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B.P. 6759, 45067 Orléans cedex 2, France
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Abstract. Motivated by experiments on cell segregation, we present a two-

species model of interacting particles, aiming at a quantitative description of

this phenomenon. Under precise scaling hypothesis, we derive from the micro-
scopic model a macroscopic one and we analyze it. In particular, we determine

the range of parameters for which segregation is expected. We compare our

analytical results and numerical simulations of the macroscopic model to direct
simulations of the particles, and comment on possible links with experiments.

1. Introduction. The organisation of biological tissues during development is ac-
companied by the formation of sharp borders between distinct cell populations. Dur-
ing the morphogenesis of numerous tissues/organs, cells of the same type regroup
into regions, creating niches with specific identities that drive the differentiation
of particular cell types. This spatial organization is ensured via cell-cell signalling
leading specific cells/tissues to form at the appropriate location. The maintenance
of this cell segregation is key in adult tissue homeostatis, and its disruption can lead
tumor cells to spread and form metastasis. This segregation is challenged during
tissue growth and morphogenesis due to the high mobility of many cells that can
lead to intermingling. Therefore, understanding the mechanisms involved in the
generation and maintenance of cell segregation is of tremendous importance in tis-
sue morphogenesis, homeostasis, and in the development of various invasive diseases
such as tumors.

Numerous experiments have been conducted to identify the mechanisms of cell
segregation. Experiments show that mixing cells from different tissues in vitro leads
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to their segregation, with initially fuzzy borders that sharpen in time [55]. This has
been observed for many systems for instance in the development of the wing imag-
inal disc in Drosophilia [34], in the developing nervous system [29] etc. So far,
three types of mechanisms have been identified to have a role in segregation and
border formation, namely (i) differential adhesion, (ii) contact cell repulsion and
(iii) cortical tension. Indeed, the segregation of cells derived from different tissues
in vitro was initially suggested to occur through a combination of directed cell mi-
gration and the selective adhesion of cells of the same type [50]. However, other
studies have shown that the contact inhibition of cell migration induced by contact
repulsion of cells by Eph receptor and ephrin signaling, and finally the induction of
cortical tension by actomyosin contraction are important mechanisms that can re-
strict intermingling between cell populations. However, it remains unclear whether
individually each of these mechanisms account for cell segregation or border sharp-
ening, and to what extent the interplay of these different mechanisms is required to
achieve cell segregation.

Several modelling efforts have been done to identify the main mechanisms in-
volved in cell segregation. The mathematical models for cell-cell interactions are
usually agent-based models, where each cell undergoes a random walk exclusion pro-
cess and interacts with its neighbours. For instance the cellular Potts model for seg-
regation between two cell populations [32] predicts cell rearrangements in epithelia
based on the minimization of a free energy and has been widely used to explore the
rate of cell sorting due to differential adhesion, but does not include cell migration as
a mechanism. The varying adhesive and repulsive forces between different cell pop-
ulations, which can result from Eph/ephrin interactions, have also been modelled
by representing cells as spheres which can attract or repel each other, giving rise to
empirically observed cell sorting pattern [55]. In [1], the authors develop a math-
ematical model for Eph/ephrin regulated cell-cell segregation and tissue boundary
formation, which features independent random cell motion, Eph/ephrin-dependent
attraction/repulsion interactions between neighbouring cells, and cell division. The
authors in [1] show that the dynamics of Eph/ephrin-mediated cell cluster formation
and cell segregation can be captured with these mechanisms. However, this model
do not use parameters from measurements of cell behaviour or examine whether
cell repulsion is sufficient for border sharpening. Another approach, which simu-
lates cell adhesion, de-adhesion and migration in greater detail [53, 54], was used to
model the time course of segregation of cells differing in cadherin expression. The
results from this model were acurate for describing cell segregation mediated by dif-
ferential expression of cadherins but less accurate when simulating the significantly
faster rate of Eph-ephrin mediated cell segregation. However when modified to ac-
count for repulsive behaviors [55], the model correctly reproduced the experiments
and showed that heterotypic repulsion can account for cell segregation and border
sharpening, and is more efficient than decreased heterotypic adhesion.

All these results suggest that cell segregation and border sharpening is the result
of a complex interplay between homotypic/heterotypic cell adhesion, de-adhesion
and repulsion. But how the balance of these phenomena is precisely linked to
the existence/size of the segregated zones remains unclear to this day. In this
paper, we aim to provide a mathematical framework which enables to quantitatively
link the segregation and border sharpening ability of the tissue to these cell-cell
interaction phenomena of interest. As agent-based models do not enable precise
mathematical analysis of their solutions due to the lack of theoretical results, we
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turn towards a continuous -macroscopic- model for which the theoretical study gives
precise criteria for phase transitions as functions of key model parameters. As a
drawback contrary to microscopic models, macroscopic models lose the information
at the individual level. In order to overcome this weakness, we aim to derive, as
rigorously as possible, the macroscopic model from an agent-based formulation to
ensure the good correspondence between the two formulations as it was done in
[7, 27, 23].

The starting point is an individual-based model inspired from [7, 8] and which
bears similarities with the approach [55]. We consider two families of cells, each cell
being modelled as a point particle which interacts with its close neighbors via local
cross-links. The links are modeled by springs that are randomly created and de-
structed. This enables us to model cell-cell attraction and repulsion, with different
spring strengths according to the type of link (intraspecies or interspecies). We let
the particles move randomly in space to model random motion of cells. In the mean
field limit, assuming large numbers of particles and links as well as propagation of
chaos, the corresponding kinetic system consists of two equations for the individ-
ual particle distribution functions and two equations for the link densities. In the
large-scale limit and in the regime where the link creation/destruction frequency is
very large, it was shown in [23, 8, 7] that the link density distributions become local
functions of the particle distributions. The latter evolve through aggregation diffu-
sion equations. Similar macroscopic model, but with nonlinlinear porous medium
type of diffusion has been recently considered analytically and numerically in [19].
Let us comment on the validity of the high frequency limit. The authors of [55]
have measured the duration of contacts between cells in a cell segregation experi-
ment, and found an order of magnitude of one hour. In these experiments, the time
scale for macroscopic segregation appears to be of the order of 10 or 20 hours. If
the duration of contact is taken as a typical timescale for the interaction network
dynamics, we see that the high frequency limit is a reasonable first approximation
in this case. In a related context, [39] studies the growth and differentiation of
an embryonic cell population, for which interactions between cells depend on gene
expression. Gene expression may change on the scale of tens of minutes [58], while
the growth occurs on a scale of days.

Although the derivation of the macroscopic model in the hydrodynamic limit
follows closely the steps of [8], the originality of this work lies in the presence of two
coupled families of cells which introduce a new level of complexity and make the
stability analysis more involved than in previous works. Inspired from the results
of [55], we mainly consider repulsive springs and aim to quantify the influence of
heterotypic/homotypic repulsion on cell segregation and border sharpening. By
addressing the stability of a homogeneous distribution of particles for Hookean
repulsive potentials, we obtain a precise condition for the phase transition, which
links the system segregation ability to the model parameters and give further insight
into the cell segregation processes.

Our study shows that in a system composed of two-species repelling each other,
the interspecies forces must be large enough to compensate both for the diffusion
and for the intra-species repulsion, which both tend to homogeneize the system.
Aggregation will therefore be ensured if and only if interspecies repulsion wins over
diffusion and intraspecies repulsion. In the case where attractive interactions are
considered, we have noted that a necessary condition for the aggregation of the
species (or equivalently instability of the homogeneous steady-state) is that the
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interspecies forces are of the same sign. To observe aggregates, the two families
must therefore either repulse or attract each other, but must have the same effect
on each other. On the contrary, if one family is attracted by the other and the
other repulses it, we will always observe a homogeneous distribution at equilibrium
(intermingling of the two families). A third remark concerns the size of the clusters
when aggregation occurs. As the interspecies repulsion force increases, the particles
of a given family aggregate more together, leading to a decrease of the size of the
local aggregates of the compressed family. These conclusions were confirmed by
simulations performed for both the microscopic and macroscopic models and are
pictured in Fig. 1. Numerical simulations show that both the micro- and macro-
models are in excellent agreement with the predictions of the stability analysis
performed on the continuous model. Beyond this stability threshold, Section 4
introduces a range of indicators to quantitatively compare both models: we conclude
that the macroscopic model is a good approximation of the microscopic model as the
number of individuals goes to infinity, provided the interspecies repulsion forces are
not too large. Indeed for large interspecies repulsion forces, we find some structural
discrepancies between the two models, where the microscopic dynamics seems to
favor the formation of rounder aggregates compared to the elongated structures
obtained with the macroscopic model. We find that the microscopic dynamics is
comprised of two time phases: the first phase consists of a fast segregation between
the two families and is followed later by a reorganisation of the clusters which
get rounder at large times. The macroscopic dynamics does not seem to contain
the second phase (restructuring), suggesting that this phenomenon can be due to
finite size effects. We postulate that these discrepancies come from the microscopic
noise due to thermal fluctuations, which gives rise to instabilities and allows the
agent-based system to reach new states which are not available in the deterministic
description, or produce spatial correlations which in turn dominate the macroscopic
system behavior. Several works have reported these phenomena [43, 38, 4, 14],
particularly at onset for transitions from metastable or unstable phases, in which
microscopic noise can be amplified to macroscopic time and length scales. The
exploration of these effects will be the subject of future works. Finally, we remark
that the segregation process is seen in the numerical simulations to be efficient
even close to the instability threshold: as soon as the homogeneous state becomes
unstable, the system evolves towards a well segregated configuration. This suggests
the presence of a subcritical bifurcation [20, 7, 18], the study of which we also leave
for future work.

The paper is organized as follows. In Section 2, we first give the main ingredients
of the microscopic model, and then we sketch the main steps of the derivation of
the macroscopic dynamics. We present two approaches that involve taking limit of
large number of individuals and large scale/fast network remodelling limit of the
microscopic model in the different orders; the details of one of them are moved to
Appendixes A and B. Section 3 is devoted to the stability analysis around the homo-
geneous steady-states of the macroscopic model: in Section 3.1, we give the stability
results in the whole space, Section 3.2 explores the case of periodic boundary con-
ditions and Section 3.3 is devoted to the case of phase separated initial conditions.
Finally, Section 4 presents the numerical results, performed on the microscopic and
macroscopic models in different regime of parameters, with a particular focus on
the qualitative and quantitative comparison between the two models.
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Stable homogeneous state
Intermingling of the two families

Unstable homogeneous state Unstable homogeneous state
Segregation of the two families Condensated aggregates

Figure 1. Scheme of the predictions of the linear stability analysis
by acting on the interspecies repulsion force.

2. Mathematical modelling.

2.1. Microscopic model. The model features two families of particles referred to
as type A and type B. Each particle can link/unlink with neighbors located in a ball
of radius R from its center. Each particle can link with a neighbor of its own family
as well as with a neighbor of the other family, with no restriction on the number
of links per particle and with the same detection radius R no matter the type of
link (intra- or inter- species). In order to model tissue plasticity, the links are not
permanent but supposed to be created and suppressed via random processes. In
this way, the model allows for constant remodelling of the link network. Each link
between two particles generates a spring-like interaction potential, which depends
on the link type (intra- or inter- species link). Finally, particle positions are subject
to random positional noise to model the movements of the tissue.

In this paper, we restrict ourselves to a two-dimensional model. We consider
a set of NA particles of type A and NB particles of type B described by their
centers (XA

i , X
B
` ) ∈ R2 × R2, i ∈ [1, NA], ` ∈ [1, NB ] respectively. The link

creation and suppression are supposed to follow Poisson processes of frequencies
νAAc,N,ε, ν

AB
c,N,ε, ν

BB
c,N,ε and νAAd,ε , ν

AB
d,ε , ν

BB
d,ε , where the subscripts c and d refer to ’cre-

ation’ and ’deletion’ respectively, and the superscripts AA,BB and AB denote
intraspecies links (AA, BB) and interspecies links (AB); ε is a scaling parameter,
and the subscripts ε, and N for the νc’s make the dependency of these rates on NA,
NB and ε explicit, as will be explained below. We suppose that the intraspecies
links generate pairwise symmetric potentials ΦAA(XA

i , X
A
j ) and ΦBB(XB

` , X
B
m), not

necessarily equal, and that the interspecies links generate non-symmetric potentials
ΦAB(XA

i , X
B
` ) 6= ΦBA(XB

` , X
A
i ), modelling the fact that the two particle families

act differently on each other. For the moment we do not specify interaction poten-
tials, trying to keep the derivation at maximal level of generality. Note that ΦAB

refers to the action a type B particle exerts on a type A particle while ΦBA is the
action a type A particle exerts on a particle of type B. We define the total “energy”
WA of the A-particles as the sum over all pairwise link potentials acting on particles
A, and WB is the sum over all pairwise link potentials acting on particles B:

WA(XA, XB) =

KAA∑
k1=1

ΦAA(XA
i(k1), X

A
j(k1)) +

KAB∑
k3=1

ΦAB(XA
i(k3), X

B
`(k3)) (1)
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WB(XA, XB) =

KBB∑
k2=1

ΦBB(XB
`(k2), X

B
m(k2)) +

KAB∑
k3=1

ΦBA(XB
`(k3), X

A
i(k3)), (2)

where KAA,KBB ,KAB denote the (time-dependent) total number of links between
particles of type A, particles of type B, and interspecies links respectively. In the
formulas above (i(k1), j(k1)) denote the indices of particles of type A connected
by the intraspecies link k1, and so k1 = 1, . . . ,KAA. As the links are undirected
we always numerate the ends in such a way that i(k1) < j(k1). Similarly, by
(`(k2),m(k2)) we denote the indices of particles of type B connected by link k2.
By a slight abuse of notation we denote by (i(k3), `(k3)) the indices of particles of
type A connected to particles of type B by link k3. Particle motion during a time
interval between two linking/unlinking events is supposed to occur in the so-called
overdamped regime. The resulting equations contain a drift term in the steepest
descent direction of the “energies” WA and WB and a noise term:

dXA
i = −µ∇XA

i
WA(XA, XB)dt+

√
2DAdBi, ∀i ∈ {1, . . . , NA}, (3)

dXB
i = −µ∇XB

`
WB(XA, XB)dt+

√
2DBdB`, ∀` ∈ {1, . . . , NB}, (4)

where µ > 0 is the mobility coefficient considered to be given, and Bi is a 2-
dimensional Brownian motion Bi = (B1

i , B
2
i ) of intensity DA > 0 for species A and

DB > 0 for species B. Inserting (1)-(2) into (3)-(4), we obtain

dXA
i =
√

2DAdBi − µdt
[ KAA∑
k1=1

KAB∑
k3=1

∇x1
ΦAB(XA

i(k3), X
B
`(k3))δi(k3)(i) (5)

+
(
∇x1

ΦAA(XA
i(k1), X

A
j(k1))δi(k1)(i) +∇x2

ΦAA(XA
i(k1), X

A
j(k1))δj(k1)(i)

)]
dXB

` =
√

2DBdB` − µdt
[KBB∑
k2=1

KAB∑
k3=1

∇x1
ΦBA(XB

`(k3), X
A
i(k3))δ`(k3)(`) (6)

+
(
∇x1ΦBB(XB

`(k2), X
B
m(k2))δ`(k2)(`) +∇x2ΦBB(XB

`(k2), X
B
m(k2))

)
δm(k2)(`)

]
,

where δi(j) stands for the Kronecker delta.
This model bears similarities with the works of [53, 54, 55]. The main difference

lies in the fact that cells are modelled as individual spheres here, while in [55]
each cell is supposed to be composed of a set of several spheres maintained in
a ring of a given radius. Therefore we do not take into account the role of cell
deformation in this paper. However, this simpler modelling choice enables us to
reduce the complexity of the system and to derive a macroscopic model as performed
in the next section. The influence of this modelling simplification on the result will
be the subject of future works. In the next section, we present the macroscopic
model obtained in the limit of a large number of individuals and in the fast linking-
unlinking process.

2.2. Macroscopic model. The derivation of a macroscopic model from the micro-
scopic model defined by Eqs. (5)-(6) requires two limits: (i) limit of large number
of individuals and large number of links, denoted N,K → ∞ and (ii) a large scale
or fast network remodelling limit, denoted ε→ 0.
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Performing the limit (i) first yields, after a mean-field assumption, a kinetic
system, from which the macroscopic dynamics can be derived in the ε → 0 limit.
This approach will be referred to as the Approach I.

Performing the limit (ii) first yields, after averaging over the network configu-
rations, an effective dynamics for the particles, from which the same macroscopic
dynamics can be derived, in the N,K → ∞ limit. This approach will be referred
to as the Approach II.

This structure is summarized in the diagram:

Microscopic
{

(XA
i , X

B
j )
} N,K→∞−−−−−−→ Kinetic

{
(fS , gST , hST )S,T∈{A,B}

}yε→0

yε→0

Averaged microscopic
{

(X̃A
i , X̃

B
j )
}

N,K→∞−−−−−−→ Macroscopic
{

(fA, fB)
}

(7)

The meaning of the fS , gST , hST , X̃S is explained below. Our final goal is a macro-
scopic model describing the evolution in time of the particle distributions fA(x, t)
and fB(x, t) of the type-A particles and type-B particles respectively. Let us
roughly discuss the two possible approaches mentioned above.

Sketch of Approach I. For finite NA, NB we define:

fAN (x, t) =
1

NA

NA∑
i=1

δXA
i (t)(x), fBN (x, t) =

1

NB

NB∑
`=1

δXB
` (t)(x), (8)

where δXS
i (t)(x) denotes the Dirac delta located at XS

i (t) for S being either A or

B. In the large NS limit it gives the probability to find a particle of type S at point
x at time t.

To write the kinetic model, we need to define the (symmetric) empirical measures
gSSN (x1, x2, t) of the intraspecies links (S being either A or B) by:

gAAN (x1, x2, t) =
1

2NA

KAA∑
k1=1

δXA
i(k1)

,XA
j(k1)

(x1, x2) + δXA
j(k1)

,XA
i(k1)

(x1, x2),

gBBN (x1, x2, t) =
1

2NB

KBB∑
k2=1

δXB
`(k2)

,XB
m(k2)

(x1, x2) + δXB
m(k2)

,XB
`(k2)

(x1, x2),

(9)

with a similar definition of the Dirac deltas. Such a gSSN (x1, x2, t) gives in the large
NS limit the density of links connecting a particle of a given type and located within
a volume dx1 about x1 with a particle of the same type located within a volume dx2

about x2, normalized by NS ; note the integral of gSSN is not 1. As will become clear
below, we will be interested in a regime where KSS and NS have the same order of
magnitude; hence the chosen normalization ensures that gSSN is of order 1. Now, we
define a non-symmetric empirical measures for the interspecies links gABN (x1, x2, t):

gABN (x1, x2, t) =
1

NA

KAB∑
k3=1

δXA
i(k3)

,XB
`(k3)

(x1, x2), (10)
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and analogously

gBAN (x1, x2, t) =
1

NB

KAB∑
k3=1

δXB
`(k3)

,XA
i(k3)

(x1, x2) =
NA
NB

gABN (x2, x1, t). (11)

Note that gABN (x1, x2, t) gives in the large NA limit the density of interspecies links
between a particle of type A located within a volume dx1 about x1 and a particle
of type B located within a volume dx2 about x2, normalized by NA.

Finally, the derivation of the kinetic model also involves the two-particle distri-
bution functions defined by:

hAAN (x1, x2, t) =
1

2NA(NA − 1)

NA∑
i=1

NA∑
j=1

j 6=i

(
δXA

i (t),XA
j (t)(x1, x2) + δXA

j (t),XA
i (t)(x1, x2)

)

(12)

hBBN (x1, x2, t) =
1

2NB(NB − 1)

NB∑
`=1

NB∑
m=1

m 6=`

(
δXB

` (t),XB
m(t)(x1, x2) + δXB

m(t),XB
` (t)(x1, x2)

)
(13)

hABN (x1, x2, t) =
1

NANB

NA∑
i=1

NB∑
m=1

δXA
i (t),XB

m(t)(x1, x2). (14)

Here, hAAN and hBBN give in the large NA, NB limit the probabilities of finding pairs
of not necessarily linked particles of the same species around x1 and x2, while
hABN (x1, x2, t) gives the probability of finding a particle of type A around x1 and a
particle of type B around x2.

The kinetic system provides evolution equations for fA, fB , gAA, gBB , gAB , the
large N -limits of the corresponding empirical densities defined above. Since this
derivation follows closely the works of [7, 23] adapted to a two species system, we
leave the details in Appendix A. The fast network remodelling limit taken on this
kinetic system then formally yields a macroscopic system of evolution equations
involving only fA and fB , i.e. the macroscopic evolution we are looking for, given
by (24), below.

Sketch of Approach II. We denote by Aij(t), Bij(t), Cij(t) the adjacency matrices
of particles A, B, and cross-links A − B respectively. In particular, for i, j ∈
{1, . . . , NA}, Aij(t) = 1 (resp. = 0) if particles of type A i and j are connected
at time t (resp. not connected). The definition of matrix B is similar. For i ∈
{1, . . . , NA}, j ∈ {1, . . . , NB}, Cij(t) = 1 (resp. = 0) if particle i of type A and
particle j of type B are connected at time t (resp. not connected). A and B are
square symmetric matrices, and C is an NA ×NB rectangular matrix.

The derivation of the reduced microscopic model relies on averaging. The dif-
fusions of particles positions XA

i , X
B
j (t) are slow processes, and the links Aij(t),

Bij(t), Cij(t) are fast processes: they quickly converge to stationary measures which
depend on XA

i (t) and XB
i (t). We will then compute the evolution of XA

i (t) and
XB
i (t) by averaging the basic dynamical equations (3)-(4) over these stationary

measures of the link processes.
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The process for the links is written

dAij(t) = −Aij(t)dNAA,d
ij (t) + [1−Aij(t)]χ{|XA

i (t)−XA
j (t)|≤R}dN

AA,c
ij (t) (15)

dBij(t) = −Bij(t)dNBB,d
ij (t) + [1−Bij(t)]χ{|XB

i (t)−XB
j (t)|≤R}dN

BB,c
ij (t) (16)

dCij(t) = −Cij(t)dNAB,d
ij (t) + [1− Cij(t)]χ{|XA

i (t)−XB
j (t)|≤R}dN

AB,c
ij (t) (17)

where theNAA,d
ij , NAA,c

ij , NBB,d
ij , NBB,c

ij , NAB,d
ij , NAB,c

ij , are independent Poisson pro-

cesses with rates νSTd,ε for destruction of the link connecting particles of type S and

T , S, T ∈ {A,B}, and νSTc,N,ε for creation of a link between particles of type S and

T . Equations (15–16) are always considered only for 1 ≤ i < j ≤ NA,B , as the par-
ticles are never linked to themselves, and for j > i we use the symmetry assumption
Aij = Aji, Bij = Bji, respectively. The matrix C from (17) is a rectangular matrix,
as the numbers of particles of each type may be different, NA 6= NB in general. We
will moreover consider the following scaling of these rates

νAAd,ε = νAAd ε−2, νAAc,N,ε = νAAc,ε N
−1
A = νAAc N−1

A ε−2,

νBBd,ε = νBBd ε−2, νBBc,N,ε = νBBc,ε N
−1
B = νBBc N−1

B ε−2,

νABd,ε = νABd ε−2, νABc,N,ε = νABc,ε N
−1
B = νABc N−1

B ε−2.

(18)

The subscript ε (resp. NA, NB) signals a dependency on ε (resp. NA, NB), and the
rates without NA, NB , ε subscripts are assumed to be independent of NA, NB , ε.
Relations (18) make the scaling with ε and NA, NB needed to perform the limit
procedures in (7) explicit. In particular, the scaling with NA, NB ensures that the
connectivity of any particle remains of order 1, and the scaling with ε controls the
speed of the linking/unlinking process.

Conditionally on the positions XA
i , X

B
j , all the processes Aij , Bij , Cij are inde-

pendent. The stationary measures of (15)-(16)-(17), for fixed positions XA
i , X

B
j are

then simply product of Bernoulli measures (P denotes the probability):

P(Aij(t) = 1) =

νAA
c
NA

χ{|XA
i (t)−XA

j (t)|≤R}

νAA
c
NA

+ νAAd

, P(Aij(t) = 0) = 1− P(Aij(t) = 1), (19)

P(Bij(t) = 1) =

νBB
c
NB

χ{|XB
i (t)−XB

j (t)|≤R}

νBB
c
NB

+ νBBd

, P(Bij(t) = 0) = 1− P(Bij(t) = 1), (20)

P(Cij(t) = 1) =

νAB
c
NB

χ{|XA
i (t)−XB

j (t)|≤R}

νAB
c
NB

+ νABd

, P(Cij(t) = 0) = 1− P(Cij(t) = 1). (21)

For NA, NB large, the above expressions simplify as the O(1/NA, 1/NB) terms in the
denominators are negligible. One can write the equations for the positions, averaged
over the stationary measure for the links; calling X̃A

i , X̃
B
j these new processes, we

obtain (neglecting terms of order 1/NA, 1/NB)

dX̃A
i = −µ

 1

NA

νAAc
νAAd

NA∑
j=1

χ{|X̃A
i −X̃A

j |≤R}
∇ΦAA(X̃A

i − X̃A
j )

+
1

NB

νABc
νABd

NB∑
j=1

χ{|X̃A
i −X̃B

j |≤R}
∇ΦAB(X̃A

i − X̃B
j )

 dt+
√

2DAdBAi ,

(22)
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dX̃B
i =− µ

NA
NB

1

NA

νABc
νABd

NA∑
j=1

χ{|X̃B
i −X̃A

j |≤R}
∇ΦBA(X̃B

i − X̃A
j )

+
1

NB

νBBc
νBBd

NB∑
j=1

χ{|X̃B
i −X̃B

j |≤R}
∇ΦBB(X̃B

i − X̃B
j )

 dt+
√

2DBdBBi .

(23)

Here we tacitly assumed the translation invariance of the potential ΦST (Xi, Xj) =
ΦST (Xi −Xj), which can be relaxed, see the Appendix. From Eqs. (22)-(23), one
can deduce the following proposition, describing the the dynamics of the particles
density fA and fB in the large NA, NB limit:

Proposition 1. Assume Eqs. (22)-(23) and that the potentials are radially sym-
metric ΦST (Xi−Xj) = ΦST (|Xi−Xj |; then in the limit NA, NB →∞, NA/NB →
rAB > 0, the one particle distribution functions fA and fB are solution of the
system

∂tf
A = DA∆xf

A +∇x ·
(
fA(x, t)∇x

(
Φ̃AA ∗ fA

)
(x, t)

)
+∇x ·

(
fA(x, t)∇x

(
Φ̃AB ∗ fB

)
(x, t)

)
,

∂tf
B = DB∆xf

B +∇x ·
(
fB(x, t)∇x

(
Φ̃BB ∗ fB

)
(x, t)

)
+∇x ·

(
fB(x, t)∇x

(
Φ̃BA ∗ fA

)
(x, t)

)
,

(24)

where the potentials Φ̃ST are given by:

Φ̃AA(x) =
νAAc
νAAd

(
ΦAA(x)χ{|x|≤R} + ΦAA(R)χ{|x|>R}

)
, (25)

Φ̃BB(x) =
νBBc
νBBd

(
ΦBB(x)χ{|x|≤R} + ΦBB(R)χ{|x|>R}

)
, (26)

Φ̃AB(x) =
νABc
νABd

(
ΦAB(x)χ{|x|≤R} + ΦAB(R)χ{|x|>R}

)
, (27)

Φ̃BA(x) = rAB
νABc
νABd

(
ΦBA(x)χ{|x|≤R} + ΦBA(R)χ{|x|>R}

)
, (28)

and ∗ denotes the convolution.

An alternate proof of this proposition based on Approach I is presented in the
Appendix. The Hookean potential considered in this paper satisfies the radial sym-
metry assumption. However, for purposes of derivation of the macroscopic model,
this assumption can be relaxed at the expense of more complex formulas (see the
Appendix).

The macroscopic model consists of two aggregation-diffusion equations with non-
local terms, where each particle interacts with its close neighbors of the same family
(second term of the right hand side of Eq. (24)) as well as with the ones of the
other family (third term of the right hand side of Eq. (24)), and where the diffu-
sive term corresponds to the Brownian motion of individual particles. In the next
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section, we perform the linear stability analysis to identify phase transitions of the
homogeneous steady-state.

