Loading [MathJax]/jax/output/SVG/jax.js

A semi-discrete approximation for a first order mean field game problem

  • Received: 01 November 2011 Revised: 01 March 2012
  • Primary: 91A13; Secondary: 65M25, 49L25.

  • In this article we consider a model first order mean field game problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution $(v,m)$ can be obtained as the limit of the solutions of the second order mean field game problems, when the noise parameter tends to zero (see [18]). We propose a semi-discrete in time approximation of the system and, under natural assumptions, we prove that it is well posed and that it converges to $(v,m)$ when the discretization parameter tends to zero.

    Citation: Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem[J]. Networks and Heterogeneous Media, 2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263

    Related Papers:

    [1] Chang-Jian Wang, Jia-Yue Zhu . Analysis of global dynamics in an attraction-repulsion model with nonlinear indirect signal and logistic source. Communications in Analysis and Mechanics, 2024, 16(4): 813-835. doi: 10.3934/cam.2024035
    [2] Min Jiang, Dandan Liu, Rengang Huang . Boundedness and stabilization in a quasilinear chemotaxis model with nonlocal growth term and indirect signal production. Communications in Analysis and Mechanics, 2025, 17(2): 387-412. doi: 10.3934/cam.2025016
    [3] Yang Liu . Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2023, 15(3): 436-456. doi: 10.3934/cam.2023021
    [4] Jiangbo Han, Runzhang Xu, Chao Yang . Continuous dependence on initial data and high energy blowup time estimate for porous elastic system. Communications in Analysis and Mechanics, 2023, 15(2): 214-244. doi: 10.3934/cam.2023012
    [5] Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033
    [6] Xiaotian Hao, Lingzhong Zeng . Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds. Communications in Analysis and Mechanics, 2023, 15(2): 162-176. doi: 10.3934/cam.2023009
    [7] Senhao Duan, Yue MA, Weidong Zhang . Conformal-type energy estimates on hyperboloids and the wave-Klein-Gordon model of self-gravitating massive fields. Communications in Analysis and Mechanics, 2023, 15(2): 111-131. doi: 10.3934/cam.2023007
    [8] Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang . The Cauchy problem for general nonlinear wave equations with doubly dispersive. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019
    [9] Long Ju, Jian Zhou, Yufeng Zhang . Conservation laws analysis of nonlinear partial differential equations and their linear soliton solutions and Hamiltonian structures. Communications in Analysis and Mechanics, 2023, 15(2): 24-49. doi: 10.3934/cam.2023002
    [10] Tingfu Feng, Yan Dong, Kelei Zhang, Yan Zhu . Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth. Communications in Analysis and Mechanics, 2025, 17(1): 263-289. doi: 10.3934/cam.2025011
  • In this article we consider a model first order mean field game problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution $(v,m)$ can be obtained as the limit of the solutions of the second order mean field game problems, when the noise parameter tends to zero (see [18]). We propose a semi-discrete in time approximation of the system and, under natural assumptions, we prove that it is well posed and that it converges to $(v,m)$ when the discretization parameter tends to zero.


    Chemotaxis is a physiological phenomenon of organisms seeking benefits and avoiding harm, which has been widely concerned in the fields of both mathematics and biology. In order to depict such phenomena, in 1970, Keller and Segel [1] established the first mathematical model (also called the Keller-Segel model). The general form of this model is described as follows

    $ {ut=Δuχ(uv)+f(u), xΩ, t>0,τvt=Δvv+g(u), xΩ, t>0,u(x,0)=u0(x),v(x,0)=v0(x), xΩ, $ (1.1)

    where $ \Omega \subset \mathbb{R}^{n} (n\geq 1) $ is a bounded domain with smooth boundary, the value of $ \tau $ can be chosen by $ 0 $ or $ 1 $ and the chemotaxis sensitivity coefficient $ \chi > 0. $ Here, $ u $ is the density of cell or bacteria and $ v $ stands for the concentration of chemical signal secreted by cell or bacteria. The functions $ f(u) $ and $ g(u) $ are used to characterize the growth and death of cells or bacteria and production of chemical signals, respectively.

    Over the past serval decades, considerable efforts have been done on the dynamical behavior (including the global existence and boundedness, the convergence as well as the existence of blow-up solutions) of the solutions to system (1.1) (see [2,3,4,5,6,7]). Let us briefly recall some contributions among them in this direction. For example, assume that $ f(u) = 0 $ and $ g(u) = u. $ For $ \tau = 1, $ it has been shown that the classical solutions to system (1.1) always remain globally bounded when $ n = 1 $ [8]. Additionally, there will be a critical mass phenomenon to system (1.1) when $ n = 2, $ namely, if the initial data $ u_{0} $ fulfill $ \int_{\Omega}u_{0}dx < \frac{4\pi}{\chi}, $ the classical solutions are globally bounded [9]; and if $ \int_{\Omega}u_{0}dx > \frac{4\pi}{\chi}, $ the solutions will blow up in finite time [10,11]. However, when $ n\geq 3, $ Winkler [12,13] showed that though the initial data satisfy some smallness conditions, the solutions will blow up either in finite or infinite time. Assume that the system (1.1) involves a non-trivial logistic source and $ g(u) = u. $ For $ \tau = 0 $ and $ f(u)\leq a-\mu u^{2} $ with $ a\geq 0 $ and $ \mu > 0, $ Tello and Winkler [14] obtained that there exists a unique global classical solution for system (1.1) provided that $ n\leq 2, \mu > 0 $ or $ n\geq 3 $ and suitably large $ \mu > 0. $ Furthermore, for $ \tau > 0 $ and $ n\geq1, $ suppose that $ \Omega $ is a bounded convex domain. Winkler [15] proved that the system (1.1) has global classical solutions under the restriction that $ \mu > 0 $ is sufficiently large. When $ \tau = 1 $ and $ f(u) = u-\mu u^{2}, $ Winkler [16] showed that nontrivial spatially homogeneous equilibrium $ (\frac{1}{\mu}, \frac{1}{\mu}) $ is globally asymptotically stable provided that the ratio $ \frac{\mu}{\chi} $ is sufficiently large and $ \Omega $ is a convex domain. Later, based on maximal Sobolev regularity, Cao [17] also obtained the similar convergence results by removing the restrictions $ \tau = 1 $ and the convexity of $ \Omega $ required in [16]. In addition, for the more related works in this direction, we mention that some variants of system (1.1), such as the attraction-repulsion systems (see [18,19,20,21]), the chemotaxis-haptotaxis models (see [22,23,24]), the Keller-Segel-Navier-Stokes systems (see [25,26,27,28,29,30]) and the pursuit-evasion models (see [31,32,33]), have been deeply investigated.

    Recently, the Keller-Segel model with nonlinear production mechanism of the signal (i.e. $ g(u) $ is a nonlinear function with respect to $ u $) has attracted widespread attention from scholars. For instance, when the second equation in (1.1) satisfies $ v_{t} = \Delta v -v+g(u) $ with $ 0\leq g(u)\leq Ku^{\alpha} $ for $ K, \alpha > 0, $ Liu and Tao [34] obtained the global existence of classical solutions under the condition that $ 0 < \alpha < \frac{2}{n}. $ When $ f(u)\leq u(a-bu^{s}) $ and the second equation becomes $ 0 = \Delta v-v+u^{k} $ with $ k, s > 0, $ Wang and Xiang [35] showed that if either $ s > k $ or $ s = k $ with $ \frac{kn-2}{kn}\chi < b, $ the system (1.2) has global classical solutions. When the second equation in (1.1) turns into $ 0 = \Delta v -\frac{1}{|\Omega|}\int_{\Omega}g(u)+g(u) $ for $ g(u) = u^{\kappa} $ with $ \kappa > 0, $ Winkler [36] showed that the system has a critical exponent $ \frac{2}{n} $ such that if $ \kappa > \frac{2}{n}, $ the solution blows up in finite time; conversely, if $ \kappa < \frac{2}{n}, $ the solution is globally bounded with respect to $ t $. More results on Keller-Segel model with logistic source can be found in [6,37,38,39,40].

    In addition, previous contributions also imply that diffusion functions may lead to colorful dynamic behaviors. The corresponding model can be given by

    $ {ut=(D(u)u)(S(u)v), xΩ, t>0,vt=Δvv+u, xΩ, t>0, $ (1.2)

    where $ D(u) $ and $ S(u) $ are positive functions that are used to characterize the strength of diffusion and chemoattractants, respectively. When $ D(u) $ and $ S(u) $ are nonlinear functions of $ u, $ Tao-Winkler [41] and Winkler [42] proved that the existence of global classical solutions or blow-up solutions depend on the value of $ \frac{S(u)}{D(u)}. $ Namely, if $ \frac{S(u)}{D(u)}\geq cu^{\alpha} $ with $ \alpha > \frac{2}{n}, n\geq 2 $ and $ c > 0 $ for all $ u > 1 $, then for any $ M > 0 $ there exist solutions that blow up in either finite or infinite time with mass $ \int_{\Omega}u_{0} = M $ in [42]. Later, Tao and Winkler [41] showed that such a result is optimal, i.e., if $ \frac{S(u)}{D(u)}\leq cu^{\alpha} $ with $ \alpha < \frac{2}{n}, n\geq 1 $ and $ c > 0 $ for all $ u > 1 $, then the system (1.2) possesses global classical solutions, which are bounded in $ \Omega \times (0, \infty). $ Furthermore, Zheng [43] studied a logistic-type parabolic-elliptic system with $ u_{t} = \nabla \cdot ((u+1)^{m-1}\nabla u)-\chi \nabla (u(u+1)^{q-1}\nabla v)+au-bu^{r} $ and $ 0 = \Delta v-v+u $ for $ m\geq 1, r > 1, a\geq0, b, q, \chi > 0. $ It is shown that when $ q+1 < \max\{r, m+\frac{2}{n}\}, $ or $ b > b_{0} = \frac{n(r-m)-2}{(r-m)n+2(r-2)}\chi $ if $ q+1 = r, $ then for any sufficiently smooth initial data there exists a classical solution that is global in time and bounded. For more relevant results, please refer to [38,44,45,46].

    In the Keller-Segel model mentioned above, the chemical signals are secreted by cell population, directly. Nevertheless, in reality, the production of chemical signals may go through very complex processes. For example, signal substance is not secreted directly by cell population but is produced by some other signal substance. Such a process may be described as the following system involving an indirect signal mechanism

    $ {ut=Δu(uv)+f(u),   xΩ, t>0,τvt=Δvv+w,τwt=Δww+u,   xΩ, t>0, $ (1.3)

    where $ u $ represents the density of cell, $ v $ and $ w $ denote the concentration of chemical signal and indirect chemical signal, respectively. For $ \tau = 1, $ assume that $ f(u) = \mu(u-u^{\gamma}) $ with $ \mu, \gamma > 0, $ Zhang-Niu-Liu [47] showed that the system has global classical solutions under the condition that $ \gamma > \frac{n}{4}+\frac{1}{2} $ with $ n\geq 2. $ Such a boundedness result was also extended to a quasilinear system in [48,49]. Ren [50] studied system (1.3) and obtained the global existence and asymptotic behavior of generalized solutions. For $ \tau = 0, $ Li and Li [51] investigated the global existence and long time behavior of classical solutions for a quasilinear version of system (1.3). In [52], we extended Li and Li's results to a quasilinear system with a nonlinear indirect signal mechanism. More relevant results involving indirect signal mechanisms can be found in [53,54,55,56].

    In the existing literatures, the indirect signal secretion mechanism is usually a linear function of $ u. $ However, there are very few papers that study the chemotaxis system, where chemical signal production is not only indirect but also nonlinear. Considering the complexity of biological processes, such signal production mechanisms may be more in line with the actual situation. Thus, in this paper, we study the following chemotaxis system

    $ {ut=Δuχ(φ(u)v)ξ(ψ(u)w)+f(u),  xΩ, t>0,0=Δvv+vγ11, 0=Δv1v1+uγ2,  xΩ, t>0,0=Δww+wγ31, 0=Δw1w1+uγ4,  xΩ, t>0,uν=vν=wν=v1ν=w1ν=0,  xΩ, t>0, $ (1.4)

    where $ \Omega\subset \mathbb{R}^{n} (n\geq 1) $ is a smoothly bounded domain and $ \nu $ denotes the outward unit normal vector on $ \partial \Omega, $ the parameters $ \chi, \xi, \gamma_{2}, \gamma_{4} > 0, $ and $ \gamma_{1}, \gamma_{3}\geq1. $ The initial data $ u(x, 0) = u_{0}(x) $ satisfy some smooth conditions. Here, the nonlinear functions are assumed to satisfy

    $ φ,ψC2([0,)), φ(ϱ)ϱ(ϱ+1)θ1 and ψ(ϱ)ϱ(ϱ+1)l1 for all ϱ0, $ (1.5)

    with $ \theta, l\in\mathbb{R}. $ The logistic source $ f\in C^{\infty}([0, \infty)) $ is supposed to satisfy

    $ f(0)0 and f(ϱ)aϱbϱs for all ϱ0, $ (1.6)

    with $ a, b > 0 $ and $ s > 1. $ The purpose of this paper is to detect the influence of power exponents (instead of the coefficients and space dimension $ n $) of the system (1.4) on the existence and boundedness of global classical solutions.

    We state our main result as follows.

    Theorem 1.1. Let $ \Omega\subset\mathbb{R}^n(n\geq1) $ be a bounded domain with smooth boundary and the parameters fulfill $ \xi, \chi, \gamma_{2}, \gamma_{4} > 0 $ and $ \gamma_{1}, \gamma_{3}\geq1. $ Assume that the nonlinear functions $ \varphi, \psi $ and $ f $ satisfy the conditions (1.5) and (1.6) with $ a, b > 0, s > 1 $ and $ \theta, l\in \mathbb{R}. $ If $ s \geq\max\{ \gamma_{1}\gamma_{2}+\theta, \gamma_{3}\gamma_{4}+l\}, $ then for any nonnegative initial data $ u_{0}\in W^{1, \infty}(\Omega), $ the system (1.4) has a nonnegative global classical solution

    $ (u, v, v_{1}, w, w_{1}) \in (C^{0}(\overline{\Omega}\times[0, \infty))\cap C^{2, 1}(\overline{\Omega}\times(0, \infty)))\times (C^{2, 0}(\overline{\Omega}\times(0, \infty)))^{4}. $

    Furthermore, this solution is bounded in $ \Omega \times (0, \infty), $ in other words, there exists a constant $ C > 0 $ such that

    $ u(,t)L(Ω)+(v(,t),v1(,t),w(,t),w1(,t))W1,(Ω)<C $

    for all $ t > 0. $

    The system (1.4) is a bi-attraction chemotaxis model, which can somewhat be seen as a variant of the classical attraction-repulsion system proposed by Luca [57]. In [58], Hong-Tian-Zheng studied an attraction-repulsion model with nonlinear productions and obtained the buondedness conditions which not only depend on the power exponents of the system, but also rely on the coefficients of the system as well as space dimension $ n. $ Based on [58], Zhou-Li-Zhao [59] further improved such boundedness results to some critical conditions. Compared to [58] and [59], the boundedness condition developed in Theorem 1.1 relies only on the power exponents of the system, which removes restrictions on the coefficients of the system and space dimension $ n. $ The main difficulties in the proof of Theorem 1.1 are how to reasonably deal with the integrals with power exponents in obtaining the estimate of $ \int_{\Omega}(u+1)^{p} $ in Lemma 3.1. Based on a prior estimates of solutions (Lemma 2.2) and some scaling techniques of inequalities, we can overcome these difficulties and then establish the conditions of global boundedness.

    The rest of this paper is arranged as follows. In Sec.2, we give a result on local existence of classical solutions and get some estimates of solutions. In Sec.3, we first prove the boundedness of $ \int_{\Omega}(u+1)^{p} $ and then complete the proof of Theorem 1.1 based on the Moser iteration [41, Lemma A.1].

    To begin with, we state a lemma involving the local existence of classical solutions and get some estimates on the solutions of system (1.4).

    Lemma 2.1. Let $ \Omega\subset\mathbb{R}^n(n\geq1) $ be a bounded domain with smooth boundary and the parameters fulfill $ \xi, \chi, \gamma_{2}, \gamma_{4} > 0 $ and $ \gamma_{1}, \gamma_{3}\geq1. $ Assume that the nonlinear functions $ \varphi, \psi $ and $ f $ satisfy the conditions (1.5) and (1.6) with $ a, b > 0, s > 1 $ and $ \theta, l\in \mathbb{R}. $ For any nonnegative initial data $ u_{0}\in W^{1, \infty}(\Omega), $ there exists $ T_{\max}\in(0, \infty] $ and nonnegative functions

    $ (u, v, v_{1}, w, w_{1}) \in (C^{0}(\overline{\Omega}\times[0, T_{\max}))\cap C^{2, 1}(\overline{\Omega}\times(0, T_{\max})))\times (C^{2, 0}(\overline{\Omega}\times(0, T_{\max})))^{4}, $

    which solve system (1.4) in classical sense. Furthermore,

    $ if  Tmax<, then limtTmaxsupu(,t)L(Ω)=. $ (2.1)

    Proof. The proof relies on the Schauder fixed point theorem and partial differential regularity theory, which is similar to [60, Lemma 2.1]. For convenience, we give a proof here. For any $ T\in(0, 1) $ and the nonnegative initial data $ u_{0}\in W^{1, \infty}, $ we set

    $ X: = C^{0}(\overline{\Omega}\times[0, T]) \ \mbox{and} \ S: = \bigg\{u\in X\bigg| \|u(\cdot, t)\|_{L^{\infty}(\Omega)}\leq R \ \mbox{for all} \ t\in[0, T]\bigg\}, $

    where $ R: = \|u_{0}\|_{L^{\infty}(\Omega)}+1. $ We can pick smooth functions $ \varphi_{R}, \psi_{R} $ on $ [0, \infty) $ such that $ \varphi_{R}\equiv \varphi $ and $ \psi_{R}\equiv \psi $ when $ 0\leq\varrho\leq R $ and $ \varphi_{R}\equiv R $ and $ \psi_{R}\equiv R $ when $ \varrho\geq R. $ It is easy to see that $ S $ is a bounded closed convex subset of $ X. $ For any $ \hat{u}\in S, $ let $ v, v_{1}, w $ and $ w_{1} $ solve

    $ {Δv+v=vγ11,xΩ, t(0,T),vν=0,xΩ, t(0,T), and {Δv1+v1=ˆuγ2,xΩ, t(0,T),v1ν=0,xΩ, t(0,T), $ (2.2)

    as well as

    $ {Δw+w=wγ31,xΩ, t(0,T),wν=0,xΩ, t(0,T), and {Δw1+w1=ˆuγ4,xΩ, t(0,T),w1ν=0,xΩ, t(0,T), $ (2.3)

    respectively, in turn, let $ u $ be a solution of

    $ {ut=Δuχ(φR(u)v)ξ(ψR(u)w)+f(u),  xΩ, t(0,T),uν=vν=wν=v1ν=w1ν=0,  xΩ, t(0,T),u(x,0)=u0(x),  xΩ. $ (2.4)

    Thus, we introduce a map $ \Phi:\hat{u}(\in S)\mapsto u $ defined by $ \Phi(\hat{u}) = u. $ We shall show that for any $ T > 0 $ sufficiently small, $ \Phi $ has a fixed point in $ S. $ Using the elliptic regularity [61, Theorem 8.34] and Morrey's theorem [62], for a certain fixed $ \hat{u}\in S, $ we conclude that the solutions to (2.2) satisfy $ v_{1}(\cdot, t)\in C^{1+\delta}(\Omega) $ and $ v(\cdot, t)\in C^{3+\delta}(\Omega) $ for all $ \delta\in(0, 1), $ as well as the solutions to (2.3) satisfy $ w_{1}(\cdot, t)\in C^{1+\delta}(\Omega) $ and $ w(\cdot, t)\in C^{3+\delta}(\Omega) $ for all $ \delta\in(0, 1). $ From the Sobolev embedding theorem and $ L^{p}- $estimate, there exist $ m_{i} > 0, i = 1, ..., 4 $ such that

    $ \|\nabla v_{1}\|_{L^{\infty}\big((0, T);C^{\delta}(\Omega)\big)}\leq m_{1}\| v_{1}\|_{L^{\infty}\big((0, T);W^{2, p}(\Omega)\big)}\leq m_{2}\| \hat{u}^{\gamma_{2}}\|_{L^{\infty}\big((0, T)\times\Omega\big)} $

    and

    $ \|\nabla w_{1}\|_{L^{\infty}\big((0, T);C^{\delta}(\Omega)\big)}\leq m_{3}\| w_{1}\|_{L^{\infty}\big((0, T);W^{2, p}(\Omega)\big)}\leq m_{4}\| \hat{u}^{\gamma_{4}}\|_{L^{\infty}\big((0, T)\times\Omega\big)} $

    for $ p > \max\{1, n\gamma_{1}\gamma_{2}, n\gamma_{3}\gamma_{4}\}. $ Furthermore, we can also find $ m_{i} > 0, i = 5, ..., 10 $ such that

    $ \|\nabla v\|_{L^{\infty}\big((0, T);C^{\delta}(\Omega)\big)}\leq m_{5}\| v\|_{L^{\infty}\big((0, T);W^{2, p}(\Omega)\big)}\leq m_{6}\| v_{1}^{\gamma_{1}}\|_{L^{\infty}\big((0, T)\times\Omega\big)}\leq m_{7}\| \hat{u}^{\gamma_{1}\gamma_{2}}\|_{L^{\infty}\big((0, T)\times\Omega\big)} $

    and

    $ \|\nabla w\|_{L^{\infty}\big((0, T);C^{\delta}(\Omega)\big)}\leq m_{8}\| w\|_{L^{\infty}\big((0, T);W^{2, p}(\Omega)\big)}\leq m_{9}\| w_{1}^{\gamma_{3}}\|_{L^{\infty}\big((0, T)\times\Omega\big)}\leq m_{10}\| \hat{u}^{\gamma_{3}\gamma_{4}}\|_{L^{\infty}\big((0, T)\times\Omega\big)} $

    for $ p > \max\{1, n\gamma_{1}\gamma_{2}, n\gamma_{3}\gamma_{4}\}. $ Since $ \nabla v, \nabla w\in L^{\infty}\big((0, T)\times\Omega\big) $ and $ u_{0}\in C^{\delta}(\overline{\Omega}) $ for all $ \delta\in(0, 1) $ due to the Sobolev embedding $ W^{1, \infty}(\Omega)\hookrightarrow C^{\delta}(\Omega), $ we can infer from [63, Theorem V1.1] that $ u\in C^{\delta, \frac{\delta}{2}}(\overline{\Omega}\times[0, T]) $ and

    $ uCδ,δ2(¯Ω×[0,T])m11 for all δ(0,1), $ (2.5)

    with some $ m_{11} > 0 $ depending only on $ \|\nabla v\|_{L^{\infty}\big((0, T); C^{\delta}(\Omega)\big)}, \|\nabla w\|_{L^{\infty}\big((0, T); C^{\delta}(\Omega)\big)} $ and $ R. $ Thus, we have

    $ u(,t)L(Ω)u0L(Ω)+u(,t)u0L(Ω)u0L(Ω)+m11tδ2. $ (2.6)

    Hence if $ T < (\frac{1}{m_{11}})^{\frac{2}{\delta}}, $ we can obtain

    $ u(,t)L(Ω)u0L(Ω)+1 $ (2.7)

    for all $ t\in[0, T], $ which implies that $ u\in S. $ Thus, we derive that $ \Phi $ maps $ S $ into itself. We deduce that $ \Phi $ is continuous. Moreover, we get from (2.5) that $ \Phi $ is a compact map. Hence, by the Schauder fixed point theorem there exists a fixed point $ u\in S $ such that $ \Phi(u) = u. $

    Applying the regularity theory of elliptic equations, we derive that $ v_{1}(\cdot, t)\in C^{2+\delta}(\Omega), $ $ v(\cdot, t)\in C^{4+\delta}(\Omega) $ and $ w_{1}(\cdot, t)\in C^{2+\delta}(\Omega), $ $ w(\cdot, t)\in C^{4+\delta}(\Omega) $ for all $ \delta\in(0, 1). $ Recalling (2.5), we get $ v_{1}(x, t)\in C^{{2+\delta}, \frac{\delta}{2}}(\Omega \times[\iota, T]), $ $ v(x, t)\in C^{{4+\delta}, \frac{\delta}{2}}(\Omega \times[\iota, T]) $ and $ w_{1}(x, t)\in C^{{2+\delta}, \frac{\delta}{2}}(\Omega \times[\iota, T]), $ $ w(x, t)\in C^{{4+\delta}, \frac{\delta}{2}}(\Omega \times[\iota, T]) $ for all $ \delta\in(0, 1) $ and $ \iota\in(0, T). $ We use the regularity theory of parabolic equation [63, Theorem V6.1] to get

    $ u(x, t)\in C^{2+\delta, 1+\frac{\delta}{2}}(\overline{\Omega}\times[\iota, T]) $

    for all $ \iota\in(0, T). $ The solution may be prolonged in the interval $ [0, T_{\max}) $ with either $ T_{\max} = \infty $ or $ T_{\max} < \infty, $ where in the later case

    $ \|u(\cdot.t)\|_{L^{\infty}(\Omega)}\rightarrow \infty \ \ as \ \ t\rightarrow T_{\max}. $

    Additionally, since $ f(0)\geq0, $ we thus get from the parabolic comparison principle that $ u $ is nonnegative. By employing the elliptic comparison principle to the second, the third, the fourth and the fifth equations in (1.4), we conclude that $ v, v_{1}, w, w_{1} $ are also nonnegative. Thus, we complete the proof of Lemma 2.1.

    Lemma 2.2. Let $ \Omega\subset\mathbb{R}^n(n\geq1) $ be a bounded domain with smooth boundary and the parameters fulfill $ \xi, \chi, \gamma_{2}, \gamma_{4} > 0 $ and $ \gamma_{1}, \gamma_{3}\geq1. $ Assume that the nonlinear functions $ \varphi, \psi $ and $ f $ satisfy the conditions (1.5) and (1.6) with $ a, b > 0, s > 1 $ and $ \theta, l\in \mathbb{R}. $ For any $ \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} > 0 $ and $ \tau > 1, $ we can find $ c_{1}, c_{2}, c_{3}, c_{4} > 0 $ which depend only on $ \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \tau, $ such that

    $ Ωwτ1η2Ω(u+1)γ4τ+c1 and Ωwτη1η2Ω(u+1)γ3γ4τ+c2, $ (2.8)

    as well as

    $ Ωvτ1η4Ω(u+1)γ2τ+c3 and Ωvτη3η4Ω(u+1)γ1γ2τ+c4 $ (2.9)

    for all $ t\in(0, T_{\max}). $

    Proof. Integrating the first equation of system (1.4) over $ \Omega $ and using Hölder's inequality, it is easy to get that

    $ ddtΩudxΩaubusaΩub|Ω|s1(Ωu)s  for all t(0,Tmax). $ (2.10)

    Employing the standard ODE comparison theory, we conclude

    $ Ωumax{Ωu0,(ab)1s1|Ω|}  for all t(0,Tmax). $ (2.11)

    Moreover, integrating the fifth equation of system (1.4) over $ \Omega, $ one may get

    $ w1L1(Ω)=uγ4L1(Ω)(u+1)γ4L1(Ω)  for all t(0,Tmax). $ (2.12)

    For any $ \tau > 1, $ multiplying the fifth equation of system(1.4) with $ w_{1}^{\tau-1}, $ we can get by integration by parts that

    $ 4(τ1)τ2Ω|wτ21|2+Ωwτ1=Ωuγ4wτ11τ1τΩwτ1+1τΩuγ4τ, $ (2.13)

    where Young's inequality has been used. Thus, we deduce

    $ w1Lτ(Ω)uγ4Lτ(Ω)(u+1)γ4Lτ(Ω)  for all t(0,Tmax), $ (2.14)

    and

    $ 4(τ1)τΩ|wτ21|2Ωuγ4τΩ(u+1)γ4τ  for all t(0,Tmax). $ (2.15)

    Using Ehrling's lemma, we know that for any $ \eta_{2} > 0 $ and $ \tau > 1, $ there exists $ c_{5} = c_{5}(\eta_{2}, \tau) > 0 $ such that

    $ ϕ2L2(Ω)η2ϕ2W1,2(Ω)+c5ϕ2L2τ(Ω) for all ϕW1,2(Ω). $ (2.16)

    Let $ \phi = w_{1}^{\frac{\tau}{2}}. $ Combining (2.12) with (2.14), (2.15), there exists $ c_{6} = c_{6}(\eta_{2}, \gamma_{4}, \tau) > 0 $ such that

    $ Ωwτ1η2Ω(u+1)γ4τ+c6(u+1)γ4τL1(Ω). $ (2.17)

    If $ \gamma_{4}\in(0, 1], $ by (2.11) and Hölder's inequality, we can derive

    $ (u+1)γ4τL1(Ω)c7, $ (2.18)

    with $ c_{7} = c_{7}(\eta_{2}, \tau, \gamma_{4}) > 0. $ If $ \gamma_{4}\in(1, \infty), $ invoking interpolation inequality and Young's inequality, we can get from (2.11) that

    $ (u+1)γ4τL1(Ω)(u+1)γ4τρLτ(Ω)(u+1)γ4τ(1ρ)L1γ4(Ω)η2Ω(u+1)γ4τ+c8, $ (2.19)

    where $ \rho = \frac{\gamma_{4}-1}{\gamma_{4}-\frac{1}{\tau}}\in(0, 1) $ and $ c_{8} = c_{8}(\eta_{2}, \tau, \gamma_{4}) > 0. $ Collecting (2.17)–(2.19), we can directly infer that the first inequality of (2.8) holds. Integrating the fourth equation of system (1.4) over $ \Omega, $ we have $ \|w\|_{L^{1}(\Omega)} = \|w_{1}^{\gamma_{3}}\|_{L^{1}(\Omega)} \ \ \mbox{for all}\ t\in(0, T_{\max}). $ Due to $ \gamma_{3}\geq1, $ from the first inequality of (2.8), it is easy to see that

    $ wL1(Ω)=Ωwγ31η2Ω(u+1)γ3γ4+˜c1 $ (2.20)

    for all $ \ t\in(0, T_{\max}), $ where $ \tilde{c}_{1} = \tilde{c}_{1}(\eta_{2}, \gamma_{3}, \gamma_{4}) > 0. $ By the same procedures as in (2.13)-(2.19), we thus can obtain for any $ \eta_{1} > 0 $ and $ \tau > 1 $ that

    $ Ωwτη1Ωwγ3τ1+c9  for all t(0,Tmax), $ (2.21)

    where $ c_{9} = c_{9}(\eta_{1}, \tau, \gamma_{3}) > 0. $ Recalling $ \gamma_{3} \geq 1 $ and using the first inequality of (2.8) again, we get that

    $ Ωwγ3τ1η2Ω(u+1)γ3γ4τ+c10  for all t(0,Tmax), $ (2.22)

    with $ c_{10} > 0. $ Hence, the second inequality of (2.8) can be obtained from (2.21) and (2.22). In addition, we can employ the same processes as above to prove (2.9). Here, we omit the detailed proof. Thus, the proof of Lemma 2.2 is complete.

    In order to prove the global existence and uniform boundedness of classical solutions to system (1.4), we established the following $ L^{p}- $estimate for component $ u. $

    Lemma 3.1. Let $ \Omega\subset\mathbb{R}^n(n\geq1) $ be a bounded domain with smooth boundary and the parameters fulfill $ \xi, \chi, \gamma_{2}, \gamma_{4} > 0 $ and $ \gamma_{1}, \gamma_{3}\geq1. $ Assume that the nonlinear functions $ \varphi, \psi $ and $ f $ satisfy the conditions (1.5) and (1.6) with $ a, b > 0, s > 1 $ and $ \theta, l\in \mathbb{R}. $ If $ s \geq\max\{ \gamma_{1}\gamma_{2}+\theta, \gamma_{3}\gamma_{4}+l\}, $ for any $ p > \max\{1, 1-\theta, 1-l, \gamma_{1}\gamma_{2}-s+1, \gamma_{3}\gamma_{4}-s+1\}, $ there exists $ C > 0 $ such that

    $ Ω(u+1)pC $ (3.1)

    for all $ t\in (0, T_{\max}). $

    Proof. For any $ p > 1, $ we multiply the first equation of system (1.4) with $ (u+1)^{p-1} $ and use integration by parts over $ \Omega $ to obtain

    $ 1pddtΩ(u+1)p4(p1)p2Ω|(u+1)p2|2+χ(p1)Ω(u+1)p2φ(u)uv+ξ(p1)Ω(u+1)p2ψ(u)uw+aΩu(u+1)p1bΩus(u+1)p1 $ (3.2)

    for all $ t\in (0, T_{\max}). $ Let $ \Psi_{1}(y) = \int^{y}_{0}(\zeta+1)^{p-2}\psi(\zeta)d\zeta $ and $ \Psi_{2}(y) = \int^{y}_{0}(\zeta+1)^{p-2}\varphi(\zeta)d \zeta. $ It is easy to get

    $ Ψ1(u)=(u+1)p2ψ(u)u $ (3.3)

    and

    $ Ψ2(u)=(u+1)p2φ(u)u $ (3.4)

    for all $ t\in (0, T_{\max}). $ Furthermore, by a simple calculation, one can get

    $ |Ψ1(u)|1p+l1(u+1)p+l1 $ (3.5)

    and

    $ |Ψ2(u)|1p+θ1(u+1)p+θ1 $ (3.6)

    for all $ t\in (0, T_{\max}). $ Thus, the second term on the right-hand side of (3.2) can be estimated as

    $ χ(p1)Ω(u+1)p2φ(u)uv=χ(p1)ΩΨ2(u)vχ(p1)ΩΨ2(u)|Δv|χ(p1)p+θ1Ω(u+1)p+θ1|Δv| $ (3.7)

    for all $ t\in (0, T_{\max}). $ Similarly, we can deduce

    $ ξ(p1)Ω(u+1)p2ψ(u)uwξ(p1)p+l1Ω(u+1)p+l1|Δw| $ (3.8)

    for all $ t\in (0, T_{\max}). $ From the basic inequality $ (u+1)^{s}\leq 2^{s}(u^{s}+1) $ with $ s > 0 $ and $ u\geq0, $ we can get

    $ bΩus(u+1)p1b2sΩ(u+1)p+s1+bΩ(u+1)p1 $ (3.9)

    for all $ t\in (0, T_{\max}). $ Set $ m = \max\{a, b\}. $ From (3.7)–(3.9), the (3.2) can be rewritten as

    $ 1pddtΩ(u+1)pχ(p1)p+θ1Ω(u+1)p+θ1|vvγ11|+ξ(p1)p+l1Ω(u+1)p+l1|wwγ31|+mΩ(u+1)pb2sΩ(u+1)p+s1χ(p1)p+θ1Ω(u+1)p+θ1v+χ(p1)p+θ1Ω(u+1)p+θ1vγ11+ξ(p1)p+l1Ω(u+1)p+l1w+ξ(p1)p+l1Ω(u+1)p+l1wγ31+mΩ(u+1)pb2sΩ(u+1)p+s1 $ (3.10)

    for all $ t\in (0, T_{\max}), $ where we have used the equations $ 0 = \Delta v-v+v_{1}^{\gamma_{1}} $ and $ 0 = \Delta w_{1}-w_{1}+u^{\gamma_{4}} $ in system (1.4). In the following, we shall establish the $ L^{p}- $ estimate of component $ u. $

    Case (ⅰ) $ s > \max\{ \gamma_{1}\gamma_{2}+\theta, \gamma_{3}\gamma_{4}+l\}. $

    It follows from Young's inequality that

    $ Ω(u+1)p+θ1vγ11b(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c11Ωv(p+s1)γ1sθ1 $ (3.11)

    for all $ t\in (0, T_{\max}), $ with $ c_{11} = \left(\frac{2^{s+4}\chi(p-1)}{b(p+\theta-1)}\right)^{\frac{p+\theta-1}{s-\theta}} > 0. $ Due to $ s-\theta > \gamma_{1}\gamma_{2}, $ we infer from Young's inequality and Lemma 2.2 by choosing $ \tau = \frac{p+s-1}{\gamma_{2}} $ that

    $ Ωv(p+s1)γ1sθ1b(p+θ1)2s+4χη4(p1)c11Ωvp+s1γ21+c12b(p+θ1)2s+4χ(p1)c11Ω(u+1)p+s1+c13 $ (3.12)

    for all $ t\in (0, T_{\max}), $ with $ c_{12} = \left(\frac{2^{s+4}\chi \eta_{4}(p-1)c_{11}}{b(p+\theta-1)}\right) ^{\frac{\gamma_{1}\gamma_{2}}{s-\theta-\gamma_{1}\gamma_{2}}}|\Omega| $ and $ c_{13} = c_{12}+c_{3}. $ According to Young's inequality, we can find $ c_{14} = \left(\frac{2^{s+4}\chi(p-1)}{b(p+\theta-1)}\right) ^{\frac{p+\theta-1}{s-\theta}} > 0 $ such that

    $ Ω(u+1)p+θ1vb(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c14Ωvp+s1sθ $ (3.13)

    for all $ t\in (0, T_{\max}). $ For $ s-\theta > \gamma_{1}\gamma_{2}, $ we use Lemma 2.2 with $ \tau = \frac{p+s-1}{s-\theta} $ and Young's inequality to get

    $ Ωvp+s1sθη3η4Ω(u+1)γ1γ2(p+s1)sθ+c4b(p+θ1)2s+4χ(p1)c14Ω(u+1)p+s1+c15 $ (3.14)

    for all $ t\in (0, T_{\max}), $ with $ c_{15} = (\eta_{3}\eta_{4})^{\frac{s-\theta}{s-\theta-\gamma_{1}\gamma_{2}}}\cdot\left(\frac{2^{s+4}\chi(p-1)c_{14}}{b(p+\theta-1)}\right) ^{\frac{\gamma_{1}\gamma_{2}}{s-\theta-\gamma_{1}\gamma_{2}}}+c_{4}. $ Analogously, we have

    $ Ω(u+1)p+l1wγ31b(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c16Ωw(p+s1)γ3sl1 $ (3.15)

    for all $ t\in (0, T_{\max}), $ where $ c_{16} = \left(\frac{2^{s+4}\xi(p-1)}{b(p+l-1)}\right)^{\frac{p+l-1}{s-l}}. $ Since $ s-l > \gamma_{3}\gamma_{4}, $ it follows from Young's inequality and Lemma 2.2 with $ \tau = \frac{p+s-1}{\gamma_{4}} $ that

    $ Ωw(p+s1)γ3sl1b(p+l1)2s+4ξ(p1)c16η2Ωwp+s1γ41+c17b(p+l1)2s+4ξ(p1)c16Ω(u+1)p+s1+c18 $ (3.16)

    for all $ t\in (0, T_{\max}), $ where $ c_{17} = \left(\frac{2^{s+4}\xi(p-1)c_{16}\eta_{2}}{b(p+l-1)}\right) ^{\frac{\gamma_{3}\gamma_{4}}{s-l-\gamma_{3}\gamma_{4}}}|\Omega| $ and $ c_{18} = c_{17}+c_{1}. $ Similarly, there exists $ c_{19} = \left(\frac{2^{s+4}\xi(p-1)}{b(p+l-1)}\right) ^\frac{p+l-1}{s-l} > 0 $ such that

    $ Ω(u+1)p+l1wb(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c19Ωwp+s1sl $ (3.17)

    for all $ t\in (0, T_{\max}). $ Using Lemma 2.2 once more, one may obtain

    $ Ωwp+s1slη1η2Ω(u+1)γ3γ4(p+s1)sl+c2b(p+l1)2s+4ξ(p1)c19Ω(u+1)p+s1+c20 $ (3.18)

    for all $ t\in (0, T_{\max}), $ where $ c_{20} = (\eta_{1}\eta_{2})^{\frac{s-l}{s-l-\gamma_{3}\gamma_{4}}}\cdot\left(\frac{2^{s+4}\xi(p-1) c_{19}}{b(p+l-1)}\right) ^{\frac{\gamma_{3}\gamma_{4}}{s-l-\gamma_{3}\gamma_{4}}}+c_{2}. $ Due to $ s > 1, $ we thus have

    $ Ω(u+1)pc21Ω(u+1)p+s1+c22 $ (3.19)

    for all $ t\in (0, T_{\max}), $ where $ c_{21} = \frac{b}{2^{s+2}(m+1)} $ and $ c_{22} = \left(\frac{2^{s+2}(m+1)}{b}\right)^{\frac{p}{s-1}}|\Omega|. $ From (3.11)-(3.19), the inequality (3.10) can be estimated as

    $ 1pddtΩ(u+1)p+Ω(u+1)pχ(p1)p+θ1[b(p+θ1)2s+2χ(p1)Ω(u+1)p+s1+c11c13++c14c15]+ξ(p1)p+l1[b(p+l1)2s+2ξ(p1)Ω(u+1)p+s1+c16c18+c19c20]b2sΩ(u+1)p+s1+b2s+2Ω(u+1)p+s1+c22(m+1)b2s+2Ω(u+1)p+s1+c23 $ (3.20)

    for all $ t\in (0, T_{\max}), $ where $ c_{23} = \big(c_{11}c_{13}+c_{14}c_{15}\big)\cdot\frac{\chi(p-1)}{p+\theta-1}+ \big(c_{16}c_{18}+c_{19}c_{20}\big)\cdot\frac{\xi(p-1)}{p+l-1}+c_{22}(m+1). $ Hence, we can derive (3.1) easily by using the ODE comparison principle.

    Case (ⅱ) $ s = \max\{ \gamma_{1}\gamma_{2}+\theta, \gamma_{3}\gamma_{4}+l\}. $

    (a) $ s = \gamma_{1}\gamma_{2}+\theta = \gamma_{3}\gamma_{4}+l. $ Recalling (3.11), (3.13), (3.15) and (3.17), there hold

    $ Ω(u+1)p+θ1vγ11b(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c11Ωv(p+s1)γ1sθ1 $ (3.21)

    and

    $ Ω(u+1)p+θ1vb(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c14Ωvp+s1sθ $ (3.22)

    and

    $ Ω(u+1)p+l1wγ31b(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c16Ωw(p+s1)γ3sl1 $ (3.23)

    as well as

    $ Ω(u+1)p+l1wb(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c19Ωwp+s1sl $ (3.24)

    for all $ t\in (0, T_{\max}). $

    Since $ s-\theta = \gamma_{1}\gamma_{2} $ and $ s-l = \gamma_{3}\gamma_{4}. $ Thus, we can directly get from Lemma 2.2 that

    $ Ωw(p+s1)γ3sl1=Ωwp+s1γ41η2Ω(u+1)p+s1+c1 $ (3.25)

    and

    $ Ωwp+s1sl=Ωwp+s1γ3γ4η1η2Ω(u+1)p+s1+c2, $ (3.26)

    and

    $ Ωv(p+s1)γ1sθ1=Ωvp+s1γ21η4Ω(u+1)p+s1+c3 $ (3.27)

    as well as

    $ Ωvp+s1sθ=Ωvp+s1γ1γ2η3η4Ω(u+1)p+s1+c4 $ (3.28)

    for all $ t\in (0, T_{\max}). $ For the arbitrariness of $ \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} > 0, $ we choose $ \eta_{2} = \frac{b(p+l-1)}{2^{s+4}c_{16}\xi(p-1)}, $ $ \eta_{1}\eta_{2} = \frac{b(p+l-1)}{2^{s+4}c_{19}\xi(p-1)}, $ $ \eta_{4} = \frac{b(p+\theta-1)}{2^{s+4}c_{11}\chi(p-1)} $ and $ \eta_{3}\eta_{4} = \frac{b(p+\theta-1)}{2^{s+4}c_{14}\chi(p-1)} $ in(3.25)-(3.28), respectively. Combining (3.19) with (3.21)-(3.28), the inequality (3.10) can be rewritten as

    $ 1pddtΩ(u+1)p+Ω(u+1)pχ(p1)p+θ1[b(p+θ1)2s+2χ(p1)Ω(u+1)p+s1+c3c11+c4c14]+ξ(p1)p+l1[b(p+l1)2s+2ξ(p1)Ω(u+1)p+s1+c1c16+c2c19]b2sΩ(u+1)p+s1+b2s+2Ω(u+1)p+s1+c22(m+1)b2s+2Ω(u+1)p+s1+c24 $ (3.29)

    for all $ t\in (0, T_{\max}), $ where $ c_{24} = \big(c_{3}c_{11}+c_{4}c_{14}\big)\cdot\frac{\chi(p-1)}{p+\theta-1}+ \big(c_{1}c_{16}+c_{2}c_{19}\big)\cdot\frac{\xi(p-1)}{p+l-1}+c_{22}(m+1). $ From the ODE comparison principle, we can get the desired conclusion (3.1).

    (b) $ s = \gamma_{1}\gamma_{2}+\theta > \gamma_{3}\gamma_{4}+l. $ Recalling (3.11) and (3.13) again, there hold

    $ Ω(u+1)p+θ1vγ11b(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c11Ωv(p+s1)γ1sθ1 $ (3.30)

    and

    $ Ω(u+1)p+θ1vb(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c14Ωvp+s1sθ. $ (3.31)

    For $ s = \gamma_{1}\gamma_{2}+\theta, $ we can get from Lemma 2.2 that

    $ Ωv(p+s1)γ1sθ1=Ωvp+s1γ21η4Ω(u+1)p+s1+c3 $ (3.32)

    and

    $ Ωvp+s1sθ=Ωvp+s1γ1γ2η3η4Ω(u+1)p+s1+c4 $ (3.33)

    for all $ t\in (0, T_{\max}). $ Here, we also choose $ \eta_{4} = \frac{b(p+\theta-1)}{2^{s+4}c_{11}\chi(p-1)} $ in (3.32) and $ \eta_{3}\eta_{4} = \frac{b(p+\theta-1)}{2^{s+4}c_{14}\chi(p-1)} $ in (3.33). For $ s > \gamma_{3}\gamma_{4}+l, $ we can conclude from (3.15)-(3.18) that

    $ Ω(u+1)p+l1wγ31b(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c16Ωw(p+s1)γ3sl1 $ (3.34)

    for all $ t\in (0, T_{\max}), $ with $ c_{16} = \left(\frac{2^{s+4}\xi(p-1)}{b(p+l-1)}\right)^{\frac{p+l-1}{s-l}}. $ Moreover, using Lemma 2.2, it is easy to get

    $ Ωw(p+s1)γ3sl1b(p+l1)2s+4ξ(p1)c16η2Ωwp+s1γ41+c17b(p+l1)2s+4ξ(p1)c16Ω(u+1)p+s1+c18 $ (3.35)

    for all $ t\in (0, T_{\max}), $ where $ c_{17} = \left(\frac{2^{s+4}\xi(p-1)c_{16}\eta_{2}}{b(p+l-1)}\right) ^{\frac{\gamma_{3}\gamma_{4}}{s-l-\gamma_{3}\gamma_{4}}}|\Omega| $ and $ c_{18} = c_{17}+c_{1}. $ By a simple calculation, we know

    $ Ω(u+1)p+l1wb(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c19Ωwp+s1sl $ (3.36)

    and

    $ Ωwp+s1slη1η2Ω(u+1)γ3γ4(p+s1)sl+c2b(p+l1)2s+4ξ(p1)c19Ω(u+1)p+s1+c20 $ (3.37)

    for all $ t\in (0, T_{\max}), $ where $ c_{19} = \left(\frac{2^{s+4}\xi(p-1)}{b(p+l-1)}\right) ^\frac{p+l-1}{s-l} $ and $ c_{20} = (\eta_{1}\eta_{2})^{\frac{s-l}{s-l-\gamma_{3}\gamma_{4}}}\cdot\left(\frac{2^{s+4}\xi(p-1) c_{19}}{b(p+l-1)}\right) ^{\frac{\gamma_{3}\gamma_{4}}{s-l-\gamma_{3}\gamma_{4}}}+c_{2}. $ Recalling (3.19), for $ s > 1, $ we have

    $ Ω(u+1)pc21Ω(u+1)p+s1+c22 $ (3.38)

    for all $ t\in (0, T_{\max}), $ where $ c_{21} = \frac{b}{2^{s+2}(m+1)} $ and $ c_{22} = \left(\frac{2^{s+2}(m+1)}{b}\right)^{\frac{p}{s-1}}|\Omega|. $ Collecting (3.30)-(3.38), it can be deduced from (3.10) that

    $ 1pddtΩ(u+1)p+Ω(u+1)pχ(p1)p+θ1[b(p+θ1)2s+2χ(p1)Ω(u+1)p+s1+c3c11+c4c14]+ξ(p1)p+l1[b(p+l1)2s+2ξ(p1)Ω(u+1)p+s1+c16c18+c19c20]b2sΩ(u+1)p+s1+b2s+2Ω(u+1)p+s1+c22(m+1)b2s+2Ω(u+1)p+s1+c25 $ (3.39)

    for all $ t\in (0, T_{\max}), $ where $ c_{25} = \big(c_{3}c_{11}+c_{4}c_{14}\big)\cdot\frac{\chi(p-1)}{p+\theta-1}+ \big(c_{16}c_{18}+c_{19}c_{20}\big)\cdot\frac{\xi(p-1)}{p+l-1}+c_{22}(m+1). $ In view of the ODE comparison principle, we conclude (3.1), directly.

    (c) $ s = \gamma_{3}\gamma_{4}+l > \gamma_{1}\gamma_{2}+\theta. $ The proof of this case is similar to the case (b). Using (3.15) and (3.17) again, we get

    $ Ω(u+1)p+l1wγ31b(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c16Ωw(p+s1)γ3sl1 $ (3.40)

    and

    $ Ω(u+1)p+l1wb(p+l1)2s+4ξ(p1)Ω(u+1)p+s1+c19Ωwp+s1sl $ (3.41)

    for all $ t\in (0, T_{\max}). $ Since $ s = \gamma_{3}\gamma_{4}+l, $ it is easy to deduce from Lemma 2.2 that

    $ Ωw(p+s1)γ3sl1=Ωwp+s1γ41η2Ω(u+1)p+s1+c1 $ (3.42)

    and

    $ Ωwp+s1sl=Ωvp+s1γ3γ4η1η2Ω(u+1)p+s1+c2 $ (3.43)

    for all $ t\in(0, T_{\max}). $ Due to the arbitrariness of $ \eta_{1} $ and $ \eta_{2}, $ here we let $ \eta_{2} = \frac{b(p+l-1)}{2^{s+4}c_{16}\xi(p-1)} $ in (3.42) and $ \eta_{1}\eta_{2} = \frac{b(p+l-1)}{2^{s+4}c_{19}\xi(p-1)} $ in (3.43). Since $ s > \gamma_{1}\gamma_{2}+\theta, $ we can derive from (3.11)-(3.14) that

    $ Ω(u+1)p+θ1vγ11b(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c11Ωv(p+s1)γ1sθ1 $ (3.44)

    for all $ t\in(0, T_{\max}), $ with $ c_{11} = \left(\frac{2^{s+4}\chi(p-1)}{b(p+\theta-1)}\right)^{\frac{p+\theta-1}{s-\theta}} > 0. $ Due to $ s-\theta > \gamma_{1}\gamma_{2}, $ from Young's inequality and Lemma 2.2, we can obtain

    $ Ωv(p+s1)γ1sθ1b(p+θ1)2s+4χη4(p1)c11Ωvp+s1γ21+c12b(p+θ1)2s+4χ(p1)c11Ω(u+1)p+s1+c13 $ (3.45)

    for all $ t\in(0, T_{\max}), $ with $ c_{12} = \left(\frac{2^{s+4}\chi \eta_{4}(p-1)c_{11}}{b(p+\theta-1)}\right) ^{\frac{\gamma_{1}\gamma_{2}}{s-\theta-\gamma_{1}\gamma_{2}}}|\Omega| $ and $ c_{13} = c_{12}+c_{3}. $ In view of Young's inequality, it is easy to get

    $ Ω(u+1)p+θ1vb(p+θ1)2s+4χ(p1)Ω(u+1)p+s1+c14Ωvp+s1sθ $ (3.46)

    for all $ t\in (0, T_{\max}), $ with $ c_{14} = \left(\frac{2^{s+4}\chi(p-1)}{b(p+\theta-1)}\right) ^{\frac{p+\theta-1}{s-\theta}} > 0. $ Due to $ s-\theta > \gamma_{1}\gamma_{2}, $ thus we use Lemma 2.2 with $ \tau = \frac{p+s-1}{s-\theta} $ and Young's inequality to obtain

    $ Ωvp+s1sθη3η4Ω(u+1)γ1γ2(p+s1)sθ+c4b(p+θ1)2s+4χ(p1)c14Ω(u+1)p+s1+c15 $ (3.47)

    for all $ t\in (0, T_{\max}), $ with $ c_{15} = (\eta_{3}\eta_{4})^{\frac{s-\theta}{s-\theta-\gamma_{1}\gamma_{2}}}\cdot\left(\frac{2^{s+4}\chi(p-1)c_{14}}{b(p+\theta-1)}\right) ^{\frac{\gamma_{1}\gamma_{2}}{s-\theta-\gamma_{1}\gamma_{2}}}+c_{4}. $ For $ s > 1, $ we get from (3.19) that

    $ Ω(u+1)pc21Ω(u+1)p+s1+c22 $ (3.48)

    for all $ t\in (0, T_{\max}), $ where $ c_{21} = \frac{b}{2^{s+2}(m+1)} $ and $ c_{22} = \left(\frac{2^{s+2}(m+1)}{b}\right)^{\frac{p}{s-1}}|\Omega|. $ Collecting (3.40)–(3.48), we can infer from (3.10) that

    $ 1pddtΩ(u+1)p+Ω(u+1)pb2s+2Ω(u+1)p+s1+c26 $ (3.49)

    for all $ t\in (0, T_{\max}), $ where $ c_{26} = \big(c_{11}c_{13}+c_{14}c_{15}\big)\cdot\frac{\chi(p-1)}{p+\theta-1}+ \big(c_{1}c_{16}+c_{2}c_{19}\big)\cdot\frac{\xi(p-1)}{p+l-1}+c_{22}(m+1). $ Hence, we can conclude (3.1) by using the ODE comparison principle. Thus, we complete the proof of Lemma 3.1.

    Now, we are in a position to prove Theorem 1.1.

    Proof of Theorem 1.1 Let $ \Omega\subset\mathbb{R}^n(n\geq1) $ be a bounded domain with smooth boundary and the parameters fulfill $ \xi, \chi, \gamma_{2}, \gamma_{4} > 0 $ and $ \gamma_{1}, \gamma_{3}\geq1. $ Assume that the nonlinear functions $ \varphi, \psi $ and $ f $ satisfy the conditions (1.5) and (1.6) with $ a, b > 0, s > 1 $ and $ \theta, l\in \mathbb{R}. $ According to Lemma 3.1, for any $ p > \max\{1, 1-\theta, 1-l, n\gamma_{1}\gamma_{2}, n\gamma_{3}\gamma_{4}, \gamma_{1}\gamma_{2}-s+1, \gamma_{3}\gamma_{4}-s+1\}, $ there exists $ c_{27} > 0 $ such that $ \|u\|_{L^{p}(\Omega)}\leq c_{27} $ for all $ t\in(0, T_{\max}). $ We deal with the second, the third, the fourth and the fifth equations in system (1.4) by elliptic $ L^{p}- $estimate to obtain

    $ v(,t)W2,pγ1γ2(Ω)+v1(,t)W2,pγ2(Ω)+w(,t)W2,pγ3γ4(Ω)+w1(,t)W2,pγ4(Ω)c28 $ (3.50)

    for all $ t\in(0, T_{\max}), $ with some $ c_{28} > 0. $ Applying the Sobolev imbedding theorem, we can infer that

    $ v(,t)W1,+v1(,t)W1,+w(,t)W1,+w1(,t)W1,c29 $ (3.51)

    for all $ t\in(0, T_{\max}), $ with some $ c_{29} > 0. $ In view of Moser iteration [41, Lemma A.1], there exists $ c_{30} > 0 $ such that

    $ \|u(\cdot, t)\|_{L^{ \infty}(\Omega)}\leq c_{30} $

    for all $ t\in(0, T_{\max}), $ which combining with Lemma 2.1 implies that $ T_{\max} = \infty. $ The proof of Theorem 1.1 is complete.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We would like to thank the anonymous referees for many useful comments and suggestions that greatly improve the work. This work was partially supported by NSFC Grant NO. 12271466, Scientific and Technological Key Projects of Henan Province NO. 232102310227, NO. 222102320425 and Nanhu Scholars Program for Young Scholars of XYNU NO. 2020017.

    The authors declare there is no conflict of interest.

    [1] Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. of Control & Optimization, 50 (2012), 77-109. doi: 10.1137/100790069
    [2] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162. doi: 10.1137/090758477
    [3] J.-P. Aubin and H. Frankowska, "Set-Valued Analysis," Systems & Control: Foundations & Applications, 2, Birkhäuser Boston, Inc., Boston, MA, 1990.
    [4] M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," With appendices by Maurizio Falcone and Pierpaolo Soravia, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997.
    [5] J. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems," Springer Series in Operations Research, Springer-Verlag, New York, 2000.
    [6] P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004.
    [7] Pierre Cardaliaguet, "Notes on Mean Field Games: From P.-L. Lions' Lectures at Collège de France," Lecture Notes given at Tor Vergata, 2010.
    [8] I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming, Appl. Math. Optim., 10 (1983), 367-377. doi: 10.1007/BF01448394
    [9] I. Capuzzo-Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation, Analyse Non Linéaire (Perpignan, 1987), Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 161-183.
    [10] I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11 (1984), 161-181. doi: 10.1007/BF01442176
    [11] MOS-SIAM Series on Optimization, to appear.
    [12] D. A. Gomes, Viscosity solution methods and the discrete Aubry-Mather problem, Discrete Contin. Dyn. Syst., 13 (2005), 103-116. doi: 10.3934/dcds.2005.13.103
    [13] D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328.
    [14] O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach, arXiv:1106.3269v1, 2011.
    [15] A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010), 567-588. doi: 10.1142/S0218202510004349
    [16] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019
    [17] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.019
    [18] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.
    [19] Available from: http://www.college-de-france.fr.
  • This article has been cited by:

    1. Changjian Wang, Jiayue Zhu, Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions, 2024, 32, 2688-1594, 2180, 10.3934/era.2024099
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5428) PDF downloads(124) Cited by(23)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog