c}\mathfrak{D}_{a+, t}^{\alpha, \psi }\right) \left(^{c}\mathfrak{D}_{a+, t}^{\beta, \psi }+\lambda \right) \left[ \tilde{u}\right] = \mathfrak{F}(t, \tilde{u}(t), ^{c}\mathfrak{D}_{a+, t}^{\gamma, \psi }\left[ \tilde{u}\right])+g\left(t\right). $

    Lemma 4.2. If $ \tilde{u}\in \mathcal{C} $ is a solution of the inequality (4.2) then $ \tilde{u} $ is a solution of the following integral inequality

    $ |˜u(t)(λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u]+ϕ˜u(F))|CΦ(t), $ (4.3)

    where

    $ CΦ(t)=ϵ(Jα+β,ψa+,t)[Φ]+c1(ϵΦ)φ1(t)+c2(ϵΦ)φ2(t)+c3(ϵΦ), $

    where $ c_{1}\left(\epsilon \Phi \right)-c_{3}\left(\epsilon \Phi \right) $ are real constants with $ \mathfrak{F}_{ \tilde{u}} = \Phi $ and $ C_{\Phi } $ is independent of $ \tilde{u}\left(t\right) $ and $ \mathfrak{F}_{\tilde{u}}. $

    Proof. Let $ \tilde{u}\in \mathcal{C} $ be a solution of the inequality (4.2). Then by Remark 4.1-$ (ii) $, we have that

    $ ˜u(t)=λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u+g]+ϕ˜u(F˜u+g), $ (4.4)

    where

    $ ϕ˜u(F˜u+g)=c1(F˜u+g)φ1(t)+c2(F˜u+g)φ2(t)+c3(F˜u+g), $

    with

    $ cj(F˜u+g)=cj(F˜u)+cj(g), j=1,2,3. $

    In view of (A$ _{1} $) and (4.3), we obtain

    $ |˜u(t)(λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u]+ϕ˜u(F))|=|(Jα+β,ψa+,t)[g]+c1(g)φ1(t)+c2(g)φ2(t)+c3(g)||(Jα+β,ψa+,t)[ϵΦ]+c1(ϵΦ)φ1(t)+c2(ϵΦ)φ2(t)+c3(ϵΦ)|=CΦ(t). $

    As an outcome of Lemma 4.2, we have the following result:

    Corollary 4.3. Assume that $ \mathfrak{F}_{\tilde{u}} $ is a continuous function that satisfies $ (A_{1}). $ If $ \tilde{u}\in \mathcal{C} $ is a solution of the inequality

    $ |cDα,ψa+,t(cDβ,ψa+,t+λ)u(t)F(t,u(t),cDγ,ψa+,t[u](t))|ϵ, t[a,T], $ (4.5)

    then $ \tilde{u} $ is a solution of the following integral inequality

    $ |˜u(t)(λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u]+ϕ˜u(F))|Cϵ, $ (4.6)

    with

    $ ˜u(a)=0,˜u(η)=0,˜u(T)=μ(Jγ,ψa+,ξ)[˜u],a<η<ξ<T, 0<μ, $ (4.7)

    where

    $ Cϵ=ϵς13, $ (4.8)

    where $ \varsigma _{13} $ is given by (3.12).

    Proof. By Remark 4.1-$ (ii), $ (4.4), and by using (3.10) with the conditions (4.7), we have

    $ ϕ˜u(F+g)=d11(t)(Jα+β,ψa+,η)[F˜u]+d12(t)((Jα+β,ψa+,T)[F˜u]μ(Jα+β+δ,ψa+,ξ)[F˜u])+λd21(t)(Jβ,ψa+,η)[˜u]λd22(t)((Jβ,ψa+,T)[˜u]μ(Jβ+δ,ψa+,ξ)[˜u])+d11(t)(Jα+β,ψa+,η)[g]+d12(t)((Jα+β,ψa+,T)[g]μ(Jα+β+δ,ψa+,ξ)[g]). $

    The solution of the problem (4.4) is given by

    $ |˜u(t)(λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u]+ϕ˜u(F))||(Jα+β,ψa+,t)[g]+d11(t)(Jα+β,ψa+,η)[g]+d12(t)((Jα+β,ψa+,T)[g]μ(Jα+β+δ,ψa+,ξ)[g])|, $

    which implies that

    $ |˜u(t)(λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u]+ϕ˜u(F))|Φϵ(t), $

    where

    $ Φϵ(t)=(Jα+β,ψa+,t)[ϵ]+c1(ϵ)φ1(t)+c2(ϵ)φ2(t)+c3(ϵ) $

    with

    $ Cϵsupt[a,T]|Φϵ(t)|=ϵς13, $

    which is the desired inequality (4.6).

    This corollary is obtained from Lemma 4.2 by setting $ \Phi \left(t\right) = 1 $, for all $ \ t\in \left[ a, T\right], $ with (4.7).

    Theorem 4.4. Assume that $ \mathfrak{F}_{\tilde{u}} $ is a continuous function that satisfies (A$ _{1} $) and (A$ _{4} $). The Eq (1.1-a) is H-U-R stable with respect to $ \Phi \ $if there exists a real number $ l_{\alpha, \psi } > 0 $ such that for each $ \epsilon > 0 $ and for each solution $ \tilde{u} \in \mathcal{C}^{3}\left(\left[ a, T\right], \mathbb{R} \right) $ of the inequality (4.2)$, \ $there exists a solution $ u^{\ast }\in \mathcal{C}^{3}\left(\left[ a, T\right], \mathbb{R} \right) $ of (1.1-a) with

    $ |˜u(t)u(t)|ϵlα,ψΦ(t). $ (4.9)

    Proof. Using (4.2) and (1.1), we obtain

    $ ˜u(t)=λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u+g]+c1(F˜u+g)φ1(t)+c2(F˜u+g)φ2(t)+c3(F˜u+g)=θ˜u(t,F˜u+g)+c1(F+g)φ1(t)+c2(F+g)φ2(t)+c3(F+g) $ (4.10)

    and

    $ u(t)=λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu]+c1(Fu)φ1(t)+c2(Fu)φ2(t)+c3(Fu)=θu(t,F)+c1(Fu)φ1(t)+c1(Fu)φ1(t)+c2(Fu)φ2(t)+c3(Fu), $

    where

    $ θ˜u(t,F)=λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u]. $ (4.11)

    By using (4.9) and (4.10), we have the following inequalities

    $ |˜u(t)u(t)||˜u(t)(θu(t,F)+c1(Fu)φ1(t)+c2(Fu)φ2(t)+c3(Fu))||˜u(t)(θ˜u(t,F)+c1(F˜u)φ1(t)+c1(F˜u)φ1(t)+c2(F˜u)φ2(t)+c3(F˜u))|+|θ˜u(t,F)θu(t,F)|+|(c1(F˜u)c1(Fu))φ1(t)|+|(c2(F˜u)c2(Fu))|φ2(t)+|c3(F˜u)c3(Fu)|. $

    By setting

    $ c33=c3(F˜u)c3(Fu)=˜u(a)u(a), c11=c1(F˜u)c1(Fu)andc22=c2(F˜u)c2(Fu), $

    and

    $ w(η)=˜u(η)u(η)+θ˜u(η,F)θu(η,F)andw(T)=˜u(T)u(T)+θ˜u(T,F)θu(T,F). $

    It follows from (4.9) and (4.10), that

    $ (φ1(η)φ2(η)φ1(T)φ2(T))(c11c22)=(w(η)w(T)), $

    Applying Lemma 4.2 and from estimation (4.11), it follows

    $ |˜u(t)u(t)|CΦ(t)+|θ˜u(t,F)θu(t,F)|+c11φ1(t)+c22φ2(t)+c33, $

    where

    $ |θ˜u(t,F)θu(t,F)|=|λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u](λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu])||λ(Jβ,ψa+,t)[˜uu]+(Jα+β,ψa+,t)[F˜uFu]|. $

    Using Lemma 2.4 and (A$ _{1} $), we have

    $ (Jα+β,ψa+,t)[|(cDδ,ψa+,t)[˜uu]|]=z0(t)(Jα+βδ,ψa+,t)[˜uu] $

    and

    $ |(Jα+β,ψa+,t)[F˜uFu]||L1(Jα+β,ψa+,t)[˜uu]|+L2|z0(t)(Jα+βδ,ψa+,t)[˜uu]|, $

    where

    $ z0(t)=|˜u(a)u(a)|Γ(α+β)×(J1δ,ψa,t)[(K(t;a))α+β1]. $

    Set

    $ q(t)=G(t)+L2|˜u(a)u(a)|Γ(α+β)×(J1δ,ψa,t)[(K(t;a))α+β1], $

    where

    $ G(t)=CΦ(t)+c11φ1(t)+c22φ2(t)+c33, $

    with

    $ CΦ(t)=ϵ(Jα+β,ψa+,t)[Φ]+c1(ϵΦ)φ1(t)+c2(ϵΦ)φ2(t)+c3(ϵΦ). $

    This means that

    $ p(t)q(t)+λ(Jβ,ψa+,t)[˜uu]+L1(Jα+β,ψa+,t)[˜uu]+L2(Jα+βδ,ψa+,t)[˜uu]. $ (4.12)

    Using Lemma 2.13, the above inequality implies the estimation for $ p\left(t\right) $ such as

    $ p(t)q(t)+k=1((λΓ(β))kΓ(kβ)ta[ψ(τ)(K(t;τ))kβ1]q(τ)dτ+(L1Γ(α+β))kΓ(k(α+β))ta[ψ(τ)(K(t;τ))k(α+β)1]q(τ)dτ+(L2Γ(α+βδ))kΓ(k(α+βδ))ta[ψ(τ)(K(t;τ))k(α+βδ)1]q(τ)dτ). $

    Therefore, with (A$ _{4} $), the inequality (4.12) can be rewritten as

    $ p(t)=|˜u(t)u(t)|ϵlα,ψΦ(t). $

    By Remark 2.14, one can obtain

    $ p(t)q(t)[Eβ(λΓ(β)(K(t;a))β)+Eα+β(λΓ(α+β)(K(t;a))α+β)+Eα+β+δ(λΓ(α+β+δ)(K(t;a))α+β+δ)]. $

    Thus, we complete the proof.

    Theorem 4.5. Assume that the assumptions (A$ _{1} $) and (A$ _{4} $). If a continuously differentiable function $ \tilde{u}:\left[ a, T\right] \longrightarrow \mathbb{R} $ satisfies (4.2), where $ \Phi :\left[ a, T\right] \longrightarrow \mathbb{R} ^{+} $ is a continuous function with (A$ _{3} $), then there exists a unique continuous function $ u^{\ast }:\left[ a, T\right] \longrightarrow \mathbb{R} $ of problem (1.1) such that

    $ |˜u(t)u(t)|ϵlα,ψΦ(t), $ (4.13)

    with

    $ |˜u(a)u(a)|=|˜u(η)u(η)|=|˜u(T)u(T)|=0. $ (4.14)

    Proof. Assume that $ \tilde{u}\in \mathcal{C}^{3}\left(\left[ a, T\right], \mathbb{R} \right) $ is a solution of the (4.2). In view of proof of Theorem 4.4, we get

    $ G(t)=CΦ(t)+c11φ1(t)+c22φ2(t)+c33=CΦ(t), $

    with the conditions (4.14), we have

    $ CΦ(t)=ϵ|(Jα+β,ψa+,t)[Φ]+(Jα+β,ψa+,η)[Φ]d11(t)+((Jα+β,ψa+,T)[Φ]μ(Jα+β+δ,ψa+,ξ)[Φ])d12(t)|. $

    Set $ q\left(t\right) = C_{\Phi }\left(t\right).\ $Using Theorem 4.4 and (A$ _{4} $), we conclude that, the estimation for $ p\left(t\right) = \left \vert u\left(t\right) -\tilde{u}\left(t\right) \right \vert $ such as (4.12).\ So the inequality (4.12) can be rewritten as

    $ p(t)=|u(t)˜u(t)|ϵlα,ψΦ(t). $

    By Remark 2.14, one can obtain

    $ p(t)q(t)[Eβ(λΓ(β)(K(t;a))β)+Eα+β(λΓ(α+β)(K(t;a))α+β)+Eα+β+δ(λΓ(α+β+δ)(K(t;a))α+β+δ)]. $

    This proves that the problem (1.1) is, Ulam–Hyers–Rassias stable.

    Theorem 4.6. Assume that the assumptions (A$ _{2} $), (A$ _{4} $) and (4.2) hold. Then Eq (1.1-a) is H-U-R stable.

    Proof. By (A$ _{2} $) and (4.11), we have

    $ |(Jα+β,ψa+,t)[F˜u](Jα+β,ψa+,t)[Fu]||(Jα+β,ψa+,t)[˜χ](Jα+β,ψa+,t)[χ]| $

    and

    $ |˜u(t)u(t)|CΦ(t)+|θ˜u(t,F+g)θu(t,F)|+c11|φ1(t)|+c22|φ2(t)|+c33, $

    where

    $ |θ˜u(t,F+g)θu(t,F)|=|λ(Jβ,ψa+,t)[˜u]+(Jα+β,ψa+,t)[F˜u+g](λ(Jβ,ψa+,t)[u]+(Jα+β,ψa+,t)[Fu])||λ(Jβ,ψa+,t)[˜uu]+(Jα+β,ψa+,t)[F˜uFu]|+|(Jα+β,ψa+,t)[g]|. $

    Using Lemma 4.2, we have

    $ p(t)q(t)+λ(Jβ,ψa+,t)[˜uu], $

    where

    $ q(t)=G(t)+|(Jα+β,ψa+,t)[˜χ](Jα+β,ψa+,t)[χ]|, $

    with

    $ G(t)=CΦ(t)+c11φ1(t)+c22φ2(t)+c33. $

    From the above, it follows

    $ p(t)q(t)+k=1(λΓ(β))kΓ(kβ)ta[ψ(τ)(K(t;τ))kβ1]q(τ)dτ. $

    By Remark 2.14, one can obtain

    $ p(t)q(t)Eβ(λΓ(β)(K(t;a))β). $

    Remark 4.7. If $ \Phi \left(t\right) $ is a constant function in the inequalities (4.2), then we say that (1.1-a) is Ulam–Hyers stable.

    Corollary 4.8. Assume that the assumptions (A$ _{2} $), (A$ _{4} $) and (4.2) hold. Then Eq (1.1-a) with (4.13) is Ulam–Hyers–Rassias stable.

    Proof. Using Theorem 4.6, we have

    $ p(t)q(t)+λ(Jβ,ψa+,t)[˜uu], $

    where

    $ p(t)=|˜u(t)u(t)|and q(t)=CΦ(t)+|(Jα+β,ψa+,t)[˜χ](Jα+β,ψa+,t)[χ]|. $

    We conclude that

    $ p(t)q(t)+k=1(λΓ(β))kΓ(kβ)ta[ψ(τ)(K(t;τ))kβ1]q(τ)dτ. $

    By Remark 2.14, one can obtain

    $ p(t)q(t)Eβ(λΓ(β)(K(t;a))β). $

    Theorem 4.9. Assume that the assumptions (A$ _{1} $) and (4.2) with (4.14) hold. Then problem (1.1) is Ulam–Hyers stable and consequently generalized Ulam–Hyers stable.

    Proof. Let $ u^{\ast } $ be a unique solution of the fractional Langevin type problem (1.1), that is, $ u^{\ast }(t) = \left(\Psi u^{\ast }\right) (t) $. Assume that $ \tilde{u}\in \mathcal{C}\left(\left[ a, T\right], \mathbb{R} \right) $ is a solution of the (4.2). By using the estimation

    $ |(Ψ˜u)(t)(Ψu)(t)|λ|(Jβ,ψa+,t)[˜uu]|+|(Jα+β,ψa+,t)[Fu(F˜u+g)]|+|ϕ˜u(F+g)ϕu(t,F)|, $

    where

    $ |ϕ˜u(F+g)ϕu(t,F)|=d11(t)(Jα+β,ψa+,η)[F˜uFu]+d12(t)((Jα+β,ψa+,T)[F˜uFu]μ(Jα+β+δ,ψa+,ξ)[F˜uFu])+λd21(t)(Jβ,ψa+,η)[˜uu]λd22(t)((Jβ,ψa+,T)[˜uu]μ(Jβ+δ,ψa+,ξ)[˜uu])+d11(t)(Jα+β,ψa+,η)[g]+d12(t)((Jα+β,ψa+,T)[g]μ(Jα+β+δ,ψa+,ξ)[g]). $ (4.15)

    Taking the maximum over $ \left[ a, T\right], $ we get

    $ supt[a,T]|(Ψ˜u)(t)(Ψu)(t)|ς11supt[a,T]|˜u(t)u(t)|+ς12supt[a,T]|(cDδ,ψa+,t)[˜uu]|+ϵς13. $

    Using Lemma 2.3 and (4.15), we obtain

    $ supt[a,T]|(Ψ˜u)(t)(Ψu)(t)|(ς11+ς12κ0)supt[a,T]|˜u(t)u(t)|+ϵς13, $

    where

    $ κ0=1Γ(2δ)(ψ(T)ψ(a))1δ. $

    We conclude that

    $ ˜uuϵς13(1ς11ς12κ0), 0<1ς11ς12κ0<1. $

    Thus problem (1.1) is Ulam–Hyers stable. Further, using Theorem 4.5 implies that solution of (1.1) is generalized Ulam–Hyers stable. This completes the proof.

    Corollary 4.10. Let the conditions of Theorem 4.9 hold. Then Problem (1.1) is generalized Ulam–Hyers–Rassias stable.

    Proof. Set $ \epsilon = 1 $ in the proof of Theorem 4.9, we get

    $ ˜uuς13(1ς11ς12κ0),  0<1ς11ς12κ0<1. $ (4.16)

    Remark 4.11. () Considering (1.1) and inequality (4.2), then under the assumptions of Theorem 4.5, one can follow the same procedure to confirm that (1.1) is Ulam–Hyers stable.

    (ⅱ) Other stability results for the Eq (1.1) can be discussed in a similar manner.

    In this section, we provide some test problems to illustrate the applicability of the established results.

    Example 5.1. Without loss of generality, we only consider the following $ \psi $ -Caputo Langevin equations

    $ (cDα,ψa+,t)(cDβ,ψa+,t+λ)[u]=F(t,u(t),cDγ,ψa+,t[u]). $

    By taking

    $ F(t,u,v)=κ20E1/2(t1/2)u+κ10v, κ[0,+) $ (5.1)

    we have

    $ L1=κ20sup{E1/2(t1/2):t[a,T]} and  L2=κ10. $

    For $ \psi \left(t\right) = t, \ $we shall show that condition (3.3) holds with

    $ α=3/2, β=6/7, γ=5/7, λ=1/6, μ=2, a=0,η=4/7, ξ=4/5, T=1. $ (5.2)

    A simple computation shows that

    $ σ11=0.653, σ12=0.201, σ21=0.0483and σ22=0.255. $
    $ Δ|σ11σ22σ21σ12|=0.157. $

    (ⅰ) Thus, the hypotheses ($\mathrm{A}_{1}$) and (3.20) are satisfied with

    $ d11(T)=1.54,d12(T)=1.02, d21(T)=1.54andd22(T)=1.02, $
    $ ρ11=0.217, ρ12=0.345, ρ21=0.280andρ22=0.635 $

    and

    $ ς11=0.393+0.174κ, ς12=0.0696κ, ς21=0.458+0.328κandς22=0.131κ, $

    where $ \rho _{11}, \ \rho _{12}, \ \rho _{21} $, $ \rho _{22}, \ \varsigma _{11}, \ \varsigma _{12} $ and $ \varsigma _{21} $ are given by (3.14)–(3.17) and (3.11)–(3.13) respectively.

    Thus condition (3.20), with

    $ 0<κ1.648 $

    is

    $ ςmax{ς11,ς12,ς21,ς22}=0.998<1, with κ=1.648 $

    and

    $ L0=0, ς13=0.696, ς23=1.31andmax{ς13,ς23}=1.31. $

    Hence, by Theorem 3.3, the Problem (1.1) with (5.1) and (5.2) has a unique solution.

    (ⅱ) On the other hand, using (3.35), the condition

    $ Λ21=2.11, Λ22=2.14, 0<|λ|(Λ21+Λ22)=0.708<1, $

    is satisfied and

    $ r>(Λ11+Λ12)×L1|λ|(Λ21+Λ22)=6.88LwithΛ11=1.31,Λ12=0.700. $

    So, by Theorem 3.4, the Problem (1.1) with (5.1) and (5.2) has at least one fixed point on $ [0, 1] $.

    (ⅲ) It is easy to check that the condition (4.8) is satisfied. Indeed,

    $ Cϵ=ϵς13=.696ϵ. $

    Then by Corollary 4.3, we have, if $ \tilde{u}\in \mathcal{C} $ is a solution of the inequality (4.5), then $ \tilde{u} $ is a solution of the integral inequality (4.6).

    (ⅳ) Let $ \Phi \left(t\right) = \psi \left(t\right) -\psi \left(a\right) $ in Remark 2.14 satisfy $ (A_{4}). $

    From (4.2) and the condition ($\mathrm{A}_{4}$), we get

    $ (Jα,ψa+,t)[τ]=Γ(2)Γ(α+2)tα+1Γ(2)TαΓ(α+2)t,lα,t=Γ(2)TαΓ(α+2) $ (5.3)

    and

    $ supt[a,T]|Cϵ(t)|ϵ|Γ(2)Tα+βΓ(α+β+2)+Γ(2)ηα+βΓ(α+β+2)d11(T)+(Γ(2)Tα+βΓ(α+β+2)μΓ(2)ξα+β+γΓ(α+β+γ+2))d12(T)|. $

    With (5.2), we obtain

    $ ϵlα,ψsupt[a,T]Cϵ(t)=0.216ϵ. $

    By Lemma 2.13 and Remark 2.14, there exists $ l_{\alpha, \psi }\equiv 0.216 > 0 $ such that for each $ \varepsilon > 0 $, we have

    $ p(t).216ϵt[E6/7(1/6Γ(6/7)t6/7)+E33/14(1/6Γ(33/14)t33/14)+E43/14(1/6Γ(43/14)t43/14)]. $

    Therefore, by Theorem 4.5, the Problem (1.1) with (5.1) and (5.2) is generalized Ulam–Hyers–Rassias-Mittag-Leffler stable.

    (ⅴ) The condition (4.16) is satisfied with

    $ κ0=1.11, ς11+ς12κ0=0.807<1. $

    By Theorem 4.9, this implies that Problem (1.1) with (5.1) and (5.2) has Ulam–Hyers–Rassias stability.

    Further in the below tables (as Tables 1 and 2), we list the consequences of proposed theorems for different values of functions $ \psi $.

    Table 1.  Numerical values for different parameters.
    Theorem 3.3 Theorem 3.4 Corollary 4.3 Theorem 4.9
    $ \psi(t) $ $ \kappa $ $ \varsigma $ $ r > $ $ \vert\lambda\vert(\Lambda _{21}+\Lambda _{22}) $ $ r > $ $ C_{\epsilon } $ $ \varsigma _{11}+\varsigma _{12}\kappa _{0} $
    $ t $ $ 1.647 $ $ 0.998 $ $ 0 $ $ 0.708 $ $ 6.88L $ $ 0.696\varepsilon $ $ 0.807 $
    $ t^{1/3} $ $ 1.825 $ $ 0.997 $ $ 0 $ $ 0.708 $ $ 6.86L $ $ 0.693\varepsilon $ $ 0.723 $
    $ \ln(t+1) $ $ 1.262 $ $ 0.999 $ $ 0 $ $ 0.594 $ $ 2.49L $ $ 0.292\varepsilon $ $ 0.511 $
    $ \exp(t) $ $ 0.749 $ $ 0.998 $ $ 0 $ $ 0.950 $ $ 111L $ $ 2.52\varepsilon $ $ 0.919 $
    $ \sin t, \; [0, \frac{\pi}{2}] $ $ 0.406 $ $ 0.999 $ $ 0 $ $ 0.708 $ $ 6.87L $ $ 0.696\varepsilon $ $ 0.679 $

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical values for different parameters.
    Theorem 4.5 Corollary 4.8
    $ \psi(t) $ $ [a, T] $ $ \kappa $ $ (d_{11}, d_{12}) $ $ l_{\alpha, \psi } $ $ l_{\alpha, \psi } $
    $ t $ $ [0, 1] $ $ 1.647 $ $ (1.54, 1.020) $ $ 0.216 $ $ 0.105 $
    $ t^{1/3} $ $ [0, 1] $ $ 1.825 $ $ (1.29, 0.470) $ $ 0.212 $ $ 0.105 $
    $ \ln(t+1) $ $ [0, 1] $ $ 1.262 $ $ (1.17, 0.914) $ $ 0.0901 $ $ 0.00442 $
    $ \exp(t) $ $ [0, 1] $ $ 0.749 $ $ (2.39, 1.16) $ $ 0.789 $ $ 0.378 $
    $ \sin t, $ $ [0, \frac{\pi}{2}] $ $ 0.406 $ $ (1.37, 0.962) $ $ 0.213 $ $ 0.105 $

     | Show Table
    DownLoad: CSV

    and

    Example 5.2. Let

    $ F(t,u,v)=E1/2(t1/2)+κ20E1/2(t1/2)u+κ10v, κ[0,+) $ (5.4)

    and

    $ α=5/3, β=3/4, γ=1/2, λ=1/8, μ=2, η=5/4, ξ=5/3. $ (5.5)

    Then, we have

    $ L0=supE{1/2(t1/2):t[a,T]}, L1=κ20supE{1/2(t1/2):t[a,T]}, L2=κ10. $

    In the below tables (as Tables 3 and 4), we list the consequences of proposed theorems for different values of functions $ \psi $.

    Table 3.  Numerical values for different parameters.
    Theorem 3.3 Theorem 3.4 Corollary 4.3 Theorem 4.9
    $ \psi(t) $ $ [a, T] $ $ \kappa $ $ \varsigma $ $ r > $ $ \vert\lambda\vert(\Lambda _{21}+\Lambda _{22}) $ $ r > $ $ C_{\epsilon } $ $ \varsigma _{11}+\varsigma _{12}\kappa _{0} $
    $ \ln t $ $ [1, e] $ $ 0.131 $ $ 0.999 $ $ 31600 $ $ 0.548 $ $ 3.82L $ $ 0.674\varepsilon $ $ 0.750 $
    $ \sqrt{t} $ $ [1, 2] $ $ 2.439 $ $ 0.988 $ $ 213 $ $ 0.144 $ $ 0.315L $ $ 0.0781\varepsilon $ $ 0.455 $
    $ t^{2} $ $ [1/2, 1] $ $ 4.911 $ $ 0.996 $ $ 746 $ $ 0.476 $ $ 5.27L $ $ 0.213\varepsilon $ $ 0.885 $
    $ \sin t $ $ [0, \pi/2] $ $ 0.406 $ $ 0.999 $ $ 12100 $ $ 0.708 $ $ 6.87L $ $ 0.696\varepsilon $ $ 0.679 $
    $ 2^{t} $ $ [1, 2] $ $ 0.1512 $ $ 0.998 $ $ 30200 $ $ 0.785 $ $ 37.4L $ $ 3.82\varepsilon $ $ 0.967 $
    $ \exp (t^{2}) $ $ [0, 1] $ $ 0.686 $ $ 0.998 $ $ 6330 $ $ 0.723 $ $ 89.5L $ $ 3.77\varepsilon $ $ 1.22 $

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical values for different parameters.
    Theorem 4.5 Corollary 4.8
    $ \psi(t) $ $ [a, T] $ $ \kappa $ $ (d_{11}, d_{12}) $ $ l_{\alpha, \psi } $ $ l_{\alpha, \psi } $
    $ \ln t $ $ [1, e] $ $ 0.131 $ $ (2.00, 1.19) $ $ 0.199 $ $ 0.096 $
    $ \sqrt{t} $ $ [1, 2] $ $ 2.439 $ $ (1.46, 1.34) $ $ 0.0233 $ $ 0.0111 $
    $ t^{2} $ $ [1/2, 1] $ $ 4.911 $ $ (1.07, 0.116) $ $ 0.0865 $ $ 0.0479 $
    $ \sin t $ $ [0, \pi/2] $ $ 0.406 $ $ (1.37, 0.962) $ $ 0.213 $ $ 0.105 $
    $ 2^{t} $ $ [1, 2] $ $ 0.1525 $ $ (4.58, 1.66) $ $ 1.15 $ $ 0.514 $
    $ \exp (t^{2}) $ $ [0, 1] $ $ 0.686 $ $ (0.688, 0.00777) $ $ 0.009 $ $ 0.357 $

     | Show Table
    DownLoad: CSV

    If $ \Phi \left(t\right) = \psi \left(t\right) -\psi \left(a\right) $ then

    Example 5.3. () If we set $ \Phi \left(t\right) = \exp \left(\theta \left(\psi \left(t\right) -\psi \left(a\right) \right) \right) $ for every $ \theta \neq 0 $, then by the changing of variables $ \theta \left(\psi \left(t\right) -\psi \left(a\right) \right) = u $, we obtain

    $ (Jα,ψa+,t)[Φ(t)]=γ(α,θ(ψ(t)ψ(a)))θαΓ(α)exp(θ(ψ(t)ψ(a))), $ (5.6)

    where $ \gamma \left(\alpha, t\right) $ is the incomplete Gamma function defined by

    $ γ(α,t)=t0τα1eτdτ, (t)>0, |arg(t)|<π. $ (5.7)

    Thus

    $ tααetγ(α,t)tαα. $ (5.8)

    Then by the above inequality, we obtain

    $ (Jα,ψa+,t)[Φ(t)](θ(ψ(t)ψ(a)))αθαΓ(α+1)exp(θ(ψ(t)ψ(a))), forallt[a,T]. $

    Hence function $ \Phi \left(t\right) $ satisfies the condition ($\mathrm{A}_{4}$) with

    $ lα,ψ=(θ(ψ(t)ψ(a)))αθαΓ(α+1). $

    () If we set $ \Phi \left(t\right) = E_{\alpha }\left(\theta \left(\psi \left(t\right) -\psi \left(a\right) \right) ^{\alpha }\right) $ for every $ \theta \neq 0 $, then

    $ (Jα,ψa+,t)[Φ(t)]=1θ(Eα(θ(ψ(t)ψ(a))α)1)1θEα(θ(ψ(t)ψ(a))α). $

    Thus function $ \Phi \left(t\right) $ satisfies condition ($\mathrm{A}_{4}$) with

    $ lα,ψ=1θ. $

    () The function $ \Phi \left(t\right) $ is positive and there exists a constant $ l_{\alpha, \psi } $ such that the condition ($\mathrm{A}_{4}$) is satisfied.

    Indeed, for each $ t\leq \left[ a, T\right] $, we get

    $ (ψ(t)ψ(τ))α1(ψ(t)ψ(a))α1. $

    Where as $ \tau \in \left[ a, t\right], \ \alpha \geq 1 $ and $ \psi ^{\prime }\left(\tau \right) \geq 0 $

    $ (Jα,ψa+,t)[Φ]=1Γ(α)taψ(τ)(ψ(t)ψ(τ))α1Φ(τ)dτ(ψ(t)ψ(a))α1Γ(α)taψ(τ)Φ(τ)dτ, $ (5.9)

    then

    $ taψ(τ)Φ(τ)dτ=(ψ(t)Φ(t)ψ(a)Φ(a))taψ(τ)Φ(τ)dτ(ψ(t)Φ(t)ψ(a)Φ(a))ψ(a)taΦ(τ)dτ=(ψ(t)ψ(a))Φ(t). $
    $ (Jα,ψa+,t)[Φ](ψ(t)ψ(a))αΓ(α)Φ(t). $

    Thus function $ \Phi \left(t\right) $ satisfies the condition ($\mathrm{A}_{4}$) with

    $ lα,ψ=(ψ(t)ψ(a))αΓ(α). $

    Example 5.4. Let $ h\in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right) $ be bounded and let $ g\in L_{1}\left[ 0, T\right] $. Then the functions

    $ F(t,u,v)=g(t)h(u,v)orF(t,u,v)=g(t)+h(u,v), $

    satisfies (5.4). In view of condition ($\mathrm{A}_{2}$), we consider the different values of function $ \mathfrak{F} $ (as Table 5),

    Table 5.  Upper bounds.
    $ \mathfrak{F}\left(t, u, v\right) $ $ \left \vert \mathfrak{F}\left(t, u, v\right) \right \vert \leq $ $ \mathfrak{F}\left(t, u, v\right) $ $ \left \vert \mathfrak{F}\left(t, u, v\right) \right \vert \leq $
    $ g\left(t\right) \left(\frac{\left \vert u\right \vert +\left \vert v\right \vert }{\left \vert u\right \vert +\left \vert v\right \vert +1}\right) $ $ \left \vert g\left(t\right) \right \vert $ $ g\left(t\right) + \frac{\left \vert u\right \vert }{\left \vert u\right \vert +1}+\frac{\left \vert v\right \vert }{\left \vert v\right \vert +1} $ $ \left \vert g\left(t\right) \right \vert +2 $
    $ g\left(t\right) \sin u+\frac{2}{\pi }\arctan v $ $ 2\left \vert g\left(t\right) \right \vert $ $ g\left(t\right) \tanh u+sgn\left(v\right) $ $ \left \vert g\left(t\right) \right \vert +1 $

     | Show Table
    DownLoad: CSV

    where

    $ {sgn}(v) = \left\{v|v| if v0,0 if v=0.\right. $

    The Langevin equation has been introduced to characterize dynamical processes in a fractal medium in which the fractal and memory features with a dissipative memory kernel are incorporated. Therefore, the consideration of Langevin equation in frame of fractional derivatives settings would be providing better interpretation for real phenomena. Consequently, scholars have considered different versions of Langevin equation and thus many interesting papers have been reported in this regard. However, one can notice that most of existing results have been carried out with respect to the classical fractional derivatives.

    In this paper, we have tried to promote the current results and considered the FLE in a general platform. The boundary value problem of nonlinear FLE involving $ \psi $- fractional operators of different orders was investigated. One of the major differences in the problem considered in this work and relevant work already published in literature, is that, we are dealing with general fractional operator. Secondly, the forcing function depends on fractional derivative of unknown function. We employ the newly accommodated $ \psi $- fractional calculus to prove the following for the considered problem:

    (ⅰ) The existence and uniqueness of solutions: Techniques of fixed point theorems are used to prove the results. Prior to the main theorems, the forms of solutions are derived for both linear and nonlinear problems.

    (ⅱ) Stability in sense of Ulam: We adopt the required definitions of Ulam–Hyers stability with respect to $ \psi $- fractional derivative. The Ulam–Hyers–Rassias and generalized U-H-R stability of the solution are discussed. Gronwall inequality and integration by parts in frame of $ \psi $- fractional derivative are also employed to complete the proofs.

    (ⅲ) Applications: Particular examples are addressed at the end of the paper to show the consistency of the theoretical results.

    We claim that the results of this paper are new and generalize some earlier results. Moreover, by fixing the parameters involved in the given problem, we can obtain some new results as special cases of the ones presented in this paper. For example, letting $ \psi = t, \mu = 0, a = 0 $ and $ T = 1 $ in the results of Section $ 3 $, we get the ones derived in [40]. Besides, the existence results for the initial value problem of nonlinear classical Langevin equation of the form:

    $ u $

    can be addressed by fixing a $ \alpha = 2 $ and $ \beta = 1 $ in the results of this paper.

    For further investigation, one can propose to study the properties of the solution of the considered problem via some numerical computations and simulations. We leave this as promising future work. Results obtained in the present paper can be considered as a contribution to the developing field of fractional calculus via generalized fractional derivative operators.

    The authors declare that they have no conflict of interest.

    J. Alzabut would like to thank Prince Sultan University for funding and supporting this work.

    [1] (2000) Functions of bounded variation and free discontinuity problems. Oxford Univ. Press.
    [2]

    J. M. Ball, Some open problems in elasticity, In Geometry, Mechanics and Dynamics, Springer, New York, 2002, 3-59

    [3] From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. (2002) 164: 341-381.
    [4] (2002) $Γ$-Convergence for Beginners. Oxford Univ. Press.
    [5] Surface energies in nonconvex discrete systems. Math. Models Methods Appl. Sci. (2007) 17: 985-1037.
    [6] Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Rational Mech. Anal. (1999) 146: 23-58.
    [7] Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids (2002) 7: 41-66.
    [8]

    A. Braides and M. S. Gelli, The passage from discrete to continuous variational problems: A nonlinear homogenization process, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Sci. Ser. II Math. Phys. Chem., Kluwer Acad. Publ., Dordrecht, 170 (2004), 45-63.

    [9] From discrete systems to continuous variational problems: An introduction. Lect. Notes Unione Mat. Ital. (2006) 2: 3-77.
    [10] Asymptotic analysis of microscopic impenetrability constraints for atomistic systems. J. Mech. Phys. Solids (2016) 96: 235-251.
    [11] The passage from nonconvex discrete systems to variational problems in Sobolev spaces: The one-dimensional case. Proc. Steklov Inst. Math. (2002) 236: 395-414.
    [12] Effective cohesive behavior of layers of interatomic planes. Arch. Rational Mech. Anal. (2006) 180: 151-182.
    [13] Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case. Math. Mech. Solids (2016) 21: 915-930.
    [14] Asymptotic expansions by $Γ$-convergence. Cont. Mech. Thermodyn. (2008) 20: 21-62.
    [15] An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem. J. Nonlinear Sci. (2014) 24: 145-183.
    [16] An analysis of crystal cleavage in the passage from atomistic models to continuum theory. Arch. Ration. Mech. Anal. (2015) 217: 263-308.
    [17] Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. (2013) 209: 495-539.
    [18] Atomistic-to-continuum coupling. Acta Numer. (2013) 22: 397-508.
    [19] Boundary layer energies for nonconvex discrete systems. Math. Models Methods Appl. Sci. (2011) 21: 777-817.
    [20] Towards uniformly $Γ$-equivalent theories for nonconvex discrete systems. Discrete Contin. Dyn. Syst. Ser. B (2012) 17: 661-686.
    [21] On a $Γ$-convergence analysis of a quasicontinuum method. Multiscale Model. Simul. (2015) 13: 132-172.
    [22]

    M. Schäffner, Multiscale analysis of non-convex discrete systems via $Γ$-convergence, Ph. D thesis, University of Würzburg, 2015.

    [23] Quasicontinuum analysis of defects in solids. Phil. Mag. A (2006) 73: 1529-1563.
    [24] Fracture as a phase transition. Contemporary Research in the Mechanics and Mathematics of Marterials (1996) 322-332.
  • This article has been cited by:

    1. Kaihong Zhao, Existence, Stability and Simulation of a Class of Nonlinear Fractional Langevin Equations Involving Nonsingular Mittag–Leffler Kernel, 2022, 6, 2504-3110, 469, 10.3390/fractalfract6090469
    2. Saeed M. Ali, Mohammed S. Abdo, Abdellatif Ben Makhlouf, Qualitative Analysis for Multiterm Langevin Systems with Generalized Caputo Fractional Operators of Different Orders, 2022, 2022, 1563-5147, 1, 10.1155/2022/1879152
    3. Choukri Derbazi, Hadda Hammouche, Abdelkrim Salim, Mouffak Benchohra, Weak solutions for fractional Langevin equations involving two fractional orders in banach spaces, 2023, 34, 1012-9405, 10.1007/s13370-022-01035-3
    4. Songkran Pleumpreedaporn, Weerawat Sudsutad, Chatthai Thaiprayoon, Juan E. Nápoles, Jutarat Kongson, A Study of ψ-Hilfer Fractional Boundary Value Problem via Nonlinear Integral Conditions Describing Navier Model, 2021, 9, 2227-7390, 3292, 10.3390/math9243292
    5. Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Calogero Vetro, Multipoint BVP for the Langevin Equation under φ -Hilfer Fractional Operator, 2022, 2022, 2314-8888, 1, 10.1155/2022/2798514
    6. Kanoktip Kotsamran, Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Analysis of a Nonlinear ψ-Hilfer Fractional Integro-Differential Equation Describing Cantilever Beam Model with Nonlinear Boundary Conditions, 2021, 5, 2504-3110, 177, 10.3390/fractalfract5040177
    7. Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo, Explicit iteration and unique solution for $ \phi $-Hilfer type fractional Langevin equations, 2021, 7, 2473-6988, 3456, 10.3934/math.2022192
    8. Houas MOHAMED, Sequential fractional pantograph differential equations with nonlocal boundary conditions: Uniqueness and Ulam-Hyers-Rassias stability, 2022, 5, 2636-7556, 29, 10.53006/rna.928654
    9. Naoufel Hatime, Ali El Mfadel, M.’hamed Elomari, Said Melliani, EXISTENCE AND STABILITY OF SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING THE GRÖNWALL-FREDHOLM-TYPE INEQUALITY, 2024, 1072-3374, 10.1007/s10958-024-07202-0
    10. Ricardo Almeida, Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives, 2023, 11, 2227-7390, 3208, 10.3390/math11143208
    11. Hamid Baghani, Juan J. Nieto, Some New Properties of the Mittag-Leffler Functions and Their Applications to Solvability and Stability of a Class of Fractional Langevin Differential Equations, 2024, 23, 1575-5460, 10.1007/s12346-023-00870-4
    12. Hacen Serrai, Brahim Tellab, Sina Etemad, İbrahim Avcı, Shahram Rezapour, Ψ-Bielecki-type norm inequalities for a generalized Sturm–Liouville–Langevin differential equation involving Ψ-Caputo fractional derivative, 2024, 2024, 1687-2770, 10.1186/s13661-024-01863-1
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5234) PDF downloads(309) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog