Motion of discrete interfaces in low-contrast periodic media

  • Received: 01 June 2013 Revised: 01 February 2014
  • Primary: 35B27; Secondary: 74Q10, 53C44, 49M25.

  • We study the motion of discrete interfaces driven by ferromagnetic interactions in a two-dimensional low-contrast periodic environment, by coupling the minimizing movements approach by Almgren, Taylor and Wang and a discrete-to-continuum analysis. As in a recent paper by Braides and Scilla dealing with high-contrast periodic media, we give an example showing that in general the effective motion does not depend only on the $\Gamma$-limit, but also on geometrical features that are not detected in the static description. We show that there exists a critical value $\widetilde{\delta}$ of the contrast parameter $\delta$ above which the discrete motion is constrained and coincides with the high-contrast case. If $\delta<\widetilde{\delta}$ we have a new pinning threshold and a new effective velocity both depending on $\delta$. We also consider the case of non-uniform inclusions distributed into periodic uniform layers.

    Citation: Giovanni Scilla. Motion of discrete interfaces in low-contrast periodic media[J]. Networks and Heterogeneous Media, 2014, 9(1): 169-189. doi: 10.3934/nhm.2014.9.169

    Related Papers:

    [1] Giovanni Scilla . Motion of discrete interfaces in low-contrast periodic media. Networks and Heterogeneous Media, 2014, 9(1): 169-189. doi: 10.3934/nhm.2014.9.169
    [2] Annalisa Malusa, Matteo Novaga . Crystalline evolutions in chessboard-like microstructures. Networks and Heterogeneous Media, 2018, 13(3): 493-513. doi: 10.3934/nhm.2018022
    [3] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [4] Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
    [5] Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko . Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590. doi: 10.3934/nhm.2017023
    [6] Matteo Novaga, Enrico Valdinoci . Closed curves of prescribed curvature and a pinning effect. Networks and Heterogeneous Media, 2011, 6(1): 77-88. doi: 10.3934/nhm.2011.6.77
    [7] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
    [8] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [9] Shin-Ichiro Ei, Toshio Ishimoto . Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8(1): 191-209. doi: 10.3934/nhm.2013.8.191
    [10] Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel . Handling congestion in crowd motion modeling. Networks and Heterogeneous Media, 2011, 6(3): 485-519. doi: 10.3934/nhm.2011.6.485
  • We study the motion of discrete interfaces driven by ferromagnetic interactions in a two-dimensional low-contrast periodic environment, by coupling the minimizing movements approach by Almgren, Taylor and Wang and a discrete-to-continuum analysis. As in a recent paper by Braides and Scilla dealing with high-contrast periodic media, we give an example showing that in general the effective motion does not depend only on the $\Gamma$-limit, but also on geometrical features that are not detected in the static description. We show that there exists a critical value $\widetilde{\delta}$ of the contrast parameter $\delta$ above which the discrete motion is constrained and coincides with the high-contrast case. If $\delta<\widetilde{\delta}$ we have a new pinning threshold and a new effective velocity both depending on $\delta$. We also consider the case of non-uniform inclusions distributed into periodic uniform layers.


    [1] F. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Diff. Geom., 42 (1995), 1-22.
    [2] F. Almgren, J. E. Taylor and L. Wang, Curvature driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438. doi: 10.1137/0331020
    [3] A. Braides, Approximation of Free-Discontinuity Problems, Lecture notes in Mathematics, 1694, Springer-Verlag, Berlin, 1998.
    [4] A. Braides, Local Minimization, Variational Evolution and $\Gamma$-Convergence, Lecture Notes in Mathematics, 2094, Springer Verlag, Berlin, 2014. doi: 10.1007/978-3-319-01982-6
    [5] A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 195 (2010), 469-498. doi: 10.1007/s00205-009-0215-z
    [6] A. Braides and G. Scilla, Motion of discrete interfaces in periodic media, Interfaces Free Bound., 15 (2013), 451-476. doi: 10.4171/IFB/310
    [7] C. Conca, J. San Martín, L. Smaranda and M. Vanninathan, On Burnett coefficients in periodic media in low contrast regime, J. Math. Phys., 49 (2008), 053514, 23 pp. doi: 10.1063/1.2919066
    [8] G. W. Milton, The Theory of Composites, Cambridge University Press, 2002. doi: 10.1017/CBO9780511613357
    [9] J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Differential Geometry, Proceedings of Symposia in Pure Math., 51 (1993), 417-438.
  • This article has been cited by:

    1. Andrea Braides, Margherita Solci, Motion of Discrete Interfaces Through Mushy Layers, 2016, 26, 0938-8974, 1031, 10.1007/s00332-016-9297-6
    2. Andrea Braides, Giovanni Scilla, Antonio Tribuzio, Nucleation and Growth of Lattice Crystals, 2021, 31, 0938-8974, 10.1007/s00332-021-09745-x
    3. Matthias Ruf, Motion of discrete interfaces in low-contrast random environments, 2018, 24, 1292-8119, 1275, 10.1051/cocv/2017067
    4. Giovanni Scilla, Motion of Discrete Interfaces on the Triangular Lattice, 2020, 88, 1424-9286, 315, 10.1007/s00032-020-00316-5
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3019) PDF downloads(75) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog