|
[1]
|
A mathematical model for Eph/Ephrin-directed segregation of intermingled cells. PLoS ONE (2014) 9: 111-803. |
|
[2]
|
A particle interaction model for the simulation of biological, cross-linked fibers inspired from flocking theory. Cellular and Molecular Bioengineering (2014) 7: 58-72.
|
|
[3]
|
Cytoplasm dynamics and cell motion: Two phase flow models. Math. Biosci. (1999) 156: 207-228.
|
|
[4]
|
J. Armero, J. Casademunt, L. Ramírez-Piscina and J. M. Sancho, Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise, Phys. Rev. E., 58 (1998).
|
|
[5]
|
J. A. Åström, P. B. S. Kumar, I. Vattulainen and M. Karttunen, Strain hardening, avalanches, and strain softening in dense cross-linked actin networks, Phys. Rev. E, 77 (2008), 051913.
|
|
[6]
|
Diffusion approximation and computation of the critical size. Trans. Amer. Math. Soc. (1984) 284: 617-649.
|
|
[7]
|
Kinetic theory of particle interactions mediated by dynamical networks. Multiscale Model. Simul. (2017) 15: 1294-1323.
|
|
[8]
|
Particle interactions mediated by dynamical networks: Assessment of macroscopic descriptions. J. Nonlinear Sci. (2018) 28: 235-268.
|
|
[9]
|
A. Baskaran and M. C. Marchetti, Hydrodynamics of self-propelled hard rods, Phys. Rev. E, 77 (2008), 011920, 9 pp.
|
|
[10]
|
E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov and S. Ramaswamy, Mesoscopic theory for fluctuating active nematics, New J. Phys., 15 (2013), 085032.
|
|
[11]
|
R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory, John Wiley & Sons, New York, 1987.
|
|
[12]
|
C. P. Broedersz, M. Depken, N. Y. Yao, M. R. Pollak, D. A. Weitz and F. C. MacKintosh, Cross-link-governed dynamics of biopolymer networks, Phys. Rev. Lett., 105 (2010), 238101.
|
|
[13]
|
Actin dynamics and the elasticity of cytoskeletal networks. Express Polymer Letters (2009) 3: 579-587.
|
|
[14]
|
Field theory of branching and annihilating random walks. Journal of Statistical Physics (1998) 90: 1-56.
|
|
[15]
|
Kinetic hierarchy and propagation of chaos in biological swarm models. Phys. D (2013) 260: 90-111.
|
|
[16]
|
Kinetic limits for pair-interaction driven master equations and biological swarm models. Math. Models Methods Appl. Sci. (2013) 23: 1339-1376.
|
|
[17]
|
A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. (2015) 17: 233-258.
|
|
[18]
|
J. A. Carrillo, R. S. Gvalani, G. A. Pavliotis and A. Schlichting, Long-time behaviour and phase transitions for the McKean-Vlasov equation on the torus, Arch. Ration. Mech. Anal., 235 (2020), 635–690, arXiv: 1806.01719.
|
|
[19]
|
Zoology of a non-local cross-diffusion model for two species. SIAM J. Appl. Math. (2018) 78: 1078-1104.
|
|
[20]
|
The McKean-Vlasov equation in finite volume. Journal of Statistical Physics (2010) 138: 351-380.
|
|
[21]
|
Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation. Discrete Contin. Dyn. Syst. Ser. B (2012) 17: 775-799.
|
|
[22]
|
A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys. (2013) 152: 1033-1068.
|
|
[23]
|
Continuum model for linked fibers with alignment interactions. Math. Models Methods Appl. Sci. (2016) 26: 269-318.
|
|
[24]
|
P. Degond, G. Dimarco, T. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion, Commun. Math. Sci., 13 (2015), 1615–1638, arXiv: 1404.4886.
|
|
[25]
|
Hydrodynamic models of self-organized dynamics: Derivation and existence theory. Methods Appl. Anal. (2013) 20: 89-114.
|
|
[26]
|
Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Transport Theory and Statistical Physics (1987) 16: 589-636.
|
|
[27]
|
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), suppl., 1193–1215.
|
|
[28]
|
(1999) The Theory of Polymer Dynamics, International Series of Monographs on Physics. Vol. 73: Oxford University Press. |
|
[29]
|
Cell line segregation during peripheral nervous system ontogeny. Science (1986) 231: 1515-1522.
|
|
[30]
|
A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011, 40 pp.
|
|
[31]
|
F. Ginelli, F. Peruani, M. Bär and H. Chaté, Large-scale collective properties of self-propelled rods, Phys. Rev. Lett., 104 (2010), 184502.
|
|
[32]
|
Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E (1993) 47: 2128-2154.
|
|
[33]
|
D. A Head, A. J. Levine and F. C MacKintosh, Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks, Phys. Rev. E, 68 (2003), 061907.
|
|
[34]
|
E. Y. C. Hsia, Y. Zhang, H. S. Tran, A. Lim, Y.-H. Chou, G. Lan, P. A. Beachy and X. Zheng, Hedgehog mediated degradation of Ihog adhesion proteins modulates cell segregation in Drosophila wing imaginal discs, Nature Communications, 8 (2017).
|
|
[35]
|
J. F. Joanny, F. Jülicher, K. Kruse and J. Prost, Hydrodynamic theory for multi-component active polar gels, New J. Phys., 9 (2007), 422.
|
|
[36]
|
The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. (1998) 29: 1-17.
|
|
[37]
|
A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophysical Journal (2003) 85: 3336-3349.
|
|
[38]
|
Fluctuation-induced diffusive instabilities. Nature (1998) 394: 556-558.
|
|
[39]
|
A Darwinian theory for the origin of cellular differentiation. Molecular and General Genetics MGG (1997) 255: 201-208.
|
|
[40]
|
Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes. Z. Naturforsch. (1958) 13: 564-566.
|
|
[41]
|
Kac's program in kinetic theory. Invent. Math. (2013) 193: 1-147.
|
|
[42]
|
A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Related Fields (2015) 161: 1-59.
|
|
[43]
|
S. Nesic, R. Cuerno and E. Moro, Macroscopic response to microscopic intrinsic noise in three-dimensional fisher fronts, Phys. Rev. Lett., 113 (2014), 180602.
|
|
[44]
|
Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments. Cell Adhesion and Migration (2008) 2: 117-126.
|
|
[45]
|
The effects of shape on the interaction of colloidal particles. Ann. New York Acad. Sci. (1949) 51: 627-659. |
|
[46]
|
F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods, Phys. Rev. E, 7 (2006), 030904(R).
|
|
[47]
|
Simple mechanical cues could explain adipose tissue morphology. J. Theor. Biol. (2017) 429: 61-81.
|
|
[48]
|
Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers. Asymptot. Anal. (1991) 4: 293-317.
|
|
[49]
|
Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, Inc., Boston, MA, 2002.
|
|
[50]
|
Differential adhesion in morphogenesis: A modern view. Curr. Opin. Genet. Dev. (2007) 17: 281-286.
|
|
[51]
|
A poroelastic model for cell crawling including mechanical coupling between cytoskeletal contraction and actin polymerization. Journal of Mechanics of Materials and Structures (2011) 6: 569-589.
|
|
[52]
|
M. E. Taylor, Partial Differential Equations III: Nonlinear Equations, Applied Mathematical Sciences, 117. Springer-Verlag, New York, 1997.
|
|
[53]
|
Simulation of cell movement and interaction. Journal of Bioinformatics and Computational Biology (2011) 09: 91-110.
|
|
[54]
|
W. R. Taylor et al., A mechanical model of cell segregation driven by differential adhesion, PLoS One, 7 (2012), e43226.
|
|
[55]
|
H. B. Taylor et al, Cell segregation and border sharpening by Eph receptor-ephrin-mediated heterotypic repulsion, J. R. Soc. Interface, 14 (2017), 20170338.
|
|
[56]
|
Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. (1995) 75: 1226-1229.
|
|
[57]
|
Collective motion. Phys. Rep. (2012) 517: 71-140.
|
|
[58]
|
Transcription complex stability and chromatin dynamics in vivo. Nature (1995) 377: 209-213.
|