Adaptive and non-adaptive model predictive control of an irrigation channel

  • Received: 01 October 2008 Revised: 01 February 2009
  • Primary: 93C83, 93C95; Secondary: 93C40, 93A14.

  • The performance achieved with both adaptive and non-adaptive Model Predictive Control (MPC) when applied to a pilot irrigation channel is evaluated. Several control structures are considered, corresponding to various degrees of centralization of sensor information, ranging from local upstream control of the different channel pools to multivariable control using only proximal pools, and centralized multivariable control relying on a global channel model. In addition to the non-adaptive version, an adaptive MPC algorithm based on redundantly estimated multiple models is considered and tested with and without feedforward of adjacent pool levels, both for upstream and downstream control. In order to establish a baseline, the results of upstream and local PID controllers are included for comparison. A systematic simulation study of the performances of these controllers, both for disturbance rejection and reference tracking is shown.

    Citation: João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptivemodel predictive control of an irrigation channel[J]. Networks and Heterogeneous Media, 2009, 4(2): 303-324. doi: 10.3934/nhm.2009.4.303

    Related Papers:

    [1] João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo . Adaptive and non-adaptive model predictive control of an irrigation channel. Networks and Heterogeneous Media, 2009, 4(2): 303-324. doi: 10.3934/nhm.2009.4.303
    [2] Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter . Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media, 2009, 4(2): 359-380. doi: 10.3934/nhm.2009.4.359
    [3] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [4] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
    [5] Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec . A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks and Heterogeneous Media, 2009, 4(2): 249-266. doi: 10.3934/nhm.2009.4.249
    [6] Mahmoud Saleh, Endre Kovács, Nagaraja Kallur . Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation. Networks and Heterogeneous Media, 2023, 18(3): 1059-1082. doi: 10.3934/nhm.2023046
    [7] Gildas Besançon, Didier Georges, Zohra Benayache . Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks and Heterogeneous Media, 2009, 4(2): 211-221. doi: 10.3934/nhm.2009.4.211
    [8] Georges Bastin, Alexandre M. Bayen, Ciro D'Apice, Xavier Litrico, Benedetto Piccoli . Preface. Networks and Heterogeneous Media, 2009, 4(2): i-v. doi: 10.3934/nhm.2009.4.2i
    [9] Toufik Bakir, Bernard Bonnard, Jérémy Rouot . A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks and Heterogeneous Media, 2019, 14(1): 79-100. doi: 10.3934/nhm.2019005
    [10] Qing Sun . Irrigable measures for weighted irrigation plans. Networks and Heterogeneous Media, 2021, 16(3): 493-511. doi: 10.3934/nhm.2021014
  • The performance achieved with both adaptive and non-adaptive Model Predictive Control (MPC) when applied to a pilot irrigation channel is evaluated. Several control structures are considered, corresponding to various degrees of centralization of sensor information, ranging from local upstream control of the different channel pools to multivariable control using only proximal pools, and centralized multivariable control relying on a global channel model. In addition to the non-adaptive version, an adaptive MPC algorithm based on redundantly estimated multiple models is considered and tested with and without feedforward of adjacent pool levels, both for upstream and downstream control. In order to establish a baseline, the results of upstream and local PID controllers are included for comparison. A systematic simulation study of the performances of these controllers, both for disturbance rejection and reference tracking is shown.


  • This article has been cited by:

    1. Joao M. Lemos, Luis F. Pinto, Luis M. Rato, Manuel Rijo, 2012, Distributed LQG control of a water delivery canal with feedforward from measured consumptions, 978-1-4673-2531-8, 722, 10.1109/MED.2012.6265723
    2. Isaías Tavares, José Borges, Mário J. G. C. Mendes, Miguel Ayala Botto, Assessment of data-driven modeling strategies for water delivery canals, 2013, 23, 0941-0643, 625, 10.1007/s00521-013-1417-8
    3. Ying Ding, Liang Wang, Yongwei Li, Daoliang Li, Model predictive control and its application in agriculture: A review, 2018, 151, 01681699, 104, 10.1016/j.compag.2018.06.004
    4. J. M. Lemos, I. Sampaio, 2015, Chapter 4, 978-3-319-16132-7, 59, 10.1007/978-3-319-16133-4_4
    5. J. M. Lemos, J. M. Igreja, 2014, Chapter 8, 978-94-007-7005-8, 133, 10.1007/978-94-007-7006-5_8
    6. Juan M. Martín-Sánchez, João M. Lemos, José Rodellar, Survey of industrial optimized adaptive control, 2012, 26, 08906327, 881, 10.1002/acs.2313
    7. Joao Almeida, Carlos Silvestre, Antonio M. Pascoal, 2012, Observer based self-triggered control of an acyclic interconnection of linear plants, 978-1-4673-2066-5, 7553, 10.1109/CDC.2012.6425948
    8. Jose M. Igreja, Filipe M. Cadete, Joao M. Lemos, 2011, Application of distributed model predictive control to a water delivery canal, 978-1-4577-0124-5, 682, 10.1109/MED.2011.5983126
    9. A. Álvarez, M. A. Ridao, D. R. Ramirez, L. Sánchez, Constrained Predictive Control of an Irrigation Canal, 2013, 139, 0733-9437, 841, 10.1061/(ASCE)IR.1943-4774.0000619
    10. Anna Sadowska, Bart De Schutter, Peter-Jules van Overloop, Delivery-Oriented Hierarchical Predictive Control of an Irrigation Canal: Event-Driven Versus Time-Driven Approaches, 2015, 23, 1063-6536, 1701, 10.1109/TCST.2014.2381600
    11. F. López Rodríguez, K. Horváth, J. García Martín, J.M. Maestre, Mobile Model Predictive Control for the Évora irrigation test canal, 2017, 50, 24058963, 6570, 10.1016/j.ifacol.2017.08.614
    12. Klaudia Horváth, Eric Duviella, Lala Rajaoarisoa, Rudy R. Negenborn, Karine Chuquet, 2015, Chapter 16, 978-3-319-24263-7, 222, 10.1007/978-3-319-24264-4_16
    13. Juan M. Martín-Sánchez, José Rodellar, 2015, Chapter 15, 978-3-319-09793-0, 367, 10.1007/978-3-319-09794-7_15
    14. Distributed Linear-Quadratic Control of Serially Chained Systems: Application to a Water Delivery Canal [Applications of Control], 2012, 32, 1066-033X, 26, 10.1109/MCS.2012.2214126
    15. Klaudia Horváth, Eduard Galvis, Manuel Gómez Valentín, José Rodellar, New offset-free method for model predictive control of open channels, 2015, 41, 09670661, 13, 10.1016/j.conengprac.2015.04.002
    16. João M. Lemos, Luís F. Pinto, Luís M. Rato, Manuel Rijo, Multivariable and Distributed LQG Control of a Water Delivery Canal, 2013, 139, 0733-9437, 855, 10.1061/(ASCE)IR.1943-4774.0000621
    17. Gregory Conde, Nicanor Quijano, Carlos Ocampo-Martinez, Modeling and control in open-channel irrigation systems: A review, 2021, 51, 13675788, 153, 10.1016/j.arcontrol.2021.01.003
    18. João M. Lemos, José M. Igreja, Inês Sampaio, 2014, Chapter 3, 978-3-319-01856-0, 25, 10.1007/978-3-319-01857-7_3
    19. A. Sadowska, P.-J. van Overloop, C. Burt, B. De Schutter, Hierarchical Operation of Water Level Controllers: Formal Analysis and Application on a Large Scale Irrigation Canal, 2014, 28, 0920-4741, 4999, 10.1007/s11269-014-0785-x
    20. J. M. Igreja, J. M. Lemos, F. M. Cadete, L. M. Rato, M. Rijo, 2012, Control of a water delivery canal with cooperative distributed MPC, 978-1-4577-1096-4, 3346, 10.1109/ACC.2012.6315176
    21. Andrea Castelletti, Andrea Ficchì, Andrea Cominola, Pablo Segovia, Matteo Giuliani, Wenyan Wu, Sergio Lucia, Carlos Ocampo-Martinez, Bart De Schutter, José María Maestre, Model Predictive Control of water resources systems: A review and research agenda, 2023, 13675788, 10.1016/j.arcontrol.2023.03.013
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4638) PDF downloads(122) Cited by(21)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog