Loading [MathJax]/jax/output/SVG/jax.js

Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers

  • Received: 01 January 2009 Revised: 01 June 2009
  • Primary: 49J45, 49M25; Secondary: 74B05, 76A15, 82D45, 82D40.

  • In the framework of linear elasticity, we study the limit of a class of discrete free energies modeling strain-alignment-coupled systems by a rigorous coarse-graining procedure, as the number of molecules diverges. We focus on three paradigmatic examples: magnetostrictive solids, ferroelectric crystals and nematic elastomers, obtaining in the limit three continuum models consistent with those commonly employed in the current literature. We also derive the correspondent macroscopic energies in the presence of displacement boundary conditions and of various kinds of applied external fields.

    Citation: Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri. Discrete-to-continuum limits for strain-alignment-coupled systems:Magnetostrictive solids, ferroelectric crystals and nematicelastomers[J]. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667

    Related Papers:

    [1] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [2] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [3] M. Silhavý . Ideally soft nematic elastomers. Networks and Heterogeneous Media, 2007, 2(2): 279-311. doi: 10.3934/nhm.2007.2.279
    [4] Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453
    [5] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [6] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [7] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [8] Franco Cardin, Alberto Lovison . Finite mechanical proxies for a class of reducible continuum systems. Networks and Heterogeneous Media, 2014, 9(3): 417-432. doi: 10.3934/nhm.2014.9.417
    [9] Giovanni Scilla . Motion of discrete interfaces in low-contrast periodic media. Networks and Heterogeneous Media, 2014, 9(1): 169-189. doi: 10.3934/nhm.2014.9.169
    [10] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
  • In the framework of linear elasticity, we study the limit of a class of discrete free energies modeling strain-alignment-coupled systems by a rigorous coarse-graining procedure, as the number of molecules diverges. We focus on three paradigmatic examples: magnetostrictive solids, ferroelectric crystals and nematic elastomers, obtaining in the limit three continuum models consistent with those commonly employed in the current literature. We also derive the correspondent macroscopic energies in the presence of displacement boundary conditions and of various kinds of applied external fields.


  • This article has been cited by:

    1. Franco Cardin, Alberto Lovison, Finite mechanical proxies for a class of reducible continuum systems, 2014, 9, 1556-181X, 417, 10.3934/nhm.2014.9.417
    2. Sven Bachmann, François Genoud, Mean-Field Limit and Phase Transitions for Nematic Liquid Crystals in the Continuum, 2017, 168, 0022-4715, 746, 10.1007/s10955-017-1829-4
    3. Marco Cicalese, Francesco Solombrino, Frustrated Ferromagnetic Spin Chains: A Variational Approach to Chirality Transitions, 2015, 25, 0938-8974, 291, 10.1007/s00332-015-9230-4
    4. Roberto Alicandro, Marco Cicalese, Matthias Ruf, Domain Formation in Magnetic Polymer Composites: An Approach Via Stochastic Homogenization, 2015, 218, 0003-9527, 945, 10.1007/s00205-015-0873-y
    5. Pierluigi Cesana, Nematic Elastomers: Gamma-Limits for Large Bodies and Small Particles, 2011, 43, 0036-1410, 2354, 10.1137/100795619
    6. Pierluigi Cesana, Relaxation of Multiwell Energies in Linearized Elasticity and Applications to Nematic Elastomers, 2010, 197, 0003-9527, 903, 10.1007/s00205-009-0283-0
    7. Andrea Braides, Marco Cicalese, Francesco Solombrino, Q-Tensor Continuum Energies as Limits of Head-to-Tail Symmetric Spin Systems, 2015, 47, 0036-1410, 2832, 10.1137/130941341
    8. Prashant K. Jha, Timothy Breitzman, Kaushik Dayal, Discrete-to-Continuum Limits of Long-Range Electrical Interactions in Nanostructures, 2023, 247, 0003-9527, 10.1007/s00205-023-01869-6
    9. J. Ulloa, M.P. Ariza, J.E. Andrade, M. Ortiz, Homogenized models of mechanical metamaterials, 2025, 433, 00457825, 117454, 10.1016/j.cma.2024.117454
    10. Shoham Sen, Yang Wang, Timothy Breitzman, Kaushik Dayal, Nonuniqueness in defining the polarization: Nonlocal surface charges and the electrostatic, energetic, and transport perspectives, 2024, 191, 00225096, 105743, 10.1016/j.jmps.2024.105743
    11. M.P. Ariza, S. Conti, M. Ortiz, Homogenization and continuum limit of mechanical metamaterials, 2024, 196, 01676636, 105073, 10.1016/j.mechmat.2024.105073
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4248) PDF downloads(75) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog