Loading [MathJax]/jax/output/SVG/jax.js

Handling congestion in crowd motion modeling

  • We address here the issue of congestion in the modeling of crowd motion, in the non-smooth framework: contacts between people are not anticipated and avoided, they actually occur, and they are explicitly taken into account in the model. We limit our approach to very basic principles in terms of behavior, to focus on the particular problems raised by the non-smooth character of the models. We consider that individuals tend to move according to a desired, or spontaneous, velocity. We account for congestion by assuming that the evolution realizes at each time an instantaneous balance between individual tendencies and global constraints (overlapping is forbidden): the actual velocity is defined as the closest to the desired velocity among all admissible ones, in a least square sense. We develop those principles in the microscopic and macroscopic settings, and we present how the framework of Wasserstein distance between measures allows to recover the sweeping process nature of the problem on the macroscopic level, which makes it possible to obtain existence results in spite of the non-smooth character of the evolution process. Micro and macro approaches are compared, and we investigate the similarities together with deep differences of those two levels of description.

    Citation: Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling[J]. Networks and Heterogeneous Media, 2011, 6(3): 485-519. doi: 10.3934/nhm.2011.6.485

    Related Papers:

    [1] Yuhua Zhu . A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14(4): 677-707. doi: 10.3934/nhm.2019027
    [2] Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233
    [3] L.L. Sun, M.L. Chang . Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem. Networks and Heterogeneous Media, 2023, 18(1): 212-243. doi: 10.3934/nhm.2023008
    [4] Kexin Li, Hu Chen, Shusen Xie . Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation. Networks and Heterogeneous Media, 2023, 18(4): 1454-1470. doi: 10.3934/nhm.2023064
    [5] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [6] Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001
    [7] Leqiang Zou, Yanzi Zhang . Efficient numerical schemes for variable-order mobile-immobile advection-dispersion equation. Networks and Heterogeneous Media, 2025, 20(2): 387-405. doi: 10.3934/nhm.2025018
    [8] Yin Yang, Aiguo Xiao . Dissipativity and contractivity of the second-order averaged L1 method for fractional Volterra functional differential equations. Networks and Heterogeneous Media, 2023, 18(2): 753-774. doi: 10.3934/nhm.2023032
    [9] Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou . Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13(4): 567-583. doi: 10.3934/nhm.2018026
    [10] Ioannis Markou . Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028
  • We address here the issue of congestion in the modeling of crowd motion, in the non-smooth framework: contacts between people are not anticipated and avoided, they actually occur, and they are explicitly taken into account in the model. We limit our approach to very basic principles in terms of behavior, to focus on the particular problems raised by the non-smooth character of the models. We consider that individuals tend to move according to a desired, or spontaneous, velocity. We account for congestion by assuming that the evolution realizes at each time an instantaneous balance between individual tendencies and global constraints (overlapping is forbidden): the actual velocity is defined as the closest to the desired velocity among all admissible ones, in a least square sense. We develop those principles in the microscopic and macroscopic settings, and we present how the framework of Wasserstein distance between measures allows to recover the sweeping process nature of the problem on the macroscopic level, which makes it possible to obtain existence results in spite of the non-smooth character of the evolution process. Micro and macro approaches are compared, and we investigate the similarities together with deep differences of those two levels of description.


    In the present paper, we consider numerical solution of the time fractional Fokker-Planck equations (TFFPEs):

    $ {αtuΔu+p(u)+q(x,t)u=f(x,t),(x,t)Ω×(0,T],u(x,0)=u0(x),xΩ,u(x,t)=0,xΩ,t(0,T], $ (1.1)

    where $ \Omega\in \mathbb{R}^d\; (d = 1, 2, 3) $, $ \boldsymbol{x} = {(x_1, x_2, \ldots, x_d)} $, $ u_0(\boldsymbol{x}) $ is smooth on $ \Omega $, $ \boldsymbol{p}: = (p_1, p_2, \ldots, p_d) $ with $ p_i: = p_i(\boldsymbol{x}, t) \; (i = 1, 2, \ldots, d) $ and $ q: = q(\boldsymbol{x}, t) $ are continuous functions. $ {\partial}_t^{\alpha}u $ represents the Caputo derivative of order $ \alpha \in (0, 1) $. When $ \alpha = 1 $ in Eq (1.1), the corresponding equations are a class of very useful models of statistical physics to describe some practical phenomena. TFFPEs are widely used in statistical physics to describes the probability density function of position and the evolution of the velocity of a particle, see e.g., [1,2,3,4]. The TFFPEs also represent the continuous limit of a continuous time random walk with a Mittag-Leffler residence time density. For a deeper understanding of TFFPEs, we refer the readers to [5,6]. In addition, the regularity of the solutions of the TFFPE (1.1) can be found in [7].

    For the past few years, many numerical methods were used to solve the TFFPEs. For example, Deng [8] proposed an efficient predictor-corrector scheme. Vong and Wang [9] constructed a compact finite difference scheme. Mahdy [10] used two different techniques to study the approximate solution of TFFPEs, namely the fractional power series method and the new iterative method. Yang et al. [11] proposed a nonlinear finite volume format to solve the two-dimensional TFFPEs. More details can refer to [12,13,14,15]. Besides, it is difficult that analysing the convergence and stability properties of the numerical schemes for TFFPEs, when convective and diffusion terms exist at the same time. In the study of TFFPEs, the conditions imposed on $ \boldsymbol{p} $ and $ q $ were somewhat restrictive. For example, for solving the one-dimensional TFFPEs, Deng [16] proved the stability and convergence under the conditions that $ p_1 $ was a monotonically decreasing function and $ q \leq 0 $. Chen et al. [17] obtained the stability and convergence properties of the method with the conditions that $ p_1 $ was monotone or a constant and $ q $ was a constant.

    To solve the time Caputo fractional equations, one of the keys is the treatment of the Caputo derivative, which raised challenges in both theoretical and numerical aspects. Under the initial singularity of the solutions of the equations, many numerical schemes are only proved to be of $ \tau^\alpha $ in temporal direction, e.g., convolution quadrature (CQ) BDF method [18], CQ Euler method [19], uniform $ L1 $ method et al. [20,21]. Here $ \tau $ represents the temporal stepsize. Considering the singularity of solutions, different numerical formats were established to obtain high convergence orders, e.g., the Alikhanov scheme (originally proposed in [22]) and the $ L1 $ scheme (see e.g., [23]) by employing the graded mesh (i.e., $ t_n = T(n/K)^r, n = 1, 2, \ldots, K $, $ r $ is mesh parameter). It was proved that the optimal convergence of those methods can be $ 2 $ and $ 2-\alpha $ iff $ r\geq 2/\alpha $ and $ r\geq(2-\alpha)/\alpha $, respectively (see e.g., [24,25,26,27,28,29]). The $ \overline{{\rm L}1} $ scheme studied in [30,31,32] was another high-order scheme for Caputo fractional derivative. There were also some fast schemes for Caputo fractional derivative, see [33,34,35,36]. When $ \alpha $ was small, the grids at the beginning would become very dense. It may lead to the so-called round-off errors. Recently, taking the small $ \alpha $ and the initial singularity into account, Li et al. [37] introduced the transformation $ s = t^{\alpha} $ for the time variable, and derived and analyzed the equivalent fractional differential equation. They constructed the $ TL1 $ discrete scheme, and obtained that the convergence order of the $ TL1 $ scheme is of $ 2-\alpha $. Based on the previous research, Qin et al. [38] studied the nonlinear fractional order problem, and established the discrete fractional order Grönwall inequality. Besides, discontinuous Galerkin methods were also effective to solve the similar problems with weak singular solutions [39,40,41].

    Much of the past study of TFFPEs (i.e., in [16,17,42,43]) has been based on many restrictions on $ q $ and $ p_i, \; i = 1, 2, \ldots, d $. This reduces the versatility of the equations. In the paper, we consider the more general TFFPE (1.1), i.e., $ q $ and $ p_i, \; i = 1, 2, \ldots, d, $ are variable coefficients, and $ q $ is independent of $ p_i $. We draw on the treatment of the Caputo derivative in [37], introduce variable substitution, and construct the $ TL1 $ Legendre-Galerkin spectral scheme to solve the equivalent $ s $-fractional equation. For time discreteness, we take into account the initial singularity, and obtain that the optimal convergence order is $ 2-\alpha $. In terms of spatial discreteness, unlike other schemes [16,17], which impose restrictions on coefficients, the Legendre-Galerkin spectral scheme does not require $ p_i $ and $ q $ to be constants or to be monotonic. Besides, we obtain the following theoretical results. The order of convergence in $ L^2 $-norm of the method is exponential order convergent in spatial direction and ($ 2-\alpha $)-th order convergent in the temporal direction. And the scheme is valid for equations with small parameter $ \alpha $.

    The structure of the paper is as follows. In Section 2, we propose the $ TL1 $ Legendre-Galerkin spectral scheme for solving TFFPEs. In Section 3, the detailed proof of our main results is presented. In Section 4, two numerical examples are given to verify our obtained theoretical results. Some conclusion remarks are shown in Section 5.

    We denote $ W^{m, p}(\Omega) $ and $ ||\cdot||_{W^{m, p}\;(\Omega)} $ as the Sobolev space of any functions defined on $ \Omega $ and the corresponding Sobolev norm, respectively, where $ m\geq0 $ and $ 1\leq p\leq \infty $. Especially, denote $ L^2(\Omega): = W^{0, 2}(\Omega) $ and $ H^m(\Omega): = W^{m, 2}(\Omega) $. Define $ C^{\infty}_0(\Omega) $ as the space of infinitely differentiable functions which are nonzero only on a compact subset of $ \Omega $ and $ H^1_0(\Omega) $ as the completion of $ C^{\infty}_0(\Omega) $. For convenience, denote $ ||\cdot||_0: = ||\cdot||_{L^2(\Omega)} $, $ ||\cdot||_m: = ||\cdot||_{H^m(\Omega)} $.

    For simplicity, we suppose that $ \Omega = (-1, 1)^d $, and $ u(\boldsymbol{x}, t)\in H_0^1(\Omega)\cap H^m(\Omega) $ for $ 0\leq t\leq T $. First of all, we introduce $ TL1 $ scheme to discrete the Caputo fractional derivative. Introducing the change of variable as follows [21,37,44]:

    $ t=s1/α,w(x,s)=u(x,s1/α). $ (2.1)

    By this, then the Caputo derivative of $ u(\boldsymbol{x}, t) $ becomes

    $ αtu(x,t)=1Γ(1α)t0u(x,r)r1(tr)αdr=1Γ(1α)s0w(x,r)r1(s1/αr1/α)αdr=Dαsw(x,s). $ (2.2)

    Hence, Eq (1.1) can be rewritten as

    $ Dαsw(x,s)Δw+˜p(w)+˜q(x,s)w=˜f(x,s),(x,s)Ω×(0,Tα], $ (2.3)
    $ w(x,s)=0,(x,s)Ω×(0,Tα], $ (2.4)
    $ w(x,0)=u0(x),xΩ, $ (2.5)

    where $ \tilde{\boldsymbol{p}} = (\tilde{p}_1, \tilde{p}_2, \ldots, \tilde{p}_d) $, $ \tilde{p}_d: = p_d(\boldsymbol{x}, s^{1/\alpha}), \; \tilde{q}: = q(\boldsymbol{x}, s^{1/\alpha}) $, and $ \tilde{f}(\boldsymbol{x}, s) = f(\boldsymbol{x}, s^{1/\alpha}) $. Let $ s_n = T^\alpha n/K, \; n = 0, 1, \ldots, K $, and the uniform mesh on $ [0, T^\alpha] $ with $ \tau_s = s_n-s_{n-1} $. For convenience, $ K_i $, $ i\geq 1 $ represent the positive constants independent of $ \tau_s $ and $ N $, where $ N $ represents polynomial degree. In addition, we define the following notations

    $ \tilde{p}^n_d: = \tilde{p}_d(\boldsymbol{x},s_n),\; \tilde{q}^n: = \tilde{q}(\boldsymbol{x},s_n),\; \tilde{f}^n: = \tilde{f}(\boldsymbol{x},s_n), $
    $ w^n: = w(\boldsymbol{x},s_n),\; \tilde{\boldsymbol{p}}^n: = (\tilde{p}_1^n,\tilde{p}_2^n,\ldots,\tilde{p}_d^n). $

    Applying the $ TL1 $ approximation, we have

    $ Dαswn=1Γ(1α)sn0w(x,r)r1(s1/αnr1/α)αdr=1Γ(1α)nl=1wlwl1τsslsl1dr(s1/αnr1/α)α+Qn=nl=1an,nl(wlwl1)+Qn:=Dατwn+Qn. $ (2.6)

    Here the coefficients $ a_{n, n-l} = \frac{1}{\tau_s\Gamma(1-\alpha)}\int_{s_{l-1}}^{s_l}\frac{dr}{(s_n^{1/\alpha}-r^{1/\alpha})^\alpha} $, and $ Q^n $ represents the truncation error. For more details, we refer to [37,38]. By Eq (2.6), then Eq (2.3) arrives at

    $ D_\tau^{\alpha}w^n- \Delta w^n +\tilde {\boldsymbol{p}}^n \cdot (\nabla w^n) +\tilde{q}^nw^n = \tilde{f}^n-Q^n. $

    For spatial discretization, we introduce the following basis functions:

    $ \{\psi_{\boldsymbol{k}}(\boldsymbol{x})\} = \{\psi_{k_1}({x_1})\psi_{k_2}({x_2})\ldots \psi_{k_d}({x_d}),\; k_1,k_2,\ldots,k_d\in I_N\}, $

    where $ \boldsymbol{k} = {(k_1, k_2, \ldots, k_d)} $, $ I_N = {\{0, 1, 2, \ldots, N-2\}} $. For $ \psi_{k_i}({x_i}), \; i = 1, 2, \ldots, d $, one has

    $ ψki(xi)=Lki(xi)Lki+2(xi)for kiIN, $ (2.7)

    where $ \{L_j(x)\}_{j = 0}^N $ are the Legendre orthogonal polynomials, given by the following recurrence relationship [45]:

    $ {(j+1)Lj+1(x)=(2j+1)xLj(x)jLj1(x)for j1,L0(x)=1,L1(x)=x. $ (2.8)

    Define the finite-dimensional approximation space

    $ X_{\boldsymbol{N}} = span{\{\psi_{\boldsymbol{k}}(\boldsymbol{x}),\; k_1,k_2,\ldots,k_d\in I_N\}}, $

    where $ \boldsymbol{N} = (\underbrace {N, N, \ldots, N}_{d}) $. For any function $ w_{\boldsymbol{N}}(x) $, write

    $ w_{\boldsymbol{N}}(x) = \sum\limits_{k_1,k_2,\ldots,k_d\in I_N} \hat w_{\boldsymbol{k}} \psi_{\boldsymbol{k}}(\boldsymbol{x}). $

    By Eqs (2.7) and (2.8), we have

    $ w_{\boldsymbol{N}}(x)|_{\partial\Omega} = 0 \quad \text{for } \forall w_{\boldsymbol{N}}(x)\in X_{\boldsymbol{N}}. $

    Then, the $ TL1 $ Legendre-Galerkin spectral scheme is to seek $ W^{n}\in X_{\boldsymbol{N}} $, such that

    $ (DατWn,v)+(Wn,v)+(Wn,˜pnv)+(˜qnWn,v)=(˜fn,v)for vXN. $ (2.9)

    Here $ W^0 = \pi_{\boldsymbol{N}} w^0 $, and $ \pi_{\boldsymbol{N}} $ is the Ritz projection operator given in Lemma 2. For instance, if $ d = 1 $, we solve Eqs (2.3) and (2.4) by

    $ A1Dατˆwn+(A2+A3n+A4n)ˆwn=Fn, $ (2.10)

    where $ \hat{\boldsymbol{w}}^n = (\hat{w}^n_0, \hat{w}^n_1, \hat{w}^n_2, \dots, \hat{w}^n_{N-2})^T $, $ \boldsymbol{A1}_{j, h} = (\psi_{h}(x), \psi_{j}(x)) $, $ j, h \in I_N $, $ \boldsymbol{A2}_{j, h} = (\psi'_{h}(x), \psi'_{j}(x)) $, $ \boldsymbol{A3}^n_{j, h} = (\tilde{p}^n\psi'_{h}(x), \psi_{j}(x)) $, $ \boldsymbol{A4}^n_{j, h} = (\tilde{q}^n\psi_{h}(x), \psi_{j}(x)) $, and $ \boldsymbol{F}^n_{j, 1} = (\tilde{f}^n, \psi_{j}(x)) $.

    The typical solution of Eq (1.1) meets [18,46,47]

    $ \bigg|\bigg|\frac{{\partial}u}{\partial t}(\boldsymbol{x},t)\bigg|\bigg|_{0}\leq Ct^{\alpha-1}, $

    then, with the help of the changes of variable (2.1), one has (see e.g., [38])

    $ ||lwsl(x,s)||0C(1+s1/αl)<,l=1,2, $ (2.11)

    where $ C > 0 $ is a constant independent of $ s $ and $ \boldsymbol{x} $. From [37, Lemma 2.2] and [38, Lemma 2.1], the solution becomes smoother at the beginning.

    Now, the convergence results of $ TL1 $ Legendre-Galerkin spectral scheme (2.9) is given as follows.

    Theorem 1. Assume that $ \tilde{q} $ and $ \tilde{p_i}, \; i = 1, 2, \ldots, d, $ in (2.3) are bounded, and that the unique solution $ w $ of Eqs (2.3) and (2.4) satisfying Eq (2.11) and $ w(\boldsymbol{x}, s)\in H_0^1(\Omega)\cap H^m(\Omega) $. Then, there exist $ N_0 > 0 $ and $ \tau_0 > 0 $ such that when $ N\geq N_0 $ and $ \tau_s\leq\tau_0 $, Eq (2.9) has a unique solution $ W^n\; (n = 0, 1, \ldots, K) $, which satisfies

    $ ||wnWn||0K(τ2αs+N1m), $ (2.12)

    where $ K^* > 0 $ is a constant independent of $ \tau_s $ and $ N $.

    We will present the detailed proof of Theorem 1 in this section. For this, we first introduce the following several lemmas.

    Lemma 1. [37,38] For $ n\geq 1 $, we get

    $ 0<an,n1an,n2an,0. $ (3.1)

    Lemma 2. If we given the Ritz projection operator $ \pi_{\boldsymbol{N}}:H_0^1(\Omega) \rightarrow X_{\boldsymbol{N}} $ by

    $ (\nabla (\pi_{\boldsymbol{N}}w-w),\nabla v) = 0 \quad \mathit{\text{for}}\;\forall v\in X_{\boldsymbol{N}}, $

    then, one can get that [48]

    $ ||\pi_{\boldsymbol{N}} w-w||_l\leq C_{\Omega}N^{l-m}||w||_m \quad \mathit{\text{for}}\; \forall w\in H_0^1(\Omega)\cap H^m(\Omega) $

    with $ d \leq m\leq N+1 $, where $ C_{\Omega} > 0 $ is a constant independent of $ N $.

    Lemma 3. [49] For any $ s_K = T^{\alpha} > 0 $ and given nonnegative sequence $ \left\{\lambda_i\right\}^{K-1}_{i = 0} $, assume that there exists a constant $ \lambda^* > 0 $ independent of $ \tau_s $ such that $ \lambda^*\geq\sum^{K-1}_{i = 0}\lambda_i $. Assume also that the grid function $ \{{w^n|n\geq0}\} $ satisfies

    $ D_\tau^{\alpha}(w^n)^2\leq\sum\limits^{n}_{i = 1}\lambda_{n-i}(w^i)^2+w^n(Q^n+\xi) \quad \mathit{\text{for}}\; n\geq1, $

    where $ \{Q^n|n\geq1\} $ is well defined in Eq (2.6). Then, there exists a constant $ \tau_s^* > 0 $ such that, when $ \tau_s\leq\tau_s^* $,

    $ w^j\leq 2E_\alpha(2\lambda^*s_j)\left[w^0+C_1^*(\tau_s^{2-\alpha}+\xi)\right] \quad \mathit{\text{for}}\; 1\leq j\leq K, $

    where $ C_1^* $ is a constant and $ E_\alpha(x) = \sum_{k = 0}^\infty\frac{x^k}{\Gamma(1+k\alpha)} $.

    We will offer the proof of Theorem 1 in this section. The projection $ \pi_{\boldsymbol{N}} w^n $ of the exact solution $ w^n $ satisfies

    $ (DατπNwn,v)=(πNwn,v)(πNwn,˜pnv)(˜qnπNwn,v)+(˜fn,v)(Qn,v)(Rn,v)for vXN. $ (3.2)

    Here $ R^n = D_\tau^\alpha(w^n-\pi_{\boldsymbol{N}} w^n)-\Delta(w^n-\pi_{\boldsymbol{N}} w^n)+\tilde {\boldsymbol{p}}^n \cdot \nabla(w^n-\pi_{\boldsymbol{N}} w^n)+\tilde{q}^n(w^n-\pi_{\boldsymbol{N}} w^n) $, and $ Q^n $ is the truncation error for approximating the fractional derivative defined in Eq (2.6).

    The error between numerical solution $ W^n $ and exact solution $ w^n $ can be divided into

    $ ||wnWn||0||wnπNwn||0+||πNwnWn||0. $ (3.3)

    Let

    $ e^n: = \pi_{\boldsymbol{N}}w^n-W^n \quad \text{for }n = 0,1,\ldots,K. $

    Subtracting Eq (2.9) from Eq (3.2), we get that

    $ (Dατen,v)=(en,v)(en,˜pnv)(˜qnen,v)(Qn,v)(Rn,v)for vXN. $ (3.4)

    Setting $ v = e^n $ in Eq (3.4), we obtain

    $ (Dατen,en)=(en,en)(en,˜pnen)(˜qnen,en)(Qn,en)(Rn,en). $ (3.5)

    By Lemma 1, we have

    $ (Dατen,en)=(nl=1an,nl(elel1),en)=(an,0enn1l=1(an,nl1an,nl)elan,n1e0,en)12(an,0||en||20n1l=1(an,nl1an,nl)||el||20an,n1||e0||20)=12Dατ||en||20. $ (3.6)

    By Cauchy-Schwartz inequality, one can obtain that

    $ (en,en)(en,˜pnen)(˜qnen,en)||en||20+K1|(en,en)|+K2||en||20||en||20+||en||20+K214||en||20+K2||en||20(K214+K2)||en||20. $ (3.7)

    Here $ K_1 = \mathop{\max}\limits_{0\leq n\leq K}\left\lbrace ||\tilde {\boldsymbol{p}}(\boldsymbol{x}, s_n)||_0 \right\rbrace $, and $ K_2 = \mathop{\max}\limits_{0\leq n\leq K}\left\lbrace \mathop{\max}\limits_{\boldsymbol{x}\in \Omega}|\tilde{q}(\boldsymbol{x}, s_n)| \right\rbrace $. Similarly, we see that

    $ (Qn,en)||Qn||0||en||0. $ (3.8)

    Noting that $ e^n\in X_{\boldsymbol{N}} $ and by Lemma 2, one has

    $ \left(\nabla (w^n-\pi_{\boldsymbol{N}} w^n),\nabla e^n\right) = 0. $

    Then

    $ (Rn,en)=(Dατ(wnπNwn),en)((wnπNwn),en)((wnπNwn),pnen)(˜qn(wnπNwn),en)||Dατ(wnπNwn)||0||en||0+K1||(wnπNwn)||0||en||0+K2||wnπNwn||0||en||0CΩNm||Dατwn||m||en||0+K1CΩN1m||wn||m||en||0+K2CΩNm||wn||m||en||0K3N1m||en||0. $ (3.9)

    Here $ K_3 = \mathop{\max}\limits_{0\leq n\leq K}\left\lbrace C_{\Omega}||D_\tau^\alpha w^n||_m, K_1C_{\Omega}||w^n||_m, K_2C_{\Omega}||w^n||_m\right\rbrace $, and Lemma 2 is applied. Substituting Eqs (3.6)–(3.9) into Eq (3.5), one gets

    $ Dατ||en||202(K214+K2)||en||20+2(||Qn||0+K3N1m)||en||0. $

    Noting that $ e^0 = 0 $ and by Lemma 3, it follows that

    $ ||en||04K3C1(τ2αs+N1m)Eα(4(K21/4+K2)sn). $

    By Eq (3.3), we observe

    $ ||wnWn||0||wnπNwn||0+||en||0CΩNm||wn||m+4K3C1(τ2αs+N1m)Eα(4(K21/4+K2)sn)K(τ2αs+N1m), $

    where $ K^* = \mathop{\max}\limits_{0\leq n\leq K}{\big\{C_{\Omega}||w^n||_m, \; 4K_3C_1^*E_\alpha\big(4(K_1^2/4+K_2)s_n\big)\big\}} $. This completes the proof.

    In this section, two numerical examples are given to verify our theoretical results. We define the maximal $ L^2 $ error and the convergence order in time, respectively, as

    $ e(K)=max0nK||wnWn||L2,order=log(e(K1)/e(K2))log(K2/K1). $ (4.1)

    Example 1. Consider the one-dimensional TFFPEs:

    $ αtu=uxx2ux+t2u+f(x,t),u(1,1)×(0,1], $ (4.2)

    where the initial-boundary conditions and the forcing term function $ f $ are choosen by the analytical solution

    $ u(x,t) = (t^2+t^\alpha)(x^3+x^5)\sin(\pi x). $

    In this case, $q$ is independent of $p_1$, furthermore, $p_1$ and $q$ are not monotone functions.

    We solve this problem with the $ TL1 $ Legendre-Galerkin spectral method. Table 1 gives the maximal $ L^2 $ errors, the convergence orders in time and the CPU times with $ N = 14 $. The temporal convergence orders are close to $ 2-\alpha $ in Table 1. For the spatial convergence test, we set $ K = 8192 $. In Figure 1, we give the errors as a function of $ N $ with $ \alpha = 0.3, \; 0.5, \; 0.7 $ in logarithmic scale. We can observe that the errors indicate an exponential decay.

    Table 1.  Maximal $ L^2 $ errors, convergence orders in time and CPU times with $ N = 14 $ for Example 1.
    $ \alpha=0.1 $ $ \alpha=0.3 $ $ \alpha=0.5 $
    $ K $ $ e(K) $ order CPU(s) $ e(K) $ order CPU(s) $ e(K) $ order CPU(s)
    4 5.3660e-03 * 1.12e-02 7.5697e-03 * 9.76e-03 8.5571e-03 * 9.92e-03
    16 1.3833e-03 0.98 2.45e-02 1.1574e-03 1.35 2.19e-02 1.3367e-03 1.34 2.25e-02
    64 1.7352e-04 1.50 8.06e-02 1.3606e-04 1.54 7.53e-02 1.8311e-04 1.43 7.40e-02
    256 1.6850e-05 1.68 2.90e-01 1.4476e-05 1.62 3.00e-01 2.3859e-05 1.47 3.01e-01

     | Show Table
    DownLoad: CSV
    Figure 1.  Errors in space with $ \alpha = 0.3, 0.5, 0.7 $ and different $ N $ for Example 1.

    Example 2. Consider the two-dimensional TFFPEs:

    $ \partial_t^\alpha u=\Delta u+t^2 x^2 y^2\left(u_x+u_y\right)+\left(2 t^2 x y^2+2 t^2 x^2 y\right) u, u \in(-1,1)^2 \times(0,1], $ (4.3)

    where the initial-boundary conditions and the forcing term function $ f $ are choosen by the analytical solution

    $ u(x,y,t) = E_\alpha(-t^\alpha)\sin(\pi x)\sin(\pi y). $

    Table 2 gives the maximal $ L^2 $ errors, the convergence orders in time and the CPU times with $ N = 14 $. The temporal convergence orders are close to $ 2-\alpha $ in Table 2. For the spatial convergence test, we give the errors as a function of $ N $ for $ \alpha = 0.3, \; 0.5, \; 0.7 $ and $ K = 8192 $ in Figure 2. We use the logarithmic scale for the error-axis. Again, we observe that the errors indicate an exponential decay.

    Table 2.  Maximal $ L^2 $ errors, convergence orders in time and CPU times with $ N = 14 $ for Example 2.
    $ \alpha=0.3 $ $ \alpha=0.5 $ $ \alpha=0.7 $
    $ K $ $ e(K) $ order CPU(s) $ e(K) $ order CPU(s) $ e(K) $ order CPU(s)
    32 7.0619e-05 * 2.08e-01 1.7386e-04 * 1.73e-01 3.1316e-04 * 1.69e-01
    256 3.3124e-06 1.47 1.34e+00 9.7836e-06 1.38 1.28e+00 2.3617e-05 1.24 1.31e+00
    2048 1.1965e-07 1.60 1.29e+01 4.6734e-07 1.46 1.28e+01 1.6199e-06 1.29 1.30e+01
    8192 1.2339e-08 1.64 8.59e+01 5.9649e-08 1.48 8.54e+01 2.6824e-07 1.30 8.83e+01

     | Show Table
    DownLoad: CSV
    Figure 2.  Errors in space with $ \alpha = 0.3, 0.5, 0.7 $ and different $ N $ for Example 2.

    We present a $ TL1 $ Legendre-Galerkin spectral method to solve TFFPEs in this paper. The new scheme is convergent with $ O(\tau_s^{2-\alpha}+ N^{1-m}) $, where $ \tau_s $, $ N $ and $ m $ are the time step size, the polynomial degree and the regularity of the analytical solution, respectively. In addition, this $ TL1 $ Legendre-Galerkin spectral method still holds for problems with small $ \alpha $ and gives better numerical solutions near the initial time. The new scheme can achieve a better convergence result on a relatively sparse grid point.

    The work of Yongtao Zhou is partially supported by the NSFC (12101037) and the China Postdoctoral Science Foundation (2021M690322).

    The authors declare that they have no conflicts of interest.

    [1] A. D. Aleksandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov., Izdat. Akad. Nauk SSSR, Moscow, 38 (1951), 5-23.
    [2] L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur., 19 (1995), 191-246.
    [3] L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 2005.
    [4] N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scalling to hyperbolic macroscopic models, Math. Mod. Meth. Appl. Sci., 18 (2008), 1317-1345. doi: 10.1142/S0218202508003054
    [5] F. Bernicot and J. Venel, Differential inclusions with proximal normal cones in Banach spaces, J. Convex Anal., 17 (2010), 451-484.
    [6] Available from: http://arxiv.org/abs/1009.2837.
    [7] V. Blue and J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research B, 35 (2001), 293-312. doi: 10.1016/S0191-2615(99)00052-1
    [8] A. Borgers and H. Timmermans, A model of pedestrian route choice and demand for retail facilities within inner-cityshopping areas, Geographycal Analysis, 18 (1986), 115-128. doi: 10.1111/j.1538-4632.1986.tb00086.x
    [9] A. Borgers and H. Timmermans, City centre entry points, store location patterns and pedestrian route choice behavior: A microlevel simulation model, Socio-Economic Planning Sciences, 20 (1986), 25-31. doi: 10.1016/0038-0121(86)90023-6
    [10] M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear Convex Anal., 6 (2005), 359-374.
    [11] C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525. doi: 10.1016/S0378-4371(01)00141-8
    [12] A. Canino, On $p$-convex sets and geodesics, J. Differential Equations, 75 (1988), 118-157.
    [13] C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows, SIAM J. Sci. Comput., 29 (2007), 539-555. doi: 10.1137/050641211
    [14] C. Chalons, "Transport-Equilibrium Schemes for Pedestrian Flows with Nonclassical Shocks," Traffic and Granular Flows'05, Springer, (2007), 347-356. doi: 10.1007/978-3-540-47641-2_31
    [15] F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property, J. Convex Anal., 2 (1995), 117-144.
    [16] G. Colombo and V. V. Goncharov, The sweeping processes without convexity, Set-Valued Anal., 7 (1999), 357-374. doi: 10.1023/A:1008774529556
    [17] G. Colombo and M. D. P. Monteiro Marques, Sweeping by a continuous prox-regular set, J. Differential Equations, 187 (2003), 46-62.
    [18] R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
    [19] V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Mod. Meth. Appl. Sci., 18 (2008), 1217-1247. doi: 10.1142/S0218202508003017
    [20] to appear in Communications in Pure and Applied Analysis.
    [21] E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for PDE and Applications" (eds., C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math, 29, Masson, Paris, (1993), 81-98.
    [22] P. Degond, L. Navoret, R. Bon and D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness, J. Stat. Phys., 138 (2010), 85-125. doi: 10.1007/s10955-009-9879-x
    [23] M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model of pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362.
    [24] C. Dogbé, On the numerical solutions of second order macroscopic models of pedestrian flows, Comput. Appl. Math., 56 (2008), 1884-1898. doi: 10.1016/j.camwa.2008.04.028
    [25] A. Donev, S. Torquato, F. H. Stillinger and Robert Connelly, Jamming in hard sphere and disk packings, J. Appl. Phys., 95 (2004), 989. doi: 10.1063/1.1633647
    [26] J. L. Doob, "Classical Potential Theory and Its Probabilistic Counterpart," Grundlehren der Mathematischen Wissenschaften, 262, Springer-Verlag, New York, 1984.
    [27] J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program, 104 (2005), 347-373. doi: 10.1007/s10107-005-0619-y
    [28] J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations, 226 (2006), 135-179.
    [29] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491. doi: 10.1090/S0002-9947-1959-0110078-1
    [30] P. G. Gipps and B. Marksjö, A micro-simulation model for pedestrian flows, Mathematics and Computers in Simulation, 27 (1985), 95-105. doi: 10.1016/0378-4754(85)90027-8
    [31] B. Gustafsson and M. Sakai, Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Analysis, 22 (1994), 1221-1245. doi: 10.1016/0362-546X(94)90107-4
    [32] S. Gwynne, E. R. Galea, P. J. Lawrence and L. Filippidis, Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model, Fire Safety Journal, 36 (2001), 327-357. doi: 10.1016/S0379-7112(00)00060-6
    [33] D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415.
    [34] D. Helbing, P. Molnar and F. Schweitzer, "Computer Simulations of Pedestrian Dynamics and Trail Formation," Evolution of Natural Structures, Sonderforschungsbereich, 230, Stuttgart, (1994), 229-234.
    [35] D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev E, 51 (1995), 4282-4286. doi: 10.1103/PhysRevE.51.4282
    [36] R. L. Hughes, A continuum theory for the flow of pedestrian, Transport. Res. Part B, 36 (2002), 507-535. doi: 10.1016/S0191-2615(01)00015-7
    [37] R. L. Hughes, "The Flow of Human Crowds," Ann. Rev. Fluid Mech., 35 Annual Reviews, Palo Alto, CA, (2003), 169-183.
    [38] A. D. Ioffe and J. V. Outrata, On metric and calmness qualification conditions in subdifferential calculus, Set-Valued Anal., 16 (2008), 199-227. doi: 10.1007/s11228-008-0076-x
    [39] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359
    [40] L. Levine and Y. Peres, Scaling limits for internal aggregation models with multiple sources, J. Anal. Math., 11 (2010), 151-219. doi: 10.1007/s11854-010-0015-2
    [41] G. G. Løvås, Modelling and simulation of pedestrian traffic flow, Transportation Research B, 28 (1994), 429-443. doi: 10.1016/0191-2615(94)90013-2
    [42] B. Maury, A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint, Numerische Mathematik, 102 (2006), 649-679. doi: 10.1007/s00211-005-0666-6
    [43] B. Maury and J. Venel, A discrete contact model for crowd motion, ESAIM Mathematical Modelling and Numerical Analysis, 45 (2011), 145-168. doi: 10.1051/m2an/2010035
    [44] B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799
    [45] J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 346-374.
    [46] J.-J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 255 (1962), 238-240.
    [47] K. Nagel, From particle hopping models to traffic flow theory, Transportation Research Record, 1644 (1998), 1-9. doi: 10.3141/1644-01
    [48] B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y
    [49] B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x
    [50] R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc., 348 (1996), 1805-1838. doi: 10.1090/S0002-9947-96-01544-9
    [51] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249. doi: 10.1090/S0002-9947-00-02550-2
    [52] R. T. Rockafellar and R. Wets, "Variational Analysis," Grundlehren der Mathematischen, Wissenschaften, 317, Springer-Verlag, Berlin, 1998.
    [53] Ph.D thesis, Université Paris-Sud, in preparation.
    [54] Y. Saisho and H. Tanaka, Stochastic differential equations for mutually reflecting Brownian balls, Osaka J. Math., 23 (1986), 725-740.
    [55] A. Schadschneider, Cellular automaton approach to pedestrian dynamics-theory, in "Pedestrian and Evacuation Dynamics" (eds., M. Schreckenberg and S. D. Sharma), Springer, Berlin, (2001), 75-85.
    [56] A. Schadschneider, A. Kirchner and K. Nishinari, From ant trails to pedestrian dynamics, Applied Bionics and Biomechanics, 1 (2003), 11-19. doi: 10.1533/abib.2003.1.1.11
    [57] L. Thibault, Sweeping process with regular and nonregular sets, J. Differential Equations, 193 (2003), 1-26.
    [58] S. Torquato and F. H. Stillinger, "Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond," Reviews of Modern Physics, 82, July-September 2010.
    [59] S. Torquato, T. M. Truskett and P. G. Debenedetti, Is random close packing of spheres well defined?, Phys. Rev. Lett., 84 (2000), 2064-2067. doi: 10.1103/PhysRevLett.84.2064
    [60] J. Venel, A numerical scheme for a class of sweeping processes, Numerische Mathematik, 118 (2011), 367-400. doi: 10.1007/s00211-010-0329-0
    [61] J. Venel, "Integrating Strategies in Numerical Modelling of Crowd Motion," Pedestrian and Evacuation Dynamics '08, Springer, (2010), 641-646. doi: 10.1007/978-3-642-04504-2_59
    [62] J. Venel, "Modélisation Mathématique et Numérique des Mouvements de Foule," Ph.D thesis, Université Paris-Sud XI, 2008. Available from: http://tel.archives-ouvertes.fr/tel-00346035/fr.
    [63] C. Villani, "Topics in Optimal Transportation," Grad. Stud. Math., 58, AMS, Providence, RI, 2003.
    [64] S. J. Yuhaski and J. M. Smith, Modeling circulation systems in buildings using state dependent queueing models, Queueing Systems Theory Appl., 4 (1989), 319-338. doi: 10.1007/BF01159471
  • This article has been cited by:

    1. Yanping Chen, Jixiao Guo, Unconditional error analysis of the linearized transformed L1 virtual element method for nonlinear coupled time-fractional Schrödinger equations, 2025, 457, 03770427, 116283, 10.1016/j.cam.2024.116283
    2. Yongtao Zhou, Mingzhu Li, Error estimate of a transformed L1 scheme for a multi-term time-fractional diffusion equation by using discrete comparison principle, 2024, 217, 03784754, 395, 10.1016/j.matcom.2023.11.010
    3. Asghar Ali, Jamshad Ahmad, Sara Javed, Rashida Hussain, Mohammed Kbiri Alaoui, Muhammad Aqeel, Numerical simulation and investigation of soliton solutions and chaotic behavior to a stochastic nonlinear Schrödinger model with a random potential, 2024, 19, 1932-6203, e0296678, 10.1371/journal.pone.0296678
    4. Zemian Zhang, Yanping Chen, Yunqing Huang, Jian Huang, Yanping Zhou, A continuous Petrov–Galerkin method for time-fractional Fokker–Planck equation, 2025, 03770427, 116689, 10.1016/j.cam.2025.116689
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5153) PDF downloads(208) Cited by(77)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog