Citation: Olivier Guéant. New numerical methods for mean field games with quadratic costs[J]. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
[1] | Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315 |
[2] | Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197 |
[3] | Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243 |
[4] | Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado . A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7(2): 303-314. doi: 10.3934/nhm.2012.7.303 |
[5] | Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta . Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7(2): 279-301. doi: 10.3934/nhm.2012.7.279 |
[6] | Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou . A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14(3): 537-566. doi: 10.3934/nhm.2019021 |
[7] | Tong Yan . The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation. Networks and Heterogeneous Media, 2023, 18(1): 359-379. doi: 10.3934/nhm.2023014 |
[8] | Fabio Camilli, Francisco Silva . A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263 |
[9] | Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i |
[10] | Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai . The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15(4): 681-710. doi: 10.3934/nhm.2020019 |
[1] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109. doi: 10.1137/100790069
![]() |
[2] |
Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM Journal on Numerical Analysis, 48 (2010), 1136-1162. doi: 10.1137/090758477
![]() |
[3] | P. Cardaliaguet, Notes on mean field games, from P.-L. Lions' lectures at Collège de France, 2010. |
[4] |
M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, 43 (1984), 1-19. doi: 10.1090/S0025-5718-1984-0744921-8
![]() |
[5] | L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 2010. |
[6] | D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328. |
[7] | to appear in Mathematical Models and Methods in Applied Sciences (M3AS). |
[8] | to appear in the Annals of ISDG. |
[9] | O. Guéant, "Mean Field Games and Applications to Economics," Ph.D thesis, Université Paris-Dauphine, 2009. |
[10] | O. Guéant, A reference case for mean field games models, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276-294. |
[11] | O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in "Paris Princeton Lectures on Mathematical Finance 2010," Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266. |
[12] |
A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588. doi: 10.1142/S0218202510004349
![]() |
[13] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019
![]() |
[14] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
![]() |
[15] | J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260. |
[16] | Available from: http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp. |
1. | Yves Achdou, Alessio Porretta, Convergence of a Finite Difference Scheme to Weak Solutions of the System of Partial Differential Equations Arising in Mean Field Games, 2016, 54, 0036-1429, 161, 10.1137/15M1015455 | |
2. | René Carmona, François Delarue, 2018, Chapter 1, 978-3-319-56435-7, 3, 10.1007/978-3-319-56436-4_1 | |
3. | Diogo A. Gomes, Edgard Pimentel, Time-Dependent Mean-Field Games with Logarithmic Nonlinearities, 2015, 47, 0036-1410, 3798, 10.1137/140984622 | |
4. | René Carmona, François Delarue, 2018, Chapter 5, 978-3-319-56435-7, 323, 10.1007/978-3-319-56436-4_5 | |
5. | Indranil Chowdhury, Olav Ersland, Espen R. Jakobsen, On Numerical Approximations of Fractional and Nonlocal Mean Field Games, 2022, 1615-3375, 10.1007/s10208-022-09572-w | |
6. | Shuhua Zhang, Xinyu Wang, Aleksandr Shanain, Modeling and computation of mean field equilibria in producers’ game with emission permits trading, 2016, 37, 10075704, 238, 10.1016/j.cnsns.2016.01.020 | |
7. | René Carmona, François Delarue, 2018, Chapter 3, 978-3-319-56435-7, 155, 10.1007/978-3-319-56436-4_3 | |
8. | Thibault Bonnemain, Thierry Gobron, Denis Ullmo, Schrödinger approach to Mean Field Games with negative coordination, 2020, 9, 2542-4653, 10.21468/SciPostPhys.9.4.059 | |
9. | René Carmona, François Delarue, 2018, Chapter 2, 978-3-319-56435-7, 107, 10.1007/978-3-319-56436-4_2 | |
10. | Yves Achdou, Fabio Camilli, Italo Capuzzo-Dolcetta, Mean Field Games: Convergence of a Finite Difference Method, 2013, 51, 0036-1429, 2585, 10.1137/120882421 | |
11. | E. Carlini, F. J. Silva, 2013, Semi-Lagrangian schemes for mean field game models, 978-1-4673-5717-3, 3115, 10.1109/CDC.2013.6760358 | |
12. | Berkay Anahtarcı, Can Deha Karıksız, Naci Saldi, Value iteration algorithm for mean-field games, 2020, 143, 01676911, 104744, 10.1016/j.sysconle.2020.104744 | |
13. | V. Shaydurov, S. Zhang, E. Karepova, The Finite Difference Approximation Preserving Conjugate Properties of the Mean-Field Game Equations, 2019, 40, 1995-0802, 513, 10.1134/S1995080219040140 | |
14. | Guilherme Mazanti, Filippo Santambrogio, Minimal-time mean field games, 2019, 29, 0218-2025, 1413, 10.1142/S0218202519500258 | |
15. | V. Shaydurov, S. Zhang, V. Kornienko, Approximations of two-dimensional Mean Field Games with nonsymmetric controls, 2020, 367, 03770427, 112461, 10.1016/j.cam.2019.112461 | |
16. | René Carmona, François Delarue, 2018, Chapter 7, 978-3-319-56435-7, 541, 10.1007/978-3-319-56436-4_7 | |
17. | Yves Achdou, 2013, Chapter 1, 978-3-642-36432-7, 1, 10.1007/978-3-642-36433-4_1 | |
18. | René Carmona, François Delarue, 2018, Chapter 4, 978-3-319-56435-7, 239, 10.1007/978-3-319-56436-4_4 | |
19. | Olivier Guéant, Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs, 2015, 72, 0095-4616, 291, 10.1007/s00245-014-9280-2 | |
20. | Erhan Bayraktar, Amarjit Budhiraja, Asaf Cohen, Rate control under heavy traffic with strategic servers, 2019, 29, 1050-5164, 10.1214/17-AAP1349 | |
21. | Adriano Festa, Roberto Guglielmi, Christopher Hermosilla, Athena Picarelli, Smita Sahu, Achille Sassi, Francisco J. Silva, 2017, Chapter 2, 978-3-319-60770-2, 127, 10.1007/978-3-319-60771-9_2 | |
22. | Yves Achdou, Martino Bardi, Marco Cirant, Mean field games models of segregation, 2017, 27, 0218-2025, 75, 10.1142/S0218202517400036 | |
23. | David Evangelista, Rita Ferreira, Diogo A. Gomes, Levon Nurbekyan, Vardan Voskanyan, First-order, stationary mean-field games with congestion, 2018, 173, 0362546X, 37, 10.1016/j.na.2018.03.011 | |
24. | René Carmona, François Delarue, 2018, Chapter 6, 978-3-319-56435-7, 447, 10.1007/978-3-319-56436-4_6 | |
25. | Erhan Bayraktar, Amarjit Budhiraja, Asaf Cohen, A Numerical Scheme for a Mean Field Game in Some Queueing Systems Based on Markov Chain Approximation Method, 2018, 56, 0363-0129, 4017, 10.1137/17M1154357 | |
26. |
Samer Dweik, Guilherme Mazanti,
Sharp semi-concavity in a non-autonomous control problem and estimates in an optimal-exit MFG,
2020,
27,
1021-9722,
10.1007/s00030-019-0612-4
|
|
27. | Noha Almulla, Rita Ferreira, Diogo Gomes, Two Numerical Approaches to Stationary Mean-Field Games, 2017, 7, 2153-0785, 657, 10.1007/s13235-016-0203-5 | |
28. | Jean-François Chassagneux, Dan Crisan, François Delarue, Numerical method for FBSDEs of McKean–Vlasov type, 2019, 29, 1050-5164, 10.1214/18-AAP1429 |