New numerical methods for mean field games with quadratic costs

  • Received: 01 November 2011 Revised: 01 March 2012
  • Primary: 35K91, 65M12; Secondary: 91A15.

  • Mean field games have been introduced by J.-M. Lasry and P.-L. Lions in [13, 14, 15] as the limit case of stochastic differential games when the number of players goes to $+\infty$. In the case of quadratic costs, we present two changes of variables that allow to transform the mean field games (MFG) equations into two simpler systems of equations. The first change of variables, introduced in [11], leads to two heat equations with nonlinear source terms. The second change of variables, which is introduced for the first time in this paper, leads to two Hamilton-Jacobi-Bellman equations. Numerical methods based on these equations are presented and numerical experiments are carried out.

    Citation: Olivier Guéant. New numerical methods for mean field games with quadratic costs[J]. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315

    Related Papers:

    [1] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [2] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [3] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [4] Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado . A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7(2): 303-314. doi: 10.3934/nhm.2012.7.303
    [5] Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta . Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7(2): 279-301. doi: 10.3934/nhm.2012.7.279
    [6] Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou . A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14(3): 537-566. doi: 10.3934/nhm.2019021
    [7] Tong Yan . The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation. Networks and Heterogeneous Media, 2023, 18(1): 359-379. doi: 10.3934/nhm.2023014
    [8] Fabio Camilli, Francisco Silva . A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263
    [9] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
    [10] Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai . The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15(4): 681-710. doi: 10.3934/nhm.2020019
  • Mean field games have been introduced by J.-M. Lasry and P.-L. Lions in [13, 14, 15] as the limit case of stochastic differential games when the number of players goes to $+\infty$. In the case of quadratic costs, we present two changes of variables that allow to transform the mean field games (MFG) equations into two simpler systems of equations. The first change of variables, introduced in [11], leads to two heat equations with nonlinear source terms. The second change of variables, which is introduced for the first time in this paper, leads to two Hamilton-Jacobi-Bellman equations. Numerical methods based on these equations are presented and numerical experiments are carried out.


    [1] Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109. doi: 10.1137/100790069
    [2] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM Journal on Numerical Analysis, 48 (2010), 1136-1162. doi: 10.1137/090758477
    [3] P. Cardaliaguet, Notes on mean field games, from P.-L. Lions' lectures at Collège de France, 2010.
    [4] M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, 43 (1984), 1-19. doi: 10.1090/S0025-5718-1984-0744921-8
    [5] L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 2010.
    [6] D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328.
    [7] to appear in Mathematical Models and Methods in Applied Sciences (M3AS).
    [8] to appear in the Annals of ISDG.
    [9] O. Guéant, "Mean Field Games and Applications to Economics," Ph.D thesis, Université Paris-Dauphine, 2009.
    [10] O. Guéant, A reference case for mean field games models, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276-294.
    [11] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in "Paris Princeton Lectures on Mathematical Finance 2010," Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266.
    [12] A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588. doi: 10.1142/S0218202510004349
    [13] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019
    [14] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
    [15] J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.
    [16] Available from: http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp.
  • This article has been cited by:

    1. Yves Achdou, Alessio Porretta, Convergence of a Finite Difference Scheme to Weak Solutions of the System of Partial Differential Equations Arising in Mean Field Games, 2016, 54, 0036-1429, 161, 10.1137/15M1015455
    2. René Carmona, François Delarue, 2018, Chapter 1, 978-3-319-56435-7, 3, 10.1007/978-3-319-56436-4_1
    3. Diogo A. Gomes, Edgard Pimentel, Time-Dependent Mean-Field Games with Logarithmic Nonlinearities, 2015, 47, 0036-1410, 3798, 10.1137/140984622
    4. René Carmona, François Delarue, 2018, Chapter 5, 978-3-319-56435-7, 323, 10.1007/978-3-319-56436-4_5
    5. Indranil Chowdhury, Olav Ersland, Espen R. Jakobsen, On Numerical Approximations of Fractional and Nonlocal Mean Field Games, 2022, 1615-3375, 10.1007/s10208-022-09572-w
    6. Shuhua Zhang, Xinyu Wang, Aleksandr Shanain, Modeling and computation of mean field equilibria in producers’ game with emission permits trading, 2016, 37, 10075704, 238, 10.1016/j.cnsns.2016.01.020
    7. René Carmona, François Delarue, 2018, Chapter 3, 978-3-319-56435-7, 155, 10.1007/978-3-319-56436-4_3
    8. Thibault Bonnemain, Thierry Gobron, Denis Ullmo, Schrödinger approach to Mean Field Games with negative coordination, 2020, 9, 2542-4653, 10.21468/SciPostPhys.9.4.059
    9. René Carmona, François Delarue, 2018, Chapter 2, 978-3-319-56435-7, 107, 10.1007/978-3-319-56436-4_2
    10. Yves Achdou, Fabio Camilli, Italo Capuzzo-Dolcetta, Mean Field Games: Convergence of a Finite Difference Method, 2013, 51, 0036-1429, 2585, 10.1137/120882421
    11. E. Carlini, F. J. Silva, 2013, Semi-Lagrangian schemes for mean field game models, 978-1-4673-5717-3, 3115, 10.1109/CDC.2013.6760358
    12. Berkay Anahtarcı, Can Deha Karıksız, Naci Saldi, Value iteration algorithm for mean-field games, 2020, 143, 01676911, 104744, 10.1016/j.sysconle.2020.104744
    13. V. Shaydurov, S. Zhang, E. Karepova, The Finite Difference Approximation Preserving Conjugate Properties of the Mean-Field Game Equations, 2019, 40, 1995-0802, 513, 10.1134/S1995080219040140
    14. Guilherme Mazanti, Filippo Santambrogio, Minimal-time mean field games, 2019, 29, 0218-2025, 1413, 10.1142/S0218202519500258
    15. V. Shaydurov, S. Zhang, V. Kornienko, Approximations of two-dimensional Mean Field Games with nonsymmetric controls, 2020, 367, 03770427, 112461, 10.1016/j.cam.2019.112461
    16. René Carmona, François Delarue, 2018, Chapter 7, 978-3-319-56435-7, 541, 10.1007/978-3-319-56436-4_7
    17. Yves Achdou, 2013, Chapter 1, 978-3-642-36432-7, 1, 10.1007/978-3-642-36433-4_1
    18. René Carmona, François Delarue, 2018, Chapter 4, 978-3-319-56435-7, 239, 10.1007/978-3-319-56436-4_4
    19. Olivier Guéant, Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs, 2015, 72, 0095-4616, 291, 10.1007/s00245-014-9280-2
    20. Erhan Bayraktar, Amarjit Budhiraja, Asaf Cohen, Rate control under heavy traffic with strategic servers, 2019, 29, 1050-5164, 10.1214/17-AAP1349
    21. Adriano Festa, Roberto Guglielmi, Christopher Hermosilla, Athena Picarelli, Smita Sahu, Achille Sassi, Francisco J. Silva, 2017, Chapter 2, 978-3-319-60770-2, 127, 10.1007/978-3-319-60771-9_2
    22. Yves Achdou, Martino Bardi, Marco Cirant, Mean field games models of segregation, 2017, 27, 0218-2025, 75, 10.1142/S0218202517400036
    23. David Evangelista, Rita Ferreira, Diogo A. Gomes, Levon Nurbekyan, Vardan Voskanyan, First-order, stationary mean-field games with congestion, 2018, 173, 0362546X, 37, 10.1016/j.na.2018.03.011
    24. René Carmona, François Delarue, 2018, Chapter 6, 978-3-319-56435-7, 447, 10.1007/978-3-319-56436-4_6
    25. Erhan Bayraktar, Amarjit Budhiraja, Asaf Cohen, A Numerical Scheme for a Mean Field Game in Some Queueing Systems Based on Markov Chain Approximation Method, 2018, 56, 0363-0129, 4017, 10.1137/17M1154357
    26. Samer Dweik, Guilherme Mazanti, Sharp semi-concavity in a non-autonomous control problem and
    estimates in an optimal-exit MFG, 2020, 27, 1021-9722, 10.1007/s00030-019-0612-4
    27. Noha Almulla, Rita Ferreira, Diogo Gomes, Two Numerical Approaches to Stationary Mean-Field Games, 2017, 7, 2153-0785, 657, 10.1007/s13235-016-0203-5
    28. Jean-François Chassagneux, Dan Crisan, François Delarue, Numerical method for FBSDEs of McKean–Vlasov type, 2019, 29, 1050-5164, 10.1214/18-AAP1429
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4682) PDF downloads(138) Cited by(28)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog