A modest proposal for MFG with density constraints

  • Received: 01 November 2011 Revised: 01 March 2012
  • Primary: 91A23; Secondary: 49K15, 49K20, 49L20, 35F25.

  • We consider a typical problem in Mean Field Games: the congestion case, where in the cost that agents optimize there is a penalization for passing through zones with high density of agents, in a deterministic framework. This equilibrium problem is known to be equivalent to the optimization of a global functional including an $L^p$ norm of the density. The question arises as to produce a similar model replacing the $L^p$ penalization with an $L^\infty$ constraint, but the simplest approaches do not give meaningful definitions. Taking into account recent works about crowd motion, where the density constraint $\rho\leq 1$ was treated in terms of projections of the velocity field onto the set of admissible velocity (with a constraint on the divergence) and a pressure field was introduced, we propose a definition and write a system of PDEs including the usual Hamilton-Jacobi equation coupled with the continuity equation. For this system, we analyze an example and propose some open problems.

    Citation: Filippo Santambrogio. A modest proposal for MFG with density constraints[J]. Networks and Heterogeneous Media, 2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337

    Related Papers:

    [1] Filippo Santambrogio . A modest proposal for MFG with density constraints. Networks and Heterogeneous Media, 2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337
    [2] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [3] Félicien BOURDIN . Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population. Networks and Heterogeneous Media, 2022, 17(5): 783-801. doi: 10.3934/nhm.2022026
    [4] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [5] Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel . Handling congestion in crowd motion modeling. Networks and Heterogeneous Media, 2011, 6(3): 485-519. doi: 10.3934/nhm.2011.6.485
    [6] Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005
    [7] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [8] Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501
    [9] Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai . The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15(4): 681-710. doi: 10.3934/nhm.2020019
    [10] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
  • We consider a typical problem in Mean Field Games: the congestion case, where in the cost that agents optimize there is a penalization for passing through zones with high density of agents, in a deterministic framework. This equilibrium problem is known to be equivalent to the optimization of a global functional including an $L^p$ norm of the density. The question arises as to produce a similar model replacing the $L^p$ penalization with an $L^\infty$ constraint, but the simplest approaches do not give meaningful definitions. Taking into account recent works about crowd motion, where the density constraint $\rho\leq 1$ was treated in terms of projections of the velocity field onto the set of admissible velocity (with a constraint on the divergence) and a pressure field was introduced, we propose a definition and write a system of PDEs including the usual Hamilton-Jacobi equation coupled with the continuity equation. For this system, we analyze an example and propose some open problems.


    [1] L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246.
    [2] L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
    [3] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393. doi: 10.1007/s002110050002
    [4] G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics, SIAM J. Control Optim., 48 (2009), 1961-1976. doi: 10.1137/07070543X
    [5] G. Dal Maso, "An Introduction to $\Gamma-$Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.
    [6] E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for PDE and Applications" (eds. C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, (1993), 81-98.
    [7] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359
    [8] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
    [9] J.-M. Lasry and P.-L. Lions, Mean-field games, Japan. J. Math, 2 (2007), 229-260.
    [10] B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799
    [11] B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Net. Het. Media, 6 (2011), 485-519.
    [12] B. Maury and J. Venel, "Handling of Contacts in Crowd Motion Simulations," Traffic and Granular Flow, Springer, 2007.
    [13] R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179. doi: 10.1006/aima.1997.1634
    [14] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. doi: 10.1081/PDE-100002243
    [15] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, 31 (2011), 1427-1451. doi: 10.3934/dcds.2011.31.1427
    [16] C. Villani, "Topics in Optimal Transportation," Grad. Stud. Math., 58, AMS, Providence, RI, 2003.
    [17] C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009.
  • This article has been cited by:

    1. Diogo A. Gomes, Vardan K. Voskanyan, Short-time existence of solutions for mean-field games with congestion, 2015, 92, 0024-6107, 778, 10.1112/jlms/jdv052
    2. Alpár Richárd Mészáros, Francisco J. Silva, On the Variational Formulation of Some Stationary Second-Order Mean Field Games Systems, 2018, 50, 0036-1410, 1255, 10.1137/17M1125960
    3. Jean-David Benamou, Guillaume Carlier, Filippo Santambrogio, 2017, Chapter 4, 978-3-319-49994-9, 141, 10.1007/978-3-319-49996-3_4
    4. Filippo Santambrogio, 2020, Chapter 2, 978-3-030-59836-5, 159, 10.1007/978-3-030-59837-2_2
    5. Hugo Lavenant, Filippo Santambrogio, New estimates on the regularity of the pressure in density‐constrained mean field games, 2019, 100, 0024-6107, 644, 10.1112/jlms.12245
    6. Wilfrid Gangbo, Andrzej Święch, Existence of a solution to an equation arising from the theory of Mean Field Games, 2015, 259, 00220396, 6573, 10.1016/j.jde.2015.08.001
    7. Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado, On some singular mean-field games, 2021, 8, 2164-6066, 445, 10.3934/jdg.2021006
    8. Damon Alexander, Inwon Kim, Yao Yao, Quasi-static evolution and congested crowd transport, 2014, 27, 0951-7715, 823, 10.1088/0951-7715/27/4/823
    9. Pierre Cardaliaguet, Alessio Porretta, 2020, Chapter 1, 978-3-030-59836-5, 1, 10.1007/978-3-030-59837-2_1
    10. Diogo A. Gomes, João Saúde, Mean Field Games Models—A Brief Survey, 2014, 4, 2153-0785, 110, 10.1007/s13235-013-0099-2
    11. Alpár Richárd Mészáros, Filippo Santambrogio, Advection-diffusion equations with density constraints, 2016, 9, 1948-206X, 615, 10.2140/apde.2016.9.615
    12. David Evangelista, Rita Ferreira, Diogo A. Gomes, Levon Nurbekyan, Vardan Voskanyan, First-order, stationary mean-field games with congestion, 2018, 173, 0362546X, 37, 10.1016/j.na.2018.03.011
    13. Alpár Richárd Mészáros, Francisco J. Silva, A variational approach to second order mean field games with density constraints: The stationary case, 2015, 104, 00217824, 1135, 10.1016/j.matpur.2015.07.008
    14. Noha Almulla, Rita Ferreira, Diogo Gomes, Two Numerical Approaches to Stationary Mean-Field Games, 2017, 7, 2153-0785, 657, 10.1007/s13235-016-0203-5
    15. Noureddine Igbida, Van Thanh Nguyen, Optimal partial transport problem with Lagrangian costs, 2018, 52, 0764-583X, 2109, 10.1051/m2an/2018001
    16. Filippo Santambrogio, Woojoo Shim, A Cucker--Smale Inspired Deterministic Mean Field Game with Velocity Interactions, 2021, 59, 0363-0129, 4155, 10.1137/20M1368549
    17. Pierre Cardaliaguet, Alpár R. Mészáros, Filippo Santambrogio, First Order Mean Field Games with Density Constraints: Pressure Equals Price, 2016, 54, 0363-0129, 2672, 10.1137/15M1029849
    18. Diogo A. Gomes, Roberto M. Velho, 2016, On the Hughes model and numerical aspects, 978-1-5090-1837-6, 2783, 10.1109/CDC.2016.7798683
    19. L. M. Bricen͂o-Arias, D. Kalise, F. J. Silva, Proximal Methods for Stationary Mean Field Games with Local Couplings, 2018, 56, 0363-0129, 801, 10.1137/16M1095615
    20. J. Frédéric Bonnans, Pierre Lavigne, Laurent Pfeiffer, Discrete potential mean field games: duality and numerical resolution, 2023, 0025-5610, 10.1007/s10107-023-01934-8
    21. Adrien Séguret, An optimal control problem for the continuity equation arising in smart charging, 2024, 531, 0022247X, 127891, 10.1016/j.jmaa.2023.127891
    22. Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020
    23. Rita Ferreira, Diogo Gomes, Vardan Voskanyan, Weak-strong uniqueness for solutions to mean-field games, 2025, 1088-6826, 10.1090/proc/17208
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3608) PDF downloads(82) Cited by(23)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog