Citation: Filippo Santambrogio. A modest proposal for MFG with density constraints[J]. Networks and Heterogeneous Media, 2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337
[1] | Filippo Santambrogio . A modest proposal for MFG with density constraints. Networks and Heterogeneous Media, 2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337 |
[2] | Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197 |
[3] | Félicien BOURDIN . Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population. Networks and Heterogeneous Media, 2022, 17(5): 783-801. doi: 10.3934/nhm.2022026 |
[4] | Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351 |
[5] | Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel . Handling congestion in crowd motion modeling. Networks and Heterogeneous Media, 2011, 6(3): 485-519. doi: 10.3934/nhm.2011.6.485 |
[6] | Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005 |
[7] | Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315 |
[8] | Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501 |
[9] | Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai . The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15(4): 681-710. doi: 10.3934/nhm.2020019 |
[10] | Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i |
[1] | L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. |
[2] | L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. |
[3] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393. doi: 10.1007/s002110050002
![]() |
[4] |
G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics, SIAM J. Control Optim., 48 (2009), 1961-1976. doi: 10.1137/07070543X
![]() |
[5] | G. Dal Maso, "An Introduction to $\Gamma-$Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. |
[6] | E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for PDE and Applications" (eds. C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, (1993), 81-98. |
[7] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359
![]() |
[8] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
![]() |
[9] | J.-M. Lasry and P.-L. Lions, Mean-field games, Japan. J. Math, 2 (2007), 229-260. |
[10] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799
![]() |
[11] | B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Net. Het. Media, 6 (2011), 485-519. |
[12] | B. Maury and J. Venel, "Handling of Contacts in Crowd Motion Simulations," Traffic and Granular Flow, Springer, 2007. |
[13] |
R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179. doi: 10.1006/aima.1997.1634
![]() |
[14] |
F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. doi: 10.1081/PDE-100002243
![]() |
[15] |
S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, 31 (2011), 1427-1451. doi: 10.3934/dcds.2011.31.1427
![]() |
[16] | C. Villani, "Topics in Optimal Transportation," Grad. Stud. Math., 58, AMS, Providence, RI, 2003. |
[17] | C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. |
1. | Diogo A. Gomes, Vardan K. Voskanyan, Short-time existence of solutions for mean-field games with congestion, 2015, 92, 0024-6107, 778, 10.1112/jlms/jdv052 | |
2. | Alpár Richárd Mészáros, Francisco J. Silva, On the Variational Formulation of Some Stationary Second-Order Mean Field Games Systems, 2018, 50, 0036-1410, 1255, 10.1137/17M1125960 | |
3. | Jean-David Benamou, Guillaume Carlier, Filippo Santambrogio, 2017, Chapter 4, 978-3-319-49994-9, 141, 10.1007/978-3-319-49996-3_4 | |
4. | Filippo Santambrogio, 2020, Chapter 2, 978-3-030-59836-5, 159, 10.1007/978-3-030-59837-2_2 | |
5. | Hugo Lavenant, Filippo Santambrogio, New estimates on the regularity of the pressure in density‐constrained mean field games, 2019, 100, 0024-6107, 644, 10.1112/jlms.12245 | |
6. | Wilfrid Gangbo, Andrzej Święch, Existence of a solution to an equation arising from the theory of Mean Field Games, 2015, 259, 00220396, 6573, 10.1016/j.jde.2015.08.001 | |
7. | Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado, On some singular mean-field games, 2021, 8, 2164-6066, 445, 10.3934/jdg.2021006 | |
8. | Damon Alexander, Inwon Kim, Yao Yao, Quasi-static evolution and congested crowd transport, 2014, 27, 0951-7715, 823, 10.1088/0951-7715/27/4/823 | |
9. | Pierre Cardaliaguet, Alessio Porretta, 2020, Chapter 1, 978-3-030-59836-5, 1, 10.1007/978-3-030-59837-2_1 | |
10. | Diogo A. Gomes, João Saúde, Mean Field Games Models—A Brief Survey, 2014, 4, 2153-0785, 110, 10.1007/s13235-013-0099-2 | |
11. | Alpár Richárd Mészáros, Filippo Santambrogio, Advection-diffusion equations with density constraints, 2016, 9, 1948-206X, 615, 10.2140/apde.2016.9.615 | |
12. | David Evangelista, Rita Ferreira, Diogo A. Gomes, Levon Nurbekyan, Vardan Voskanyan, First-order, stationary mean-field games with congestion, 2018, 173, 0362546X, 37, 10.1016/j.na.2018.03.011 | |
13. | Alpár Richárd Mészáros, Francisco J. Silva, A variational approach to second order mean field games with density constraints: The stationary case, 2015, 104, 00217824, 1135, 10.1016/j.matpur.2015.07.008 | |
14. | Noha Almulla, Rita Ferreira, Diogo Gomes, Two Numerical Approaches to Stationary Mean-Field Games, 2017, 7, 2153-0785, 657, 10.1007/s13235-016-0203-5 | |
15. | Noureddine Igbida, Van Thanh Nguyen, Optimal partial transport problem with Lagrangian costs, 2018, 52, 0764-583X, 2109, 10.1051/m2an/2018001 | |
16. | Filippo Santambrogio, Woojoo Shim, A Cucker--Smale Inspired Deterministic Mean Field Game with Velocity Interactions, 2021, 59, 0363-0129, 4155, 10.1137/20M1368549 | |
17. | Pierre Cardaliaguet, Alpár R. Mészáros, Filippo Santambrogio, First Order Mean Field Games with Density Constraints: Pressure Equals Price, 2016, 54, 0363-0129, 2672, 10.1137/15M1029849 | |
18. | Diogo A. Gomes, Roberto M. Velho, 2016, On the Hughes model and numerical aspects, 978-1-5090-1837-6, 2783, 10.1109/CDC.2016.7798683 | |
19. | L. M. Bricen͂o-Arias, D. Kalise, F. J. Silva, Proximal Methods for Stationary Mean Field Games with Local Couplings, 2018, 56, 0363-0129, 801, 10.1137/16M1095615 | |
20. | J. Frédéric Bonnans, Pierre Lavigne, Laurent Pfeiffer, Discrete potential mean field games: duality and numerical resolution, 2023, 0025-5610, 10.1007/s10107-023-01934-8 | |
21. | Adrien Séguret, An optimal control problem for the continuity equation arising in smart charging, 2024, 531, 0022247X, 127891, 10.1016/j.jmaa.2023.127891 | |
22. | Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020 | |
23. | Rita Ferreira, Diogo Gomes, Vardan Voskanyan, Weak-strong uniqueness for solutions to mean-field games, 2025, 1088-6826, 10.1090/proc/17208 |