3. Analysis of the macroscopic system in the whole space.

3.1. Linear stability in the whole space. In this section, we perform a linear
stability analysis of the macroscopic model. We recall the macroscopic equations
for fA, fB :

∂tf
A = DA∆xf

A +∇x ·
(
fA∇x

(
Φ̃AA ∗ fA

))
+∇x ·

(
fA∇x

(
Φ̃AB ∗ fB

))
∂tf

B = DB∆xf
B +∇x ·

(
fB∇x

(
Φ̃BB ∗ fB

))
+∇x ·

(
fB∇x

(
Φ̃BA ∗ fB

))
,

where the factors
νST
c

νST
d

and rAB have been included in the potential functions Φ̃ST .

We first linearize around the homogeneous steady states, i.e fA∗ = const., fB∗ =
const. Writing

fA = fA∗ + f̃A, fB = fB∗ + f̃B ,

we have , at the first order:

∂tf
A = fA∗ ∆

[
fA ∗ Φ̃AA + fB ∗ Φ̃AB

]
+DA∆xf

A

∂tf
B = fB∗ ∆

[
fB ∗ Φ̃BB + fA ∗ Φ̃BA

]
+DB∆xf

B .
(29)

For any integrable function F and a vector y ∈ R2 we recall the definition of the
spatial Fourier transform

F̂ (y) =
1

2π

∫
R2

exp−ix·y F (x)dx.

Applying it to both sides of (29), we obtain the following system:

∂t

(
f̂A

f̂B

)
=

−fA∗ |y|2(2π ˆ̃ΦAA(y) + DA

fA
∗

)
−fA∗ |y|22π ˆ̃ΦAB(y)

−fB∗ |y|22π ˆ̃ΦBA(y) −fB∗ |y|2
(
2π ˆ̃ΦBB(y) + DB

fB
∗

)
(f̂A

f̂B

)

:= M(y)

(
f̂A

f̂B

)
.

(30)

Therefore, (
f̂A

f̂B

)
(y, t) = c1(y) expλ1(y)t ~u1(y) + c2(y) expλ2(y)t ~u2(y),

where λ1(y), λ2(y) are the eigenvalues of the matrix M(y) and ~u1(y), ~u2(y) are the
corresponding eigenvectors.

General case. In the general case, the homogeneous steady state will be unstable
if at least one of the eigenvalues of matrix M(y) is positive. By computing the
determinant of M:

∆(M) = |y|4fA∗ fB∗
[(

2π ˆ̃ΦAA +
DA

fA∗

)(
2π ˆ̃ΦBB +

DB

fB∗

)
− (2π)2 ˆ̃ΦAB ˆ̃ΦBA

]
,

we can see that, for general interaction potentials, the constant steady states will
be unstable if one of the two conditions is met:

1. ∆(M) < 0: (2π ˆ̃ΦAA + DA

fA
∗

)(2π ˆ̃ΦBB + DB

fB
∗

) < 4π2 ˆ̃ΦAB ˆ̃ΦBA.
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2. ∆(M) ≥ 0 and Tr(M) > 0:(2π ˆ̃ΦAA + DA

fA
∗

)(2π ˆ̃ΦBB + DB

fB
∗

) ≥ 4π2 ˆ̃ΦAB ˆ̃ΦBA

fA∗ (2π ˆ̃ΦAA + DA

fA
∗

) + fB∗ (2π ˆ̃ΦBB + DB

fB
∗

) < 0.

Hookean interaction potentials. In order to explicit these conditions as functions of
the model parameters, we now suppose that the intra- and inter- species links act
as springs of rest length R between the particles. As the detection radius for the
interaction is also R, this amounts to consider that particles only repulse each other
up until distance R. To keep enough generality, we consider different interaction
intensities between the type A and type B intra- and inter- species springs:

ΦAA(x1, x2) =
κAA

2
(|x1 − x2| −R)2, ΦBB(x1, x2) =

κBB

2
(|x1 − x2| −R)2,

ΦAB(x1, x2) =
κAB

2
(|x1 − x2| −R)2, ΦAB(x1, x2) =

κBA

2
(|x1 − x2| −R)2,

and not necessarily mutually equal. We have:∫
fT (x′)χ{|x−x′|≤R}∇xΦST (x, x′)dx′

= κST
∫
fT (x′)(|x− x′| −R)

x− x′

|x− x′|
χ{|x−x′|≤R}dx

′.

Remembering that the factors
νST
c

νST
d

were included in the potential functions Φ̃ST

and following derivation (69)-(72) from the Appendix B.2, we may introduce:

Φ̃ST (x) =
νSTc
νSTd

κST

2

{
(|x| −R)2 for |x| ≤ R
0 for |x| > R

, (31)

which ensures that the equations for fA, fB are of the form (24) and the linearized
system is of the form (29). The form of the new potential is plotted in Fig. 2. We

Figure 2. Form of the potential Φ̃ST (x) for R = 2 and
νST
c

νST
d

κST

2 =

1. The potential is repulsive on its support.
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can now compute the Fourier transform of Φ̃ST . Using the radial symmetry of Φ̃ST

and denoting Υ = |y| we can show that

ˆ̃ΦST (Υ) =
νSTc κST

νSTd

(
J0(ΥR)

R2

Υ2
−J1(ΥR)

2R

Υ3
+
πR2

2Υ2

[
J1(ΥR)H0(ΥR)−J0(ΥR)H1(ΥR)

])
,

where J0, J1 are the Bessel functions of the first kind of order 0 and 1:

Ji(x) =

∞∑
m=0

(−1)m

m!Γ(m+ 1 + i)

(x
2

)2m+i

and H0, H1 are the Struve functions defined by:

Hi(x) =

∞∑
m=0

(−1)m

Γ(m+ 3/2)Γ(m+ 3/2 + i)

(x
2

)2m+i+1

.

We refer the reader to [7] for the computation of these terms. Replacing the Fourier
transforms of the potentials by their expressions in M(y), we can write

M(y) = −
(
cAAH(y) +DA|y|2 cABH(y)

cBAH(y) cBBH(y) +DB |y|2
)
,

with cST =
2πκST fS

∗ ν
ST
c R2

νST
d

for all S, T ∈ {A,B} and

H(y) = J0(|y|R)− J1(|y|R)
2

|y|R
+
π

2

[
J1(|y|R)H0(|y|R)− J0(|y|R)H1(|y|R)

]
=
π

2

[
J1(|y|R)H0(|y|R)− J0(|y|R)H1(|y|R)

]
− J2(R|y|).

Writing z = |y|R, the determinant of M can now be written:

∆(M) =
1

R4
(DAz2 + c′AAH̃(z))(DBz2 + c′BBH̃(z))− c′ABc′BAH̃(z)2,

where c′ST = R2cST =
2πκST fS

∗ ν
ST
c R4

νST
d

and

H̃(z) =
π

2

[
J1(z)H0(z)− J0(z)H1(z)

]
− J2(z).

Now, lengthy but straightforward computations show that for z close to the origin
we have:

H̃(z) =
1

24
z2 +O(z4), (32)

and so, close to the origin z = 0, we have

∆(M) =
z4

R4

(
(DA +

c′AA

24
)(DB +

c′BB

24
)− c′ABc′BA

242

)
=

z4

R4

(
DADB +

1

24
(DAc′BB +DBc′AA) +

c′AAc′BB − c′ABc′BA

242

)
.

(33)

In order to simplify the analysis, we suppose the following hypothesis:

Hypothesis 1. The intraspecies links generate repulsive potentials, i.e κAA, κBB >
0.

We first note that under Hypothesis 1, the trace of M

Tr(M) = − z
2

R2

[
DA +DB +

c′AA + c′BB

24

]
+ o(z4),
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is negative for small z. Therefore, the homogeneous steady states will be unstable
for small z only if ∆(M) ≤ 0. Note also that the parameters c′AB and c′BA should
have the same sign to allow the determinant of M to be negative, otherwise the
homogeneous steady state will be a stable case. Now, we scale the interspecies link
potential intensities with a parameter s ∈ R such that κAB = sκ̃AB , κBA = sκ̃BA.
It corresponds to the relevant scaling of the parameters c′AB and c′BA, to simplify
the notation we denote the corresponding reference values by the same symbols
c′AB and c′BA, then

∆(M) =
z4

R4

(
DADB +

1

24
(DAc′BB +DBc′AA) +

c′AAc′BB − s2c′ABc′BA

242

)
,

and we immediately note that s must be large enough to allow ∆(M) to be negative.
More precisely, the two eigenvalues of M are written:

λ1 =
1

2

(
Tr(M) +

√
Tr(M)2 − 4∆(M)

)
=

z2

2R2

(
− C+ +

√
C2
− + s2

c′ABc′BA

144

)
,

λ2 =
1

2

(
Tr(M)−

√
Tr(M)2 − 4∆(M)

)
=

z2

2R2

(
− C+ −

√
C2
− + s2

c′ABc′BA

144

)
,

(34)

where C+ = DA + DB + c′AA+c′BB

24 and C− = DA − DB + c′AA−c′BB

24 . We can
therefore plot their values as functions of s near z = 0 (see Fig. 3 for z = 0.1 and
parameter values DA = DB = 1, c′AA = c′AB = c′BA = 1, c′BB = 10). As shown by

Figure 3. Values of λ1 (blue curve), λ2 (orange curve) and their
mean (yellow dotted line) near z = 0 (z=0.1), plotted as functions
of the scaling parameter s for R = 1, DA = DB = 1, c′AA = c′AB =
c′BA = 1, c′BB = 10.

Fig. 3, there exists a critical value s∗ of s such that for s > s∗ the homogeneous
state will be unstable (i.e we will observe cell aggregates). From the definition of s,
this means that the interspecies repulsion force must be large enough to compensate
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the intraspecie repulsion and diffusion and enable the two species to separate into
clusters. These first results are in accordance with the observations of [55]. Note
that, by equating (33) to 0, we can directly compute the value of s∗ as a function
of the model parameters:

s∗ =

√
576

c′ABc′BA
(
DA +

c′AA

24

)(
DB +

c′BB

24

)
. (35)

In Fig. 4, we aim to plot the values of λ1(z), λ2(z) in the unstable regime s > s∗,
s∗ being determined on Fig.3 (critical value of s such that λ1(z ≈ 0) becomes
positive). We select four values of s > s∗ and for each of them we compute the
functions λ1(z), λ2(z) using matrix M(z) before Taylor expanding it near 0. The
Bessel and Struve functions are approximated numerically.

(I) (II) (III)

R=1,

*

s

Figure 4. (I): Values of λ1(z) as functions of z for R = 1, DA =
DB = 1, cAA = cAB = cBA = 1, cBB = 10 and for different values
of s in the instability regime: s = 30 (blue curve), s = 50 (orange
curve), s = 70 (yellow curve), and s = 90 (red curve). (II): same
plots for λ2(z). (III) Plot of z∗ defined in (36) as a function of
parameter s.

As one can see in Fig. 4 (I), λ1 is an increasing function of s at fixed z. Further-
more, the most unstable parameter z, i.e. the value z∗ for which λ1(z) reaches its
maximal value, defined by:

z∗(s) = argmax
z∈R+

λs1(z), (36)

increases with s (see Fig. 4 (III)). Hence, at small times, the instability should be
dominated by Fourier modes with parameter around z∗(s). Assuming this remains
qualitatively true in the time asymptotic regime, one then expects that larger values
of s will lead to more aggregated (smaller) patterns.

3.2. Linear stability in the periodic box. For the sake of numerical simula-
tions, we now interpret the above results in the case of a space-periodic domain. In
practice, instead of the whole plane we consider the two-dimensional square peri-
odic domain [−L,L] × [−L,L], however, for L sufficiently large the results change
quantitatively but not qualitatively. Introducing the shorthand notation for the
Fourier modes

ek1,k2 = exp

[
iπ

L
(k1x1 + k2x2)

]
, (37)
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we may write for S = A,B:

fS(x1, x2) =
∑

k1,k2∈Z
f̂Sk1,k2ek1,k2 ,

where the Fourier coefficients f̂Sk1,k2 are given by

f̂Sk1,k2 =
1

4L2

∫ L

−L

∫ L

−L
fS(x1, x2)e−k1,−k2 dx1 dx2.

The periodic analog of the macroscopic system after Fourier transform is (see (30)
for comparison):

∂t

(
f̂Ak1,k2
f̂Bk1,k2

)
= Mk1,k2

(
f̂Ak1,k2
f̂Bk1,k2

)
, (38)

where

Mk1,k2 =

−fA∗ π2(k21+k22)
L2

(
4L2 ˆ̃ΦAAk1,k2 + DA

fA
∗

)
−fA∗

π2(k21+k22)
L2 4L2 ˆ̃ΦABk1,k2

−fB∗
π2(k21+k22)

L2 4L2 ˆ̃ΦBAk1,k2 −fB∗
π2(k21+k22)

L2

(
4L2 ˆ̃ΦBBk1,k2 + DB

fB
∗

)
 .

Since fA, fB are both probability measures, we take

fA∗ = fB∗ =
1

4L2
,

which means that the matrix M from (38) has now the form

Mk1,k2 =

(
−π

2(k21+k22)
L2

( ˆ̃ΦAAk1,k2 +DA
)

−π
2(k21+k22)
L2

ˆ̃ΦABk1,k2
−π

2(k21+k22)
L2

ˆ̃ΦBAk1,k2 −π
2(k21+k22)
L2

( ˆ̃ΦBBk1,k2 +DB
)) . (39)

This form of the system can be again studied for general potentials. Here we
immediately focus on the Hookean case (31), for which the Fourier transform equals

ˆ̃ΦSTk1,k2 =
νSTc
νSTd

πκST

2L2

R4

z2k1,k2

(π
2

[
J1(zk1,k2)H0(zk1,k2)− J0(zk1,k2)H1(zk1,k2)

]
− J2(zk1,k2)

)
,

(40)

where we denoted

zk1,k2 =
πR

L

√
k2

1 + k2
2. (41)

As explained in [7], due to specific shape of the potential, we only need to check
the stability of the first mode (k1, k2) = ±(1, 0) or (k1, k2) = ±(0, 1) in order to
find whether the whole system is stable. This is the point where the analysis in the
space-periodic domain differs from the whole space case. Note that in (32) we took
z → 0, which cannnot be assumed for the discrete values (41). Exactly as before,
we compute:

Tr(M1,0) = −π
2

L2

(
DA +DB +

R2

2π

(
νAAc
νAAd

κAA +
νBBc
νBBd

κBB
)
H̃

(
πR

L

))
,

∆(M1,0) =
π4

L4

[
DADB +

R2

2π

(
DB ν

AA
c

νAAd
κAA +DA ν

BB
c

νBBd
κBB

)
H̃

(
πR

L

)
+
R4

4π2

(
νAAc
νAAd

νBBc
νBBd

κAAκBB − s2 ν
AB
c

νABd

νBAc
νBAd

κABκBA
)
H̃

(
πR

L

)2 ]
.

(42)
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Recall however, that assuming Hypothesis 1 we still have that Tr(M1,0) is always
negative. Based on numerical simulations close to z = 0 for the whole space case
(see Fig. 4 I) we observe that the constant steady state is unstable again only
for sufficiently small z1,0 and iff ∆(M1,0) < 0. This leads to two eigenvalues λ1,
λ2 of different signs, that can be computed using the formulas (34). The value of
parameter s that corresponds to the phase transition can be computed by equating
(42) to 0 and therefore

s∗ =
1

R2

2π H̃
(
πR
L

)
√√√√√
(
DA + R2

2π
νAA
c

νAA
d

κAAH̃
(
πR
L

))(
DB + R2

2π
νBB
c

νBB
d

κBBH̃
(
πR
L

))
νAB
c

νAB
d

νBA
c

νBA
d

κABκBA
. (43)

3.3. On phase separated initial conditions. The authors of [55] report segre-
gation experiments between two types of cells. In particular, in some experiments
(see Fig.1 i)-k) in [55]) the initial condition is perfectly segregated: at t = 0 there is
a sharp interface between a subdomain with only cells of type A and a subdomain
with only cells of type B. Depending on various parameters, the experiments show
different possible evolutions of the interface (see Fig.1 i)-k) in [55]):

• the interface remains sharp and does not move;
• the interface remains sharp, does not deform, and moves in one direction;
• the interface becomes blurred: the two species start to mix.

Our goal here is to try to relate these different outcomes to different parameter
ranges in our model. The heuristic remarks of this paragraph will be backed by
numerical simulations in Section 4. We consider here a bounded domain Ω ⊂ R2,
and make some further hypotheses in order to simplify the system:

i) the inter-species interaction is symmetric ΦAB = ΦBA;
ii) the interaction radius R is much smaller than the scale of the experiments;
iii) the diffusion is neglected.

From the biological perspective assumptions i)-iii) certainly do not cover all in-
teresting cases. However, given the very little knowledge that we have about the
nature of the interactions, it is interesting to consider the consequences of these
simplifications applicable in specific situations. For example, hypothesis i) could
be valid when the friction forces between the two cell types and the medium is the
same; hypothesis ii) amounts to consider that the size of the cell’s sensing zone,
comparable with its size, is much smaller than the size of the system, and finally
hypothesis iii) could be valid when the tissue is very stiff (e.g. in bones) and the
spacial diffusion of cells is negligible.

Furthermore, numerical simulations in Section 4 will show that the phenomena
identified in this paragraph under the restrictive hypotheses i)-iii) qualitatively per-
sist for more general parameters.

Under hypothesis i), the macroscopic system of equation admits a free energy, or
Lyapunov functional

F [fA, fB ] =

∫
Ω

(
DAfA(x) ln fA(x) +DBfB(x) ln fB(x)

)
dx

+

∫
Ω

(
1

2
Φ̃AA(x− y)fA(x)fA(y) +

1

2
Φ̃BB(x− y)fB(x)fB(y)

)
dxdy

+

∫
Ω

(
Φ̃AB(x− y)fA(x)fB(y)

)
dxdy
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The macroscopic dynamics is a gradient flow of the functional F , with respect to the
Wasserstein distance W2 [36]. Owing to hypothesis ii), we will replace the potentials
Φαβ by Dirac delta functions with weights equal to their integrals, which we call
γαβ , respectively. Owing to hypothesis iii), we neglect diffusion, which all together
leads to the simplified functional E :

E [fA, fB ] =

∫
Ω

(
1

2
γAA(fA)2(x) + γABfA(x)fB(x) +

1

2
γBB(fB)2(x)

)
dx. (44)

Under hypotheses i)-iii) we expect that the system evolves in order to minimize (44),
with constraints of constant total mass and positivity (we assume that at t = 0,
there is the same amount of A and B cells):∫

Ω

fA(x)dx =

∫
Ω

fB(x)dx =
1

2
, fA(x) ≥ 0 , fB(x) ≥ 0. (45)

This problem is easily solved if γAA < 0 or γBB < 0. Then the minimum energy
is −∞ and it corresponds to one or both species infinitely concentrated. From now
on we assume that γAA > 0 and γBB > 0, i.e. the intraspecies interactions are

repulsive. Another singular case corresponds to the range γAB < −
√
γAAγBB ;

then there is a pair of constants (nA > 0, nB > 0) such that

γAA(nA)2 + 2γABnAnB + γBB(nB)2 < 0.

Now, building a sequence of configurations where A and B cells have concentration
nA/ε, nB/ε on the same domain of measure ε, we see that the associated energy
tends to −∞ when ε tends to 0. Therefore, we also assume from now on that

γAB > −
√
γAAγBB .

Lemma 3.1. Assume that γAA > 0, γBB > 0, and −
√
γAAγBB < γAB <√

γAAγBB. Then minimum energy is reached by the homogeneous system with
constant densities fA(x) = fB(x) = 1/(2|Ω|).

Proof. Since γAAγBB − (γAB)2 > 0, the function

(u, v) 7→ 1

2
γAAu2 + γABuv +

1

2
γBBv2

is convex. Hence, for any functions fA(x), fB(x):

1

|Ω|
E [fA, fB ] ≥ 1

2
γAA

(
f̄A

|Ω|

)2

+ γAB
(
f̄A

|Ω|

)(
f̄B

|Ω|

)
+

1

2
γBB

(
f̄B

|Ω|

)2

,

where |Ω| is the volume of the domain and f̄S =
∫

Ω
fS(x)dx = 1/2, S = A,B. This

shows immediately that for any function fA(x), fB(x)

E [fA, fB ] ≥ E [f̄A, f̄B ] =
1

8|Ω|
(γAA + 2γAB + γBB).

The minimum energy is then reached for a homogeneous system, with constant
densities, fA(x) = fB(x) = 1/(2|Ω|).

We will now assume that γAB >
√
γAAγBB . We want to show that the minimal

configuration is perfectly phase separated, ie Ω divided in two subdomains Ω =
ΩA ∪ ΩB with fA = 0 on ΩB and fB = 0 on ΩA. Note that the geometry of
the subdomains is of no relevance within this simplified model, only their measure
matters.
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Lemma 3.2. Among all perfectly phase separated configurations, the following is
optimal:

fA(x) = nA = const. on ΩA, fB(x) = nB = const. on ΩB (46)

with |ΩA| = lopt
A = |Ω|

(
γ

1/2
AA

γ
1/2
AA + γ

1/2
BB

)
. (47)

The associated energy is

Eopt
inhom =

1

8|Ω|
(
√
γAA +

√
γBB)

2
. (48)

In other words: for any (fA, fB) perfectly phase separated configuration,

E [fA, fB ] ≥ Eopt
inhom

with equality if and only if (46)-(47) hold.

Proof. First note that the functions

u 7→ 1

2
γAAu2 , u 7→ 1

2
γBBu2

are convex; hence any perfectly phase separated configuration must be piecewise
homogeneous in order to be optimal. Let us now consider a general piecewise
homogeneous phase separated configuration:

∀x ∈ ΩA fA(x) = nA , fB(x) = 0 , ∀x ∈ ΩB fB(x) = nB , fA(x) = 0 (49)

with

|ΩA| = lA , |ΩB | = lB , lA + lB = |Ω|.

Then nA = 1/(2lA), nB = 1/(2|Ω| − 2lA), and the configuration is characterized by
the parameter lA, which we can optimize. The associated energy is

E =
1

8

(
γAA
lA

+
γBB
|Ω| − lA

)
.

Minimizing over lA, one finds

lopt
A = |Ω|

(
γ

1/2
AA

γ
1/2
AA + γ

1/2
BB

)
(50)

with associated energy given by (48).

Lemma 3.3. Assume γAA > 0 and γBB > 0, and γAB >
√
γAAγBB. Then the

optimal configuration is the perfectly phase separated one described in the previous
lemma, ie for any configuration (fA, fB), we have

E [fA, fB ] ≥ Eopt
inhom.
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Proof. Take any configuration fA, fB . Using
∫

Ω
fA,B = 1/2 and (48), we have

E [fA, fB ]− Eopt
inhom =

1

2
γAA

∫
(fA)2 +

1

2
γBB

∫
(fB)2 + γAB

∫
fAfB

− 1

2

γAA

|Ω|

(∫
fA
)2

− 1

2

γBB

|Ω|

(∫
fB
)2

−
√
γAAγBB

|Ω|

(∫
fA
)(∫

fB
)

=
1

2

∫ (√
γAAfA −

√
γAA

|Ω|

∫
fA

)2

+
1

2

∫ (√
γBBfB −

√
γBB

|Ω|

∫
fB

)2

−
∫ (√

γAAfA −
√
γAA

|Ω|

∫
fA

)(√
γBBfB −

√
γBB

|Ω|

∫
fB

)

+ (γAB −
√
γAAγBB)

∫
fAfB

≥1

2

∫ [(√
γAAfA −

√
γAA

∫
fA
)
−
(√

γBBfB −
√
γBB

∫
fB
)]2

where we have used (γAB) > [γAAγBB ]1/2 for the last inequality. Hence the in-
equality is strict unless fAfB = 0, ie unless the configuration is phase separated.
We have proved that the optimal configuration is phase separated, and given by
(47).

To summarize, assuming γAA > 0, γBB > 0, γAB > −
√
γAAγBB and putting

together Lemmas 3.1,3.2,3.3, one expects the following phenomenology:

• If |γAB | < γAAγBB , then the homogeneous solution is favoured. The two
types of cells should then start to mix and the interface should be blurred.

• If γAB >
√
γAAγBB , then the phase separated solution is favoured; in this

case the initially sharp interface should stay sharp. There are two subcases:
– γAA ' γBB : then the optimal l is close to 1/2, which is the initial condi-

tion. Hence the interface should not move.
– γAA and γBB significantly different: then the optimal l is not close to the

initial 1/2, and one expects the sharp interface to move, as the system
tries to approach the energy minimum.

These three scenarios are qualitatively similar to the ones reported in [55] (see their
Figure 1), and are seen in numerical simulations, as shown on Fig.6; a quantita-
tive comparison is difficult, since hypothesis i)-iii) are not necessarily satisfied in
numerical simulations.

4. Numerical results. The microscopic model described in Section 2.1 is very
demanding numerically; it is one reason to introduce the macroscopic model (24),
which relies on the double limit (NA, NB)→∞, ε→ 0. The averaged microscopic
model (22)-(23), obtained in the limit ε→ 0 with NA, NB fixed, can be simulated at
a reasonable numerical cost, which makes comparisons with the macroscopic model
possible.

Numerical simulations for the averaged microscopic model (22)-(23) as well as
macroscopic model (24) are performed on a 2D periodic domain [−7.5, 7.5] ×
[−7.5, 7.5]. All simulations are performed with cell detection radii RA = RB = 1.
We fix the diffusion constants DA = DB = 10−4 and explore different values of the
inter- and intra- species repulsion intensities κAA, κBB , κAB = sκ̃AB , κBA = sκ̃BA.
We explore four different cases:
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• case 1: For the same intraspecies repulsion κAA = κBB and symmetric inter-
species repulsion κ̃AB = κ̃BA

• case 2: For the same intraspecies repulsion κAA = κBB and non-symmetric
inter-species repulsion κ̃AB < κ̃BA (A-cells repulse B-cells more strongly than
the reverse)

• case 3: For different intraspecies repulsion κAA > κBB (A-cells repulse each
other more strongly thanB-cells), and symmetric inter-species repulsion κ̃AB =
κ̃BA

• case 4: For different intraspecies repulsion κAA > κBB (A-cells repulse each
other more strongly than B-cells) and non-symmetric inter-species repulsion
κ̃AB < κ̃BA (A-cells repulse B-cells more strongly than the reverse)

For each case, we consider two types of initial conditions, (i) when cells are initially
randomly distributed, which approaches the homogeneous stationary state, and (ii)
when B-cells are initially randomly placed on the left-half of the domain and A-cells
randomly distributed on the right part, which corresponds to the phase separated
initial conditions considered in Section 3.3, and we explore two different regimes
(stable regime, when s < s∗ for the interspecies repulsion and unstable regime,
when s > s∗). Table 1 sums up the model parameters used for inter- and intra-
species repulsion forces.

value of s comment
Case I: κAA = κBB = 2, κ̃AB = κ̃BA = 2.

IA 0.5 Stable regime (s < s∗ ≈ 1.01)
IB 4 Unstable regime (s > s∗ ≈ 1.01)

Case II: κAA = κBB = 2, 1 = κ̃AB < κ̃BA = 2.
IIA 0.5 Stable regime (s < s∗ ≈ 1.43)
IIB 4 Unstable regime (s > s∗ ≈ 1.43)

Case III: 2 = κAA > κBB = 1, κ̃AB = κ̃BA = 2.
IIIA 0.5 Stable regime (s < s∗ ≈ 0.72)
IIIB 4 Unstable regime (s > s∗ ≈ 0.72)
Case IV: 2 = κAA > κBB = 1, 1 = κ̃AB < κ̃BA = 2.
IVA 0.5 Stable regime (s < s∗ ≈ 1.02)
IVB 4 Unstable regime (s > s∗ ≈ 1.02)

Table 1. Model parameters for the inter- and intra- species forces.
The value of parameter s∗ has been computed numerically from the
formula (43).

In Fig. 5, we show the final states of the simulations for each case and each
regime previously described for the microscopic model. A-cells are represented as
red disks, B-cells as green ones and we use NA = NB = 250 particles for each family
of cells. The visualisation of the macroscopic results also uses disks to resemble the
microscopic ones, for more details we refer to the Appendix C.

As one can note in the stable regime (s < s∗) and for initially randomly dis-
tributed particles, we observe a homogeneous distribution of particles as expected,
with no aggregation. When starting from a front-like intial distribution in the stable
regime, B- and A- cells intermingle at the front. However in the unstable regime
(cases s > s∗), one can observe a segregation of cells by type. In case 1 and 2 (when
intraspecies repulsion is the same), we observe the formation of mazes of B-cells
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Case VF green cells (microscopic model) VF green cells (macroscopic model)
Homogeneous IC Front-like IC Homogeneous IC Front-like IC

(IB) 48.2% 50.0% 49.7% 50.0%
(IIB) 40.2% 42.3% 38.5% 42.0%
(IIIB) 40.6% 42.4% 44.0% 46.0%
(IVB) 34.8% 35.0% 35.9% 38.0%

Table 2. Volume fraction of the green family computed on the
simulations of FigS. 5-6 at equilibrium for the microscopic model
(left column) and for the macroscopic model (right column).

when starting from an initial homogeneous distribution, and the maintenance of
a sharp front when starting from a non-homogeneous initial distribution (Fig. 5
(IB, IIB)). Note that the B-cell clusters are smaller in case 2 than in case 1 (i.e
when A-cells act more strongly on B-cells than the reverse compared with the case
where inter-species repulsion is symmetric). When starting from a segregated initial
condition we observe a slight compression of the green cells by the red ones. This
suggests that nonsymmetric interspecies repulsion can favor cell aggregation and
domination of a population over the other.

The same observations as in case 2 can be done for case 3 (i.e when intra-species
repulsion is stronger in cell A type than in B type and with symmetric interspecies
forces, (IIIB)): smaller clusters than in case 1 and slight compression of B-family in
the case of segregated initial condition. This suggests that inter- and intra- specie
repulsion act in the same manner: decreasing the intra-species force for one family
has the same impact on the final structures as decreasing the repulsion force of one
family onto the other one.

Finally for case 4 (intra-species repulsion is stronger in cell A type than in B
type and stronger repulsion of B-cells by A-cells than the reverse), we observe the
emergence of small clusters of B-cells in a medium composed of A-cells, and a large
compression of the B-cells with maintenance of sharp borders when starting from
a non-homogeneous distribution (IV B).

It is noteworthy that the numerical simulations of the microscopic model in the
limit ε→ 0 are in good accordance with the predictions of the macroscopic model.
We indeed observe homogeneous or non-homogeneous distributions of particles de-
pending on the model parameters, for values of s in the range predicted by the
linear stability analysis.

In Table 2, we show the Volume Fraction (VF) of type B cells (green family)
computed on the simulation images of Figs. 5 for the microscopic model and of
Fig. 6 for the macroscopic model, starting from homogeneous Initial Conditions
(IC) or front-like Initial Conditions. Given a numerical image such as depicted in
Fig. 5, the volume fraction corresponds to the number of green pixels over the
total amount of pixels in the image. As one can see in Table 2, the volume fraction
at equilibrium does not depend on the type of initial conditions, as suggested by
the analysis performed in Section 3.3. As expected, we obtain a volume fraction
of 50% when the two cell types have the same inter- and intra- species forces, and
the volume fraction occupied by specie B decreases as type B cells’ inter- and/or
intra- species forces decrease (maintaining the type A cells inter- and intra- species
forces constant), due to the compression exerted by the stronger family (type A)
on the weaker cells (type B). These results are in accordance with the theoretical



MODELLING PATTERN FORMATION 329

Figure 5. Microscopic simulations for Cases 1-4 for parameters
described in Table 1. A-cells are represented as red disks, B-cells
as green disks. For each subsection, the left figure is obtained
starting from a homogeneous distribution of particles, the right
one from a segregated initial distribution (B-cells on the half-left
of the domain, A-cells on the right).

predictions of the macroscopic model, showing that the microscopic and macroscopic
model have the same properties. The next part of this section is devoted to deeper
and more qualitative numerical comparisons between the two models.

In Figs. 7 (I), we show simulations of the microscopic and macroscopic models
for κAA = 4, κBB = κ̃AB = κ̃BA = 1 for which s∗ ≈ 2.1 can be computed using the
formula (43). Simulations of the microscopic model are performed with NA = NB =
500 (IA) and NA = NB = 2000 (IB) particles. Simulations of the macroscopic model
correspond to (IC). We consider 7 values of the interspecies repulsion intensity, from
left to right: for 2.05 = s < s∗, for s∗ < s = {2.15, 2.2, 2.5, 4, 6, 10}. (II) In (IIA-C),
we show the values of the quantifiers at time equilibrium as functions of s. Fig.
(IA) shows the mean elongation of the green clusters, (IIB) shows the number of
green clusters and (IIC) shows the Overlapping amount Q described by (73). Black
curves are obtained with the microscopic model for NA = NB = 500 (corresponding
to Figures (IA)), yellow curves are for NA = NB = 2000 and correspond to Figures
(IB) and red curves are obtained with the macroscopic model (Figures (IC)). As
one can observe in Fig. 7 (IA-C), we obtain a very good agreement between the
microscopic model and the macroscopic simulations. Before the transition from
mixed to segregated states (for s < s∗, first column), the system at equilibrium
corresponds to a perfectly mixed state both for the micro- and for the macro-
models, while right after the transition (for s = 2.15), segregation of the two families
is observed for both models. As s increases, clusters get more numerous, smaller and
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Figure 6. Macroscopic simulations for Cases 1-4 for parameters
described in table 1 for the final time of simulations equal to T =
8000.

rounder. This qualitative observation is supported by the values of the quantifiers
plotted in Figs. (IIA-C). For the different values of s, we obtain a very good
quantitative agreement between the two models, even more so when the number of
particles of the micro- model is increased from NA = NB = 500 to NA = NB = 2000
(compare black and yellow curves to red ones in Figs. (IIA-C)). These results tend
to show that the macroscopic model is a good approximation of the microscopic
dynamics as the number of individuals becomes large. However, it is noteworthy
that some discrepancy is observed for very large values of s. Indeed for s = 10
(last column of (IA-C)), one can note that the clusters obtained by the macro-
model are significantly more elongated than those obtained with the micro- model
(compare black/yellow curves to the red one in Fig.7 (IIA)). For the details of image
processing used to prepare the figures we refer to the Appendix C.2.

In order to document the discrepancies between the micro- and macro- structures
in the case s = 10, we plot in Fig. 8 the values of the quantifiers computed on the
simulation images as functions of time for κAA = 4, κBB = κ̃AB = κ̃BA = 1 for
the microscopic model with NA = NB = 500 (green curves), NA = NB = 2000
(blue curves), NA = NB = 4000 (yellow curves) and for the macro model (red
curves). Fig. 8 (I) shows the evolution of green cluster elongation, (II) gives the
number of cell clusters and (III) shows the overlapping amount Q as function of the
simulation time. Figs. 8 reveal that the structures observed with the microscopic
model undergo two transitions as function of the time, enabling us to conclude that
the dynamics of the microscopic model exhibits two phases:

• Very quickly after initialisation (t ∈ [0, 100]), the system segregates the two
cell types and reaches an equilibrium value for the number of clusters and
the overlapping amount Q (see Figs. 8 (II) and (III). At the time of the
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(IA)

(IB)

(IC)

(IIA) (IIB) (IIC)

Figure 7. (I) Simulations of the microscopic and macroscopic
models for κAA = 4, κBB = κ̃AB = κ̃BA = 1 for which s∗ ≈ 2.1.
Simulations of the microscopic model are performed with NA =
NB = 500 (IA) and NA = NB = 2000 (IB) particles. Simulations
of the macroscopic model correspond to (IC). We consider 7 val-
ues of the interspecies repulsion intensity, from left to right: for
2.05 = s < s∗, for s∗ < s = {2.15, 2.2, 2.5, 4, 6, 10}. Type B cells
are represented in green, type A cells in red. (II) In (IIA-C), we
show the values of the quantifiers at time equilibrium as functions
of s. Fig. (IA) shows the mean elongation of the green clusters,
(IIB) shows the number of green clusters and (IIC) shows the over-
lapping amount Q described by (73). Black curves are obtained
with the microscopic model for NA = NB = 500 (corresponding
to Figures (IA)), yellow curves are for NA = NB = 2000 and
correspond to Figures (IB) and red curves are obtained with the
macroscopic model (Figures (IC)). The two bottom figures corre-
spond to a zoom of the corresponding curves close to the transition
region for s.

segregation, numerous and well-separated elongated clusters are created and
then maintained for a long time.

• A second transition occurs later in time (around t ≈ 3.103), where the clusters
change shape to attain a new equilibrium composed of rounder clusters (see
the drop in the value of the elongation in Fig. 8 (I)). In this second phase, the
number of clusters and their border properties are maintained, but the shape
gradually changes to produce very round clusters.
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(I) (II) (III)

Figure 8. Quantifiers computed on the simulation images as func-
tions of the logarithm of the simulation time for κAA = 4, κBB =
κ̃AB = κ̃BA = 1 for the microscopic model with NA = NB = 500
(green curves), NA = NB = 2000 (blue curves), NA = NB = 4000
(yellow curves) and for the macro model (red curve). (I) Green
cluster elongation, (II) Number of cell clusters and (III) Overlap-
ping amount Q. On Figure (I), we superimpose linear fits (dotted
lines) for short times and large times, showing the two timescales
(two slopes) of the micro model compared to the unique timescale
of the macro dynamics (single slope).

It is noteworthy that this two-phase process is not observed with the macroscopic
dynamics (see the red curves of Figs. 8 (I-III). On the contrary for the macroscopic
model, the segregation between the two families and the production of clusters
appear later than with the microscopic model (around t ∈ [100, 300]), and the shape
of the clusters (elongated) seems to be at equilibrium. These results tend to show
that the macroscopic model fails to capture the second time phase (reorganisation
of the clusters) exhibited by the microscopic model.

The good qualitative and quantitative agreement between the micro- and the
macro- models has been also confirmed for another set of parameters κAA = 4, κBB =
3, κ̃AB = κ̃BA = 1 for which the critical value of s is s∗ ≈ 3.52. We do not include
the corresponding figures here, as they are very similar to Figs. 8.

5. Conclusions and perspectives. Along the recent biological studies [54] our
paper demonstrates that contact cell repulsion on its own can generate pattern
formation and cell-sorting in tissues composed of different categories of cells. The
present paper provides evidence of this by means of both a microscopic and a con-
sistently derived macroscopic model. The advantage of the macroscopic approach
is that it provides a mathematical way to investigate the stability of the equilibria
and consequently quantitative criteria for the appearance of these patterns. The
validity of this analysis is assessed by numerical comparison between microscopic
and macroscopic models. We also show that the model is able to capture the border
sharpening observed in the biological study [54]. In the future better quantitative
comparison with experiments will allow for more systematic choice of model param-
eters.

Clearly the macroscopic model captures the behaviour of the mean, and it would
be interesting to investigate what fluctuations around these means are induced by
the finiteness of the number of cells. Our analysis provides only local information
around the threshold for instability, further analysis as in [7] could inform on the
type of bifurcation involved, for instance if it is supercritical or subcritical. The
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consistent derivation of the macroscopic model from the microscopic dynamics is
still only formal and it would be desirable to have a rigorous mathematical proof
of convergence when the number of particles goes to infinity. Finally, the biological
context could be enriched and applied to clinically relevant situations such as cancer
for which the type of bifurcation involved could be critically important.
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leave from CNRS, Institut de Mathématiques, Toulouse, France. EZ was supported
by the Polish Government MNiSW research grant 2016-2019 “Iuventus Plus” No.
0888/IP3/2016/74.

Data statement. No new data were generated in the course of this research

Appendix A. Derivation of a kinetic model from the microscopic model.
In this section, the derivation of a kinetic model from the Individual Based Model
of Section 2.1 is performed, following the Approach I. Using the expressions for
the individual particle distribution, link distribution and two-particle distribution
function defined by Eqs. (8),(9),(10), (12)-(14) and in the limit of a large number
of individuals, we have the following formal derivation:

Proposition 2. Assume that in the limit

N = (NA, NB)→∞, NA/NB → rAB > 0,

the following convergences hold:

fAN , f
B
N → fA, fB , gAAN , gBBN , gABN , gBAN → gAA, gBB , gAB , gBA,

hAAN,hBBN , hABN → hAA, hBB , hAB .

If we assume the scalings (18) for the rates, and if we assume additional assumptions
( (58),(59) and (65),(66) below), then fA, fB formally solve:{

∂tf
A(x, t) = 2µ∇x · FAA[gAA](x, t) + µ∇x · FAB [gAB ](x, t) +DA∆fA,

∂tf
B(x, t) = 2µ∇x · FBB [gBB ](x, t) + µ∇x · FBA[gBA](x, t) +DB∆fB ,

(51)

where:

FAA[g](x, t) =

∫
g(x1, x2, t)∇x1

ΦAA(x1, x2)dx2,

FBB [g](x, t) =

∫
g(x1, x2, t)∇x1ΦBB(x1, x2)dx2,

FAB [g](x, t) =

∫
g(x1, x2, t)∇x1

ΦAB(x1, x2)dx2,

FBA[g](x, t) =

∫
g(x1, x2, t)∇x1ΦBA(x1, x2)dx2,
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and gAA, gBB and gAB formally solve:

∂tg
AA(x1, x2, t) = DA

(
∆x1g

AA(x1, x2, t) + ∆x2g
AA(x1, x2, t)

)
+ 2µ∇x1

·
(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1

·
(
gAA(x1, x2, t)

fA(x1, t)
FAB [gAB ](x1, t)

)
(52)

+ 2µ∇x2 ·
(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2

·
(
gAA(x1, x2, t)

fA(x2, t)
FAB [gAB ](x2, t)

)
+
νAAc,ε

2
hAA(x1, x2, t)χ(|x1 − x2| ≤ R)− νAAd,ε gAA(x1, x2, t),

∂tg
BB(x1, x2, t) = DB

(
∆x1

gBB(x1, x2, t) + ∆x2
gBB(x1, x2, t)

)
+ 2µ∇x1 ·

(
gBB(x1, x2, t)

fB(x1, t)
FBB [gBB ](x1, t)

)
+ µ∇x1

·
(
gBB(x1, x2, t)

fB(x1, t)
FBA[gBA](x1, t)

)
+ 2µ∇x2

·
(
gBB(x1, x2, t)

fB(x2, t)
FBB [gBB ](x2, t)

)
+ µ∇x2 ·

(
gBB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+
νBBc,ε

2
hBB(x1, x2, t)χ(|x1 − x2| ≤ R)− νBBd,ε gBB(x1, x2, t),

∂tg
AB(x1, x2, t) =

(
DA∆x1

gAB(x1, x2, t) +DB∆x2
gAB(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAB(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1

·
(
gAB(x1, x2, t)

fA(x1, t)
FAB [gAB ](x1, t)

)
+ 2µ∇x2

·
(
gAB(x1, x2, t)

fB(x2, t)
FBB [gBB ](x2, t)

)
+ µ∇x2 ·

(
gAB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+ νABc,ε h

AB(x1, x2, t)χ(|x1 − x2| ≤ R)− νABd,ε gAB(x1, x2, t),

gBA(x1, x2, t) = rABg
AB(x2, x1, t).

Proof.

A.1. Evolution equation for the individual particles. For all observable func-
tions φ(x), we define:

〈fAN , φ〉 =

∫
φ(x)fAN (t, x)dx =

1

NA

NA∑
i=1

φ(XA
i (t)),
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〈fBN , φ〉 =

∫
φ(x)fBN (t, x)dx =

1

NB

NB∑
`=1

φ(XB
` (t)).

Similarly, for all two-particle observable functions ψ(x1, x2), we define:

〈〈gAAN , ψ〉〉 =

∫
ψ(x1, x2)gAAN (x1, x2)dx1dx2

=
1

2NA

KAA∑
k1=1

(
ψ(XA

i(k1), X
A
j(k1)) + ψ(XA

j(k), X
A
i(k))

)
,

〈〈gBBN , ψ〉〉 =

∫
ψ(x1, x2)gBBN (x1, x2)dx1dx2

=
1

2NB

KBB∑
k2=1

(
ψ(XB

`(k2), X
B
m(k2)) + ψ(XB

`(k), X
B
m(k))

)
,

〈〈gABN , ψ〉〉 =

∫
ψ(x1, x2)gABN (x1, x2)dx1dx2 =

1

NA

KAB∑
k3=1

ψ(XA
i(k3), X

B
`(k3)),

〈〈gBAN , ψ〉〉 =

∫
ψ(x1, x2)gBAN (x1, x2)dx1dx2 =

1

NB

KAB∑
k3=1

ψ(XB
`(k3), X

A
i(k3)),

where integrals over x are carried over R2. Then:

d

dt
〈fAN , φ〉 =

1

NA

NA∑
i=1

∇xφ(Xi(t)) ·
dXA

i (t)

dt
,

d

dt
〈fBN , φ〉 =

1

NB

NB∑
i=1

∇xφ(Xi(t)) ·
dXB

i (t)

dt
.

For the sake of simplicity, the computations for fAN only are developed here. Us-
ing (3) and Itô’s formula, we obtain formally:

d

dt
〈fAN , φ〉 = − 1

NA

NA∑
i=1

µ∇xφ(XA
i ) · ∇XA

i
WA(XA, XB)

+
DA

NA

NA∑
i=1

∆φ(XA
i ) +

√
2DA

NA

NA∑
i=1

∇xφ(XA
i ) · dB

A
i

dt
. (53)

As the dBAi are independent and independent of ∇xφ(XA
i ), it can be shown that

in the limit of a large number of particles this term can be neglected [7]. We get:

d

dt
〈fAN , φ〉 =

− µ

NA

NA∑
i=1

∇xφ(XA
i ) ·

( KAA∑
k1=1

(∇x1ΦAAδi(k1)(i) +∇x2ΦAAδj(k1)(i))(X
A
i(k1), X

A
j(k1))

+

KAB∑
k3=1

∇x1
ΦABδi(k3)(i)(X

A
i(k3), X

B
`(k3))

)
+
DA

NA

NA∑
i=1

∆φ(XA
i ).
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Now, exchanging the sums in i and k1 and i and k3 in the previous equation, one
obtains:

d

dt
〈fAN , φ〉 =

− µ

NA

KAA∑
k1=1

(
∇xφ(XA

i(k1)) · ∇x1ΦAA(XA
i(k1), X

A
j(k1))

+∇xφ(XA
j(k1)) · ∇x2

ΦAA(XA
i(k1), X

A
j(k1))

)
− µ

NA

KAB∑
k3=1

∇xφ(XA
i(k3)) · ∇x1

ΦAB(XA
i(k3), X

B
`(k3)) +

DA

NA

NA∑
i=1

∆φ(XA
i ).

From the symmetry of ΦAA, we have:

∇x2ΦAA(XA
i(k1), X

A
j(k1)) = ∇x1

ΦAA(XA
j(k1), X

A
i(k1)),

leading to:

d

dt
〈fAN , φ〉 =

− µ

NA

KAA∑
k1=1

(
∇xφ(XA

i(k1)) · ∇x1
ΦAA(XA

i(k1), X
A
j(k1))

+∇xφ(XA
j(k1)) · ∇x1

ΦAA(XA
j(k1), X

A
i(k1))

)
− µ

NA

KAB∑
k3=1

∇xφ(XA
i(k3)) · ∇x1

ΦAB(XA
i(k3), X

B
`(k3)) +

DA

NA

NA∑
i=1

∆φ(XA
i ).

or again:

d

dt
〈fAN , φ〉 =− 2µ〈〈gAAN ,∇x1ΦAA(x1, x2) · ∇xφ(x1)〉〉

− µ〈〈gABN ,∇x1ΦAB(x1, x2) · ∇xφ(x1)〉〉+DA〈fAN ,∆φ〉
=2µ〈〈∇x1

·
(
gAAN (x1, x2)∇x1

ΦAA(x1, x2)
)
, φ(x1)〉〉

+ µ〈〈∇x1
·
(
gABN (x1, x2)∇x1

ΦAB(x1, x2)
)
, φ(x1)〉〉+DA〈∆fAN , φ〉,

where we have formally integrated by parts to obtain the second equality. We then
exchange the order of integration and pass to the limit NA, NB →∞. If fAN → fA,
gAAN → gAA, gABN → gAB , then:

dfA

dt
= 2µ∇x · FAA[gAA](x, t) + µ∇x · FAB [gAB ](x, t) +D∆fA, (54)

where:

FAA[g](x, t) =

∫
gAA(x1, x2, t)∇x1

ΦAA(x1, x2)dx2,

FAB [g](x, t) =

∫
gAB(x1, x2, t)∇x1ΦAB(x1, x2)dx2.
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Similarly, we can show that if fBN → fB , gBBN → gBB , gBAN → gBA as NA, NB →∞
with NA/NB → rAB , we get:

dfB

dt
= 2µ∇x · FBB [gBB ](x, t) + µ∇x · FBA[gBA](x, t) +D∆fB , (55)

with:

FBB [g](x, t) =

∫
g(x1, x2, t)∇x1

ΦBB(x1, x2)dx2,

FBA[g](x, t) =

∫
g(x1, x2, t)∇x1

ΦBA(x1, x2)dx2.

We now turn towards the computation of the inter- and intra- species link distribu-
tions.

A.2. Evolution equation for the particle links. Here we develop only the com-
putations for one intraspecies link distribution, namely gAAN , the computation of
gBBN being similar. From its asymmetry, the computation of the interspecies link
distribution needs special treatment and we will develop the computation of gABN
further. We remark that the noise in (3) transforms directly into a linear diffusion
term for fA, all other contributions, analogously as in 53, vanish in the large NA
limit. It is not difficult to see that the same simplification takes place for gAAN in
the NA →∞ limit. Thus, to reduce the computations we will first use (3) without
noise, and reintroduce the diffusion term in the end.

Intraspecies link distribution. Following the same principle as for fAN , one can write:

d

dt
〈〈gAAN ,Ψ〉〉 =

1

2NA

KAA∑
k=1

[
∇x1

Ψ(XA
i(k), X

A
j(k)) ·

dXA
i(k)

dt
+∇x1

Ψ(XA
j(k), X

A
i(k)) ·

dXA
j(k)

dt

+∇x2
Ψ(XA

i(k), X
A
j(k)) ·

dXA
j(k)

dt
+∇x2

Ψ(XA
j(k), X

A
i(k)) ·

dXA
i(k)

dt

]
=E1 + E2,

(56)

where Ek corresponds to the k-th line of (56). For the sake of simplicity, the
computation of E1 only is developed here. The computation of the other ones are
similar and omitted.

From Eq. (3), one obtains:

E1 =
1

2NA

KAA∑
k=1

[
∇x1Ψ(XA

i(k), X
A
j(k)) ·

dXA
i(k)

dt
+∇x1Ψ(XA

j(k), X
A
i(k)) ·

dXA
j(k)

dt

]

= − µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

i(k), X
A
j(k)) ·

KAA∑
k1=1

(
∇x1ΦAA(XA

i(k1), X
A
j(k1))δ(i(k1),i(k))

+∇x2ΦAA(XA
i(k1), X

A
j(k1))δ(j(k1),i(k))

)]
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− µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

i(k), X
A
j(k)) ·

KAB∑
k3=1

∇x1ΦABδ(i(k3),i(k))(X
A
i(k3), X

B
j(k3))

]

− µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

j(k), X
A
i(k)) ·

KAA∑
k1=1

(
∇x1ΦAA(XA

i(k1), X
A
j(k1))δ(i(k1),j(k))

+∇x2ΦAA(XA
i(k1), X

A
j(k1))δ(j(k1),j(k))

)]
− µ

2NA

KAA∑
k=1

[
∇x1Ψ(XA

j(k), X
A
i(k)) ·

KAB∑
k3=1

∇x1ΦABδ(i(k3),j(k))(X
A
i(k3), X

B
j(k3))

]
.

Now, exchanging the sums in k and k1 and k and k3 and using the symmetry of
ΦAA, one obtains:

E1 = − µ

2NA

KAA∑
k1=1

∇x1
ΦAA(XA

i(k1), X
A
j(k1)) ·

KAA∑
k=1

(
∇x1

Ψ(XA
i(k), X

A
j(k))δ(i(k),i(k1))

+∇x1
Ψ(XA

j(k), X
A
i(k))δ(j(k),i(k1))

)
− µ

2NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) ·

KAA∑
k=1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),j(k1))

+∇x1
Ψ(XA

j(k), X
A
i(k))δ(j(k),j(k1))

)
− µ

2NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
j(k3)) ·

KAA∑
k=1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),i(k3))

+∇x1
Ψ(XA

j(k), X
A
i(k))δ(j(k),i(k3))

)
.

(57)

In the first two lines of the above expression, k = k1 in the internal sums play a
special role: indeed we know that the k = k1 term, at variance with the other terms,
always contribute to the sum. On the contrary, k = k3 in the last line above should
not be distinguished. So, we get:

KAA∑
k=1

(
∇x1Ψ(XA

i(k), X
A
j(k))δ(i(k),i(k1)) +∇x1Ψ(XA

j(k), X
A
i(k))δ(j(k),i(k1))

)
= ∇x1Ψ(XA

i(k1), X
A
j(k1))

+
∑
k 6=k1

(
∇x1

Ψ(XA
i(k), X

A
j(k))δ(i(k),i(k1)) +∇x1

Ψ(XA
j(k), X

A
i(k))δ(j(k),i(k1))

)
Because there is no restriction on the number of links per particle, the sums over k
cannot be simplified in this case. In order to express the terms in the k 6= k1 sum,
we define the number of intra-species links connected to a particle:

Ck1i = Card({k | i(k) = i(k1) or j(k) = i(k1)}),
where Card denotes the cardinal of a set. Then, as NA → ∞, we assume that the
following mean-field approximation holds for any chosen link k1:

1

2Ck1i

∑
k 6=k1

(
Ψ(XA

i(k), X
A
j(k))δi(k),i(k1) + Ψ(XA

j(k), X
A
i(k))δj(k),i(k1))

)
→

NA→∞

∫
(ΨPAA)(XA

i(k1), x2)dx2,

(58)
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where

PAA(XA
i(k1), x2) =

gAA(XA
i(k1), x2)∫

gAA(XA
i(k1), x2)dx2

, (59)

is the conditional probability of finding an intraspecies link conditioned on the fact
that one of the particles of this link has the same location as i(k1). Then, as

NA → ∞ , Ck1i is the mean number of intraspecies links per particle. The mean
number of intraspecies links AA in the volume dXA

i(k1) is NA
∫
gAA(XA

i(k1), x2)dx2

and the mean number of particles of type A in dXA
i(k1) is NAf

A(XA
i(k1)). Thus:

Ck1i −→
NA→∞

∫
gAA(XA

i(k1), x2)dx2

fA(XA
i(k1))

.

So, we get:∑
k 6=k1

(
Ψ(XA

i(k), X
A
j(k))δi(k),i(k1) + Ψ(XA

j(k), X
A
i(k))δj(k),i(k1))

)
→

NA→∞

2

fA(XA
i(k1))

∫
(ΨgAA)(Xi(k1), x2)dx2.

Inserting these expressions in Eq. (57), one obtains, when NA, NB are large:

lim
NA,NB→∞

NA/NB→rAB

E1 =− lim
NA,NB→∞

NA/NB→rAB>0

µ

2NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) · ∇x1Ψ(XA

i(k1), X
A
j(k1))

− lim
NA,NB→∞

NA/NB→rAB>0

µ

2NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) · ∇x1Ψ(XA

j(k1), X
A
i(k1))

− lim
NA,NB→∞

NA/NB→rAB>0

µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) · ψ

1
AA(XA

i(k1))

+∇x1ΦAA(XA
j(k1), X

A
i(k1)) · ψ

1
AA(XA

j(k1))

− lim
NA,NB→∞

NA/NB→rAB>0

µ

NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
j(k3)) · ψ

1
AA(XA

i(k3))

where

ψ1
AA(x1) =

1

fA(x1)

∫ (
gAA∇x1Ψ

)
(x1, x2)dx2.

Finally, we find:

E1 →
NA,NB→∞
NA
NB

,→rAB>0

− 2µ〈〈gAA,∇x1ΦAA(x1, x2) · ψ1
AA(x1)〉〉

− µ〈〈gAB ,∇x1
ΦAB(x1, x2) · ψ1

AA(x1)〉〉
− µ〈〈gAA,∇x1

ΦAA(x1, x2) · ∇x1
Ψ(x1, x2)〉〉
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After the same treatment for E2 of Eq. (56) and in the limit NA, NB →∞, NA

NB
→

rAB > 0, one obtains the final equation for gAA:

d

dt
〈〈gAA(x1, x2),Ψ(x1, x2)〉〉

= −2µ〈〈gAA,∇x1ΦAA(x1, x2) · ψ1
AA(x1)〉〉 − µ〈〈gAB ,∇x1ΦAB(x1, x2) · ψ1

AA(x1)〉〉

− 2µ〈〈gAA,∇x1ΦAA(x1, x2) · ψ2
AA(x1)〉〉 − µ〈〈gAB ,∇x1ΦAB(x1, x2) · ψ2

AA(x1)〉〉

− µ〈〈gAA,∇x1ΦAA(x1, x2) · ∇x1Ψ(x1, x2)〉〉 − µ〈〈gAA,∇x2ΦAA(x1, x2) · ∇x2Ψ(x1, x2)〉〉,
(60)

where,

ψ2
AA(x1) =

1

fA(x1)

∫ (
gAA∇x2Ψ

)
(x2, x1)dx2.

Integrating by parts, changing the variables and order of integrals we easily obtain:

d

dt
〈〈gAA(x1, x2),Ψ(x1, x2)〉〉

=2µ〈〈∇x1 ·
(
gAA(x1, x2)

fA(x1)

∫ (
gAA∇x1ΦAA

)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x1
·
(
gAA(x1, x2)

fA(x1)

∫ (
gAB∇x1

ΦAB
)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ 2µ〈〈∇x2
·
(
gAA(x1, x2)

fA(x2)

∫ (
gAA∇x1

ΦAA
)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x2 ·
(
gAA(x1, x2)

fA(x2)

∫ (
gAB∇x1ΦAB

)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x1
·
(
gAA(x1, x2)∇x1

ΦAA(x1, x2)

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x2
·
(
gAA(x1, x2)∇x2

ΦAA(x1, x2)

)
,Ψ(x1, x2)〉〉.

Finally, restoring the noise, we obtain the final equation for gAA:

∂tg
AA(x1, x2, t) = DA

(
∆x1

gAA(x1, x2, t) + ∆x2
gAA(x1, x2, t)

)
+ 2µ∇x1

·
(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1

·
(
gAA(x1, x2, t)

fA(x1, t)
FAB [gAB ](x1, t)

)
(61)

+ 2µ∇x2
·
(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2 ·

(
gAA(x1, x2, t)

fA(x2, t)
FAB [gAB ](x2, t)

)
+ µ∇x1

·
(
gAA(x1, x2)∇x1

ΦAA(x1, x2)

)
+ µ∇x2

·
(
gAA(x1, x2)∇x2

ΦAA(x1, x2)

)
,
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where

FAA[gAA](x1, t) =

∫
gAA(x1, x2)∇x1ΦAA(x1, x2)dx2,

FAB [gAB ](x1, t) =

∫
gAB(x1, x2)∇x1

ΦAB(x1, x2)dx2.

Eq. (61) does not take into account the phenomena of creation and destruction
of intraspecies links. According to the description at the beginning of this paper,
our model describes a process of creation of links with rate νAAc,N,ε, provided the two
type A particles are sufficiently close to each others. Hence, the number of new
intraspecies links will be proportional to the number of pairs of particles such that
one of them is close to x1 and the other one is close to x2, whose distance is less
than R:

NA(NA − 1)

2
hAA(x1, x2, t)χ{|x1−x2|≤R}dx1dx2dt,

where hAA(x1, x2, t) = limNA→∞ hAAN (x1, x2, t) and where hAAN (x1, x2, t) is the two
particle distribution function for particles of type A defined by Eq.(12). This num-
ber has to be decreased by the number of pairs of particles of the same type that
are already connected by existing links

NAg
AA(x1, x2, t)dx1dx2.

Therefore, the average number of new intraspecies links created in the interval
[t, t+ ∆t[ is equal to

νAAc,N,ε

(
NA(NA − 1)

2
hAA(x1, x2, t)χ{|x1−x2|≤R} −NAg

AA(x1, x2, t)

)
dx1dx2∆t.

Dividing this expression by NA and using (18), the rate of creation of new in-
traspecies link at (x1, x2) is in the limit NA →∞:

νAAc,ε
2
hAA(x1, x2, t)χ{|x1−x2|≤R}.

Notice the scaling of νAAc,N,ε in (18): it ensures that among the O(N2
A) possible

links, only O(NA) are effectively present, and the total number of AA links KAA =
O(NA). The rate of destruction of existing intraspecies link at (x1, x2) is:

νAAd,ε g
AA(x1, x2, t).

Including these source terms in (61), we obtain

∂tg
AA(x1, x2, t) = DA

(
∆x1

gAA(x1, x2, t) + ∆x2
gAA(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1

·
(
gAA(x1, x2, t)

fA(x1, t)
FAB [gAB ](x1, t)

)
(62)
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+ 2µ∇x2 ·
(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2

·
(
gAA(x1, x2, t)

fA(x2, t)
FAB [gAB ](x2, t)

)
+ µ∇x1 ·

(
gAA(x1, x2)∇x1ΦAA(x1, x2)

)
+ µ∇x2

·
(
gAA(x1, x2)∇x2

ΦAA(x1, x2)

)
+
νAAc,ε

2
hAA(x1, x2, t)χ{|x1−x2|≤R} − ν

AA
d,ε g

AA(x1, x2, t).

Quite straightforwardly, we can show that in the limit NA, NB →∞, NA

NB
→ rAB >

0, gBB(x1, x2, t) solves:

∂tg
BB(x1, x2, t) =DB

(
∆x1

gBB(x1, x2, t) + ∆x2
gBB(x1, x2, t)

)
+ 2µ∇x1

·
(
gBB(x1, x2, t)

fB(x1, t)
FBB [gBB ](x1, t)

)
+ µ∇x1 ·

(
gBB(x1, x2, t)

fB(x1, t)
FBA[gBA](x1, t)

)
+ 2µ∇x2

·
(
gBB(x1, x2, t)

fB(x2, t)
FBB [gBB ](x2, t)

)
+ µ∇x2

·
(
gBB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+ µ∇x1

·
(
gBB(x1, x2)∇x1

ΦBB(x1, x2)

)
+ µ∇x2 ·

(
gBB(x1, x2)∇x2ΦBB(x1, x2)

)
+
νBBc,ε

2
hBB(x1, x2, t)χ{|x1−x2|≤R} − ν

BB
d,ε g

BB(x1, x2, t),

where we have assumed the scaling (18) for νBBc,N,εNB , and

FBB [gBB ](x1, t) =

∫
gBB(x1, x2)∇x1ΦBB(x1, x2)dx2,

FBA[gBA](x1, t) =

∫
gBA(x1, x2)∇x1

ΦBA(x1, x2)dx2.

We stress the fact that ΦAB(x1, x2) (force of a particle of type B close to x2 exerted
on a particle A close to x1) is not necessarily equal to ΦBA(x2, x1) (force of a particle
of type A close to x1 exerted on a particle B close to x2).

Computations of the interspecies link distribution. Here, we develop the computa-
tions for the interspecies link distribution gAB(x1, x2, t). Proceeding as before, we
write:

d

dt
〈〈gABN ,Ψ〉〉 =

1

NA

KAB∑
k=1

[
∇x1Ψ(XA

i(k), X
B
`(k)) ·

dXA
i(k)

dt
+∇x2Ψ(XA

i(k), X
B
`(k)) ·

dXB
`(k)

dt

]
= E1 + E2,

(63)
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where, ignoring the noise and using Eq.(3):

E1 =
1

NA

KAB∑
k=1

∇x1
Ψ(XA

i(k), X
B
`(k)) ·

dXA
i(k)

dt

=− µ

NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

[KAA∑
k1=1

(
∇x1ΦAA(XA

i(k1), X
A
j(k1))δi(k1),i(k)

+∇x2
ΦAA(XA

i(k1), X
A
j(k1))δj(k1),i(k)

)]
− µ

NA

KAB∑
k=1

∇x1
Ψ(XA

i(k), X
B
`(k)) ·

KAB∑
k3=1

∇x1
ΦAB(XA

i(k3), X
B
`(k3))δi(k3),i(k).

Exchanging the sums in the first two terms and using the symmetry of ΦAA, we
have

− µ

NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

[KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1))δi(k1),i(k)

+∇x1
ΦAA(XA

j(k1), X
A
i(k1))δj(k1),i(k)

]
= − µ

NA

[ KAA∑
k1=1

∇x1
ΦAA(XA

i(k1), X
A
j(k1)) ·

KAB∑
k=1

∇x1
Ψ(XA

i(k), X
B
`(k))δi(k),i(k1)

+

KAA∑
k1=1

∇x1
ΦAA(XA

j(k1), X
A
i(k1)) ·

KAB∑
k=1

∇x1
Ψ(XA

i(k), X
B
`(k))δi(k),j(k1)

]
.

Now, in the same spirit as before we define the number of interspecies links linked
to a particle of type A:

Ck3i,A = Card({k|i(k) = i(k3)}),

and we make the following mean-field assumption

1

Ck3i,A

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k3) (64)

→
NA,NB→∞,

NA
NB
→rAB

∫ (
∇x1

ΨPAB
)
(XA

i(k3), x2)dx2, (65)

where PAB(XA
i(k3), x2) is the conditional probability of finding an interspecies link

conditioned on the fact that the type A particle of the link has the same location
as i(k3):

PAB(XA
i(k3), x2) =

gAB(XA
i(k3), x2)∫

gAB(XA
i(k3), x2)dx2

. (66)

Now as NA, NB → ∞, Ck3i,A is the mean number of interspecies links per particle
of type A. The mean number of interspecies links the type A particle of which
belonging to the volume dXA

i(k3) is NA
∫
gAB(XA

i(k3), x2)dx2, and the mean number
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of particles of type A is NAf
A(XA

i(k3)). Therefore,

Ck3i,A →
NA,NB→∞,

NA
NB
→rAB

∫
gAB(XA

i(k3), x2)dx2

fA(XA
i(k3))

,

leading, when NA, NB are large, to

− µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) ·

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k1)

= − µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1)) ·

(
NA

∫
gAB(XA

i(k1)
, x2)∇x1Ψ(XA

i(k1)
, x2)dx2

NAfA(XA
i(k1)

)

)
.

and

− µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) ·

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),j(k1).

= − µ

NA

KAA∑
k1=1

∇x1ΦAA(XA
j(k1), X

A
i(k1)) ·

(
NA

∫
gAB(XA

j(k1)
, x2)∇x1Ψ(XA

j(k1)
, x2)dx2

NAfA(XA
j(k1)

)

)
.

and altogether:

− µ

NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

[KAA∑
k1=1

∇x1ΦAA(XA
i(k1), X

A
j(k1))δi(k1),i(k)

+∇x1ΦAA(XA
j(k1), X

A
i(k1))δj(k1),i(k)

]
→

NA,NB→∞,
NA
NB
→rAB

−2µ〈〈gAA,∇x1ΦAA(x1, x2) ·
(∫

(∇x1ΨgAB)(x1, x2)dx2

fA(x1)

)
〉〉.

Now, exchanging the sums in the last term of E1, we obtain

−µ
NA

KAB∑
k=1

∇x1Ψ(XA
i(k), X

B
`(k)) ·

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3))δi(k3),i(k)

=− µ

NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) · ∇x1Ψ(XA

i(k3), X
B
`(k3))

− µ

NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) ·

∑
k 6=k3

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k3),

where, as previously, we distinguish the link k3, that always contributes to the inner
sum. Using the theory previously developed, we can write, when NA, NB are large:

−µ
NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) ·

∑
k 6=k3

∇x1Ψ(XA
i(k), X

B
`(k))δi(k),i(k3)

=
−µ
NA

KAB∑
k3=1

∇x1ΦAB(XA
i(k3), X

B
`(k3)) ·

(
1

fA(XA
i(k3)

)

∫ (
∇x1ΨgAB

)
(XA

i(k3), x2)dx2

)

→
NA,NB→∞,

NA
NB
→rAB

−µ〈〈gAB ,∇x1ΦAB(x1, x2) ·
(

1

fA(x1)

∫ (
∇x1ΨgAB

)
(x1, x2)dx2

)
〉〉,
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while

− µ

KAB

KAB∑
k3=1

∇x1
ΦAB(XA

i(k3), X
B
`(k3))∇x1

Ψ(XA
i(k3), X

B
`(k3))

→
NA,KAB→∞

−µ〈〈gAB ,∇x1ΦAB(x1, x2)∇x1Ψ(x1, x2)〉〉.

(67)

Altogether, performing the same computations for E2 in (63), we obtain:

d

dt
〈〈gAB ,Ψ〉〉 =− 2µ〈〈gAA,∇x1

ΦAA(x1, x2) ·
(

1

fA(x1)

∫ (
∇x1

ΨgAB
)
(x1, x2)dx2

)
〉〉

− µ〈〈gAB ,∇x1
ΦAB(x1, x2) ·

(
1

fA(x1)

∫ (
∇x1

ΨgAB
)
(x1, x2)dx2

)
〉〉

− 2µ〈〈gBB ,∇x1
ΦBB(x1, x2) ·

(
1

fB(x1)

∫ (
∇x2

ΨgAB
)
(x2, x1)dx2

)
〉〉

− µ〈〈gBA,∇x1
ΦBA(x1, x2) ·

(
1

fB(x1)

∫ (
∇x2

ΨgAB
)
(x2, x1)dx2

)
〉〉

−µ〈〈gAB ,∇x1
ΦAB(x1, x2) · ∇x1

Ψ(x1, x2)〉〉

−µ〈〈gAB ,∇x2
ΦBA(x1, x2) · ∇x2

Ψ(x1, x2)〉〉.

By carefully performing integration by parts and change of order of integrals, we
can obtain:

d

dt
〈〈gAB ,Ψ〉〉 =2µ〈〈∇x1

·
(
gAB(x1, x2)

fA(x1)

∫ (
gAA∇x1

ΦAA
)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x1 ·
(
gAB(x1, x2)

fA(x1)

∫ (
gAB∇x1

ΦAB
)
(x1, x2)dx2

)
,Ψ(x1, x2)〉〉

+ 2µ〈〈∇x2
·
(
gAB(x1, x2)

fB(x2)

∫ (
gBB∇x1

ΦBB
)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+ µ〈〈∇x2 ·
(
gAB(x1, x2)

fB(x2)

∫ (
gBA∇x1ΦBA

)
(x2, x1)dx1

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x1 ·
(
gAB(x1, x2)∇x1ΦAB(x1, x2)

)
,Ψ(x1, x2)〉〉

+µ〈〈∇x2 ·
(
gAB(x1, x2)∇x2ΦBA(x1, x2)

)
,Ψ(x1, x2)〉〉.

Finally, note that in the case of interspecies links, the average number of new links
created in the interval [t, t+ ∆t[ is equal to

νABc,N,ε

(
NANBh

AB(x1, x2, t)χ(|x1 − x2| ≤ R)−NAgAB(x1, x2, t)

)
dx1dx2∆t.
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Assuming for νABc,N,ε the scaling (18) as the number of particles tends to infinity and

adding the noise, we obtain the final equation for gAB :

∂tg
AB(x1, x2, t) =

(
DA∆x1

gAB(x1, x2, t) +DB∆x2
gAB(x1, x2, t)

)
+ 2µ∇x1

·
(
gAB(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1 ·

(
gAB(x1, x2, t)

fA(x1, t)
FAB [gAB ](x1, t)

)
+ 2µ∇x2

·
(
gAB(x1, x2, t)

fB(x2, t)
FBB [gBB ](x2, t)

)
+ µ∇x2

·
(
gAB(x1, x2, t)

fB(x2, t)
FBA[gBA](x2, t)

)
+ µ∇x1

·
(
gAB(x1, x2)∇x1

ΦAB(x1, x2)

)
+ µ∇x2 ·

(
gAB(x1, x2)∇x2ΦBA(x1, x2)

)
+ νABc,ε h

AB(x1, x2, t)χ(|x1 − x2| ≤ R)− νABd,ε gAB(x1, x2, t),

where hAB(x1, x2, t) = limNA,NB→∞ hNAB (x1, x2, t) with hNAB (x1, x2, t) defined by
Eq. (14).

Appendix B. Scaling of the kinetic model.

B.1. Dimensionless equations. In order to express the problem in dimensionless
variables, we denote by t0 the unit of time and x0, fS0 = 1

x2
0
, gST0 = 1

x4
0
, gST0 = 1

x4
0

the units of space and distribution functions, where S and T can be either A or B
and refer to the particle type. The scaling of fS(x, θ), gST (x1, x2) and hST (x1, x2)
comes from the fact that they are probability distribution functions on a 2D domain.
The following dimensionless variables are defined:

t̄ =
t

t0
, x̄ =

x

x0
, f̄S =

fS

f0
= fSx2

0, ḡ
ST =

gST

g0
= gSTx4

0, h̄
ST =

hST

h0
= hSTx4

0.

and the following dimensionless parameters are introduced:

µ′ =
µ

t0
, ν′STc,∞ = t0ν

ST
c,∞, ν

′ST
d,∞ = t0ν

ST
d,∞, R

′ =
R

x0
, D′ =

Dt0
x2

0

,Φ′ST =
ΦST t20
x2

0

,

where we assumed that the potential scales as the potential energy
x2
0

t20
. We first

have:

∂tf
S(x, t) =

1

t0x2
0

∂t̄f̄
S(x̄, t̄), ∂tg

ST (x1, x2, t)

=
1

t0x4
0

∂t̄ḡ
ST (x̄1, x̄2, t̄), ∂th

ST (x1, x2, t) =
1

t0x4
0

∂t̄h̄
ST (x̄1, x̄2, t̄)
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and:

∇x ·
(
FST [gST ](x)

)
=

1

x0
∇x′ ·

( ∫
gST∇x1

ΦST dx2

)
=

1

x0
∇x′ ·

( ∫ ḡST

x4
0

x0

t20
∇x′1Φ′STx2

0dx̄2

)
=

1

x2
0t

2
0

∇x′ ·
(
F ′ST [ḡST ](x)

)
.

In this new set of variables, choosing S = A, T = A (the same scaling apply for the
other equations) and omitting the primes and bar for clarity, Eqs. (51)-(52) become:

∂tf
A(x, t) = 2µ∇x · FAA[gAA](x, t) + µ∇x · FAB [gAB ](x, t) +DA∆fA,

and

∂tg
AA(x1, x2, t) = DA

(
∆x1

gAA(x1, x2, t) + ∆x2
gAA(x1, x2, t)

)
+ 2µ∇x1 ·

(
gAA(x1, x2, t)

fA(x1, t)
FAA[gAA](x1, t)

)
+ µ∇x1

·
(
gAA(x1, x2, t)

fA(x1, t)
FAB [gAB ](x1, t)

)
+ 2µ∇x2

·
(
gAA(x1, x2, t)

fA(x2, t)
FAA[gAA](x2, t)

)
+ µ∇x2

·
(
gAA(x1, x2, t)

fA(x2, t)
FAB [gAB ](x2, t)

)
+ µ∇x1

·
(
gAA(x1, x2, t)∇x1

ΦAA(x1, x2)

)
+ µ∇x2 ·

(
gAA(x1, x2, t)∇x2ΦAA(x1, x2)

)
+
νAAc,ε

2
hAA(x1, x2, t)χ(|x1 − x2| ≤ R)− νAAd,ε gAA(x1, x2, t).

Finally, we choose the space and time scales x0, t0 such that µ = 1.

B.2. Scaled equations. In order to describe the system at a macroscopic scale,
a small parameter ε � 1 is introduced and the space and time units are set to
x̃0 = ε−1/2x0, t̃0 = ε−1t0. The variables x, t, R and unknowns f and g are then
correspondingly changed to x̃ =

√
εx, t̃ = εt, R̃ =

√
εR. Therefore, f̃S(x̄) =

ε−1fS(x), g̃ST (x̃1, x̃2, t̃) = ε−2g(x1, x2, t) and h̃ST (x̃1, x̃2, t̃) = ε−2h(x1, x2, t). The

diffusion constant is supposed to be of order 1, DS = D̃S , and we suppose that the
interaction potentials scale as ΦST (x1, x2) = Φ̃ST (x̃1, x̃2). Then,

∇x ·
(
FST [gST ](x)

)
=

1√
ε
∇x̃ ·

( ∫
ε2g̃ST

1√
ε
∇x̃1

Φ̃ST εdx̃2

)
= ε2∇x̃ ·

( ∫
g̃ST∇x̃1Φ̃ST dx̃2

)
= ε2∇x̃ ·

(
F̃ST [g̃ST ](x̃)

)
,

and with µ = 1, we obtain the same equation for f̃S (for S=A for instance):

∂t̃f̃
A(x̃, t̃) = 2∇x̃ · F̃AA[g̃AA](x̃, t̃) +∇x̃ · F̃AB [g̃AB ](x̃, t̃) +DA∆f̃A.
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In order to simplify the analysis of the system, the process of linking/unlinking is
supposed to occur at a very fast time scale: this is the meaning of the ε-scaling of
the rates in (18). As χ|x1−x2|≤R = χ|x̃1−x̃2|≤R̃, we have (for S, T =(A,A)):

ε3∂t̃g̃
AA = ε3DA∆x̃1

g̃AA + ε3DA∆x̃2
g̃AA

+ 2
√
ε∇x̃1 ·

(
ε2g̃AA

εf̃A
ε3/2F̃AA[g̃AA]

)
+
√
ε∇x̃1 ·

(
ε2g̃AA

εf̃A
ε3/2F̃AB [g̃AB ]

)
+ 2
√
ε∇x̃2

·
(
ε2g̃AA

εf̃A
ε3/2F̃AA[g̃AA]

)
+
√
ε∇x̃1

·
(
ε2g̃AA

εf̃A
ε3/2F̃AB [g̃AB ]

)
+
νAAc
2ε2

ε2h̃AAχ(|x̃1 − x̃2| ≤ R̃)− νAAd
ε2

ε2g̃AA

+
√
ε∇x̃1 ·

(
ε2g̃AA

√
ε∇x̃1Φ̃AA

)
+
√
ε∇x̃2 ·

(
ε2g̃AA

√
ε∇x̃2Φ̃AA

)
= ε3

[
D∆x̃1

g̃AA +D∆x̃2
g̃AA

+ 2∇x̃1 ·
(
g̃AA

f̃A
F̃AA[g̃AA]

)
+∇x̃1 ·

(
g̃AA

f̃A
F̃AB [g̃AB ]

)
(68)

+ 2∇x̃2
·
(
g̃AA

f̃A
F̃AA[g̃AA]

)
+∇x̃1

·
(
g̃AA

f̃A
F̃AB [g̃AB ]

)]
,

+ε3∇x̃1
·
(
g̃AA∇x̃1

Φ̃AA
)

+ ε3∇x̃2
·
(
g̃AA∇x̃2

Φ̃AA
)

+
νAAc

2
h̃AAχ(|x̃1 − x̃2| ≤ R̃)− νAAd g̃AA.

Now, we aim to pass to the limit ε → 0. Denoting fSε = f̃S , gSTε = g̃ST and

hSTε = h̃ST , we want to derive the same system of macroscopic equations as in
Proposition 1 of section 2.2.
Proof. From Eq.(68) generalized to S, T and using the assumption hSTε (x1, x2, t) =
fSε (x1, t)f

T
ε (x2, t), and dropping the tildas, we have:

νSSc
2
fS(x1, t)f

S(x2, t)χ|x1−x2|≤R − ν
SS
d gSS(x1, x2, t) = O(ε3),

νSTc fS(x1, t)f
T (x2, t)χ|x1−x2|≤R − ν

ST
d gST (x1, x2, t) = O(ε3).

Therefore in the limit ε→ 0, we have that

gSS(x1, x2, t) =
νSSc
2νSSd

fS(x1, t)f
S(x2, t)χ|x1−x2|≤R

gST (x1, x2, t) =
νSTc
νSTd

fS(x1, t)f
T (x2, t)χ|x1−x2|≤R

for all S, T = A,B. Plugging the expression of gST into the equation for fS , we
have

∂tf
S(x1, t) = 2∇x · FSS [gSS ](x, t) +∇xFST [gST ](x, t) +D∆fS , (69)
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where

FSS [gSS ](x, t) =
νSSc
2νSSd

fS(x, t)

∫
fS(y, t)∇xΦSS(x, y)χ|x−y|≤Rdy

FST [gST ](x, t) =
νSTc
νSTd

fS(x, t)

∫
fT (y, t)∇xΦST (x, y)χ|x−y|≤Rdy.

(70)

Therefore, if the potentials ΦST (x1, x2) = UST (|x1 − x2|), we can write

FSS [gSS ](x, t) =
1

2
fS(x, t)

∫
fS(y, t)∇xΦ̃SS(|x− y|)dy

FST [gST ](x, t) = fS(x, t)

∫
fT (y, t)∇xΦ̃ST (|x− y|)dy,

(71)

for some potentials Φ̃ST such that:

∇iΦ̃ST (x) =
νSTc
νSTd

(
UST

)′
(|x|)χ|x|≤R~ei, i = 1, 2. (72)

Recall that due to the scaling of linking frequencies with NA, NB we obtain in the

limit that
νBA
c

νBA
d

= rAB
νAB
c

νAB
d

. With this observation the proof of Proposition 1 is

complete.

Appendix C. Numerical data visualisation.

C.1. Macroscopic model. For the numerical simulations of the macroscopic model
we consider a periodic square [−7.5, 7.5]× [−7.5, 7.5] discretized with a space step
∆x = 0.3 and the time step ∆t = 5 · 10−3. As in the microscopic case, we fix the
radii of all types of interactions to R = 1 and consider the same diffusion coefficient
for the species D = 10−4. We use the numerical scheme introduced in [17] that was
developed in our recent work [8] to study aggregation-diffusion equation for single
species.

We consider all four cases of interaction intensities κST as in the microscopic
case, as summarized in Table 1. The initial densities for species A and species B
are random perturbations of constant functions, The constants are chosen such that
the total mass is equal to 1, i.e.

fS0 (x, y) =
1 + 0.01 ·XS(x, y)∫ 7.5

−7.5

∫ 7.5

−7.5
(1 + 0.01 ·XS(x, y))dx dy

, S = A,B,

where XS(x, y) is uniformly distributed random variable between 0 and 1.
To visualise the macroscopic simulations we plot green or red balls in the regions

where the densities of green or red cells, respectively, dominate. The balls are
of radius 0.3 with a center at the center of the corresponding pixel perturbed by
uniformly distributed random number from interval [−0.2, 0.2] in x and y direction.
We determine that the concentration of green cells dominates over the red ones if
the difference between their densities is larger than parameter tres1. It is equal to
5.0e−4 times the maximum of the densities of green or red cells at the final time of
simulation. If the difference between the densities of cells is less than tres1 but more
than tres2 = tres1 − 5.0e − 6 we plot randomly red or green ball. The “empty”
black regions on the figures (see for example Figure 6 and last row of Figure 7)
correspond to the case when the difference between the densities of the cells is less
than tres2.
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C.2. Image processing. In order to compare quantitatively the microscopic and
macroscopic simulations, we use image processing tools to define quantifiers of the
structures observed in the simulation images. As we will restrict ourselves to regimes
where the B-family clusterize (represented in green), the developed tools aim to
describe type B clusters but can easily be adapted to detect red clusters. Given
a RGB image transformed into a binary image via thresholding of the intensity,
we use morphological operators to erase the isolated pixels and dilate the image
using a binary gradient mask. Interior gaps are then filled and the new image is
smoothed via morphological operations. The boundaries of the isolated clusters
are then detected using the Moore-Neighbor tracing algorithm modified by Jacob’s
stopping criteria, implemented in the intrinsic matlab function bwconncomp that
we couple with a function that appropriately converts the output of bwconncomp to
take into account periodic boundary conditions. Once the clusters are appropriately
separated and borders are detected, we finally use the matlab intrinsic function
regionprops to measure each 8-connected object (region) of the image. This image
processing enables us to compute the number Ng of green clusters in the image.
The elongation of each cluster is given by the eccentricity of the ellipse that has
the same second-moments as the region (cluster). Finally, we define the overall
overlapping amount Q as:

Q =

∑NP

i=1 P
i
gP

i
r + (1−max(P ig, P

i
r))

NP
, (73)

where P ig (resp. P ir) is equal to 1 if pixel i has a non-zero green component (resp.
red) and NP is the total number of pixels in the image. Thus defined, Q ≈ 1 when
the two families are perfectly mixed (corresponding to all pixels having both red and
green components), and Q = 0 correspond to completely separated phases (where
each pixel is either green or red). Therefore, parameter Q enables to distinguish
between homogeneous and segregated states. However, note that Q does not give
any information on the form of the clusters.

REFERENCES

[1] R. Aharon et al, A mathematical model for Eph/Ephrin-directed segregation of intermingled
cells, PLoS ONE, 9 (2014), 111–803.

[2] R. Alonso, J. Young and Y. Cheng, A particle interaction model for the simulation of biolog-

ical, cross-linked fibers inspired from flocking theory, Cellular and Molecular Bioengineering,

7 (2014), 58–72.
[3] W. Alt and M. Dembo, Cytoplasm dynamics and cell motion: Two phase flow models, Math.

Biosci., 156 (1999), 207–228.
[4] J. Armero, J. Casademunt, L. Ramı́rez-Piscina and J. M. Sancho, Ballistic and diffusive

corrections to front propagation in the presence of multiplicative noise, Phys. Rev. E., 58

(1998).
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