Exogenous control of vascular network formation in vitro: a mathematical model

  • Received: 01 July 2006 Revised: 01 September 2006
  • Primary: 92C15, 92C17; Secondary: 92C50.

  • The reconstitution of a proper and functional vascular network is a major issue in tissue engineering and regeneration. The limited success of current technologies may be related to the difficulties to build a vascular tree with correct geometric ratios for nutrient delivery. The present paper develops a mathematical model suggesting how an anisotropic vascular network can be built in vitro by using exogenous chemoattractant and chemorepellent. The formation of the network is strongly related to the nonlinear characteristics of the model.

    Citation: V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model[J]. Networks and Heterogeneous Media, 2006, 1(4): 621-637. doi: 10.3934/nhm.2006.1.621

    Related Papers:

    [1] V. Lanza, D. Ambrosi, L. Preziosi . Exogenous control of vascular network formation in vitro: a mathematical model. Networks and Heterogeneous Media, 2006, 1(4): 621-637. doi: 10.3934/nhm.2006.1.621
    [2] Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515
    [3] Marco Scianna, Luca Munaron . Multiscale model of tumor-derived capillary-like network formation. Networks and Heterogeneous Media, 2011, 6(4): 597-624. doi: 10.3934/nhm.2011.6.597
    [4] M.A.J Chaplain, G. Lolas . Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399
    [5] Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska . Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15(3): 307-352. doi: 10.3934/nhm.2020021
    [6] Christos V. Nikolopoulos . Mathematical modelling of a mushy region formation during sulphation of calcium carbonate. Networks and Heterogeneous Media, 2014, 9(4): 635-654. doi: 10.3934/nhm.2014.9.635
    [7] Laura Cattaneo, Paolo Zunino . Computational models for fluid exchange between microcirculation and tissue interstitium. Networks and Heterogeneous Media, 2014, 9(1): 135-159. doi: 10.3934/nhm.2014.9.135
    [8] Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi . Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results. Networks and Heterogeneous Media, 2016, 11(1): 49-67. doi: 10.3934/nhm.2016.11.49
    [9] Mattia Bongini, Massimo Fornasier . Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Networks and Heterogeneous Media, 2014, 9(1): 1-31. doi: 10.3934/nhm.2014.9.1
    [10] Yao-Li Chuang, Tom Chou, Maria R. D'Orsogna . A network model of immigration: Enclave formation vs. cultural integration. Networks and Heterogeneous Media, 2019, 14(1): 53-77. doi: 10.3934/nhm.2019004
  • The reconstitution of a proper and functional vascular network is a major issue in tissue engineering and regeneration. The limited success of current technologies may be related to the difficulties to build a vascular tree with correct geometric ratios for nutrient delivery. The present paper develops a mathematical model suggesting how an anisotropic vascular network can be built in vitro by using exogenous chemoattractant and chemorepellent. The formation of the network is strongly related to the nonlinear characteristics of the model.


  • This article has been cited by:

    1. Tomasz Cieślak, Michael Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, 2008, 21, 0951-7715, 1057, 10.1088/0951-7715/21/5/009
    2. Luigi Preziosi, Andrea Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications, 2009, 58, 0303-6812, 625, 10.1007/s00285-008-0218-7
    3. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    4. Behnaz Abdollahi, Neal Dunlap, Hermann B. Frieboes, 2014, Chapter 18, 978-1-4614-8497-4, 463, 10.1007/978-1-4614-8498-1_18
    5. G. Sciumè, W. G. Gray, M. Ferrari, P. Decuzzi, B. A. Schrefler, On Computational Modeling in Tumor Growth, 2013, 20, 1134-3060, 327, 10.1007/s11831-013-9090-8
    6. L. Preziosi, S. Astanin, 2006, Chapter 4, 978-88-470-0394-1, 109, 10.1007/88-470-0396-2_4
    7. M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, 2013, 333, 00225193, 174, 10.1016/j.jtbi.2013.04.037
    8. Hasan E. Abaci, Donny Hanjaya-Putra, Sharon Gerecht, 2011, Chapter 7, 978-1-4419-7834-9, 127, 10.1007/978-1-4419-7835-6_7
    9. Edwin H. Salazar-Jurado, Ruber Hernández-García, Karina Vilches-Ponce, Ricardo J. Barrientos, Marco Mora, Gaurav Jaswal, Towards the generation of synthetic images of palm vein patterns: A review, 2023, 89, 15662535, 66, 10.1016/j.inffus.2022.08.008
    10. Michael R. Blatchley, Hasan E. Abaci, Donny Hanjaya-Putra, Sharon Gerecht, 2018, Chapter 4, 978-3-319-99318-8, 73, 10.1007/978-3-319-99319-5_4
    11. MIGUEL Á. HERRERO, ÁLVARO KÖHN, JOSÉ M. PÉREZ-POMARES, MODELLING VASCULAR MORPHOGENESIS: CURRENT VIEWS ON BLOOD VESSELS DEVELOPMENT, 2009, 19, 0218-2025, 1483, 10.1142/S021820250900384X
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3970) PDF downloads(56) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog