A direct approach to numerical homogenization in finite elasticity

  • Received: 01 August 2005 Revised: 01 November 2005
  • Primary: 74Q05; Secondary: 74B20.

  • We describe, analyze, and test a direct numerical approach to a homogenized problem in nonlinear elasticity at finite strain. The main advantage of this approach is that it does not modify the overall structure of standard softwares in use for computational elasticity. Our analysis includes a convergence result for a general class of energy densities and an error estimate in the convex case. We relate this approach to the multiscale finite element method and show our analysis also applies to this method. Microscopic buck- ling and macroscopic instabilities are numerically investigated. The application of our approach to some numerical tests on an idealized rubber foam is also presented. For consistency a short review of the homogenization theory in nonlinear elasticity is provided.

    Citation: Antoine Gloria Cermics. A direct approach to numerical homogenization in finite elasticity[J]. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109

    Related Papers:

    [1] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
    [2] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [3] Cristian Barbarosie, Anca-Maria Toader . Optimization of bodies with locally periodic microstructure by varying the periodicity pattern. Networks and Heterogeneous Media, 2014, 9(3): 433-451. doi: 10.3934/nhm.2014.9.433
    [4] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
    [5] Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022
    [6] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [7] Jose Manuel Torres Espino, Emilio Barchiesi . Computational study of a homogenized nonlinear generalization of Timoshenko beam proposed by Turco et al.. Networks and Heterogeneous Media, 2024, 19(3): 1133-1155. doi: 10.3934/nhm.2024050
    [8] Luca Lussardi, Stefano Marini, Marco Veneroni . Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13(1): 27-45. doi: 10.3934/nhm.2018002
    [9] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651
    [10] V. V. Zhikov, S. E. Pastukhova . Korn inequalities on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(1): 153-175. doi: 10.3934/nhm.2009.4.153
  • We describe, analyze, and test a direct numerical approach to a homogenized problem in nonlinear elasticity at finite strain. The main advantage of this approach is that it does not modify the overall structure of standard softwares in use for computational elasticity. Our analysis includes a convergence result for a general class of energy densities and an error estimate in the convex case. We relate this approach to the multiscale finite element method and show our analysis also applies to this method. Microscopic buck- ling and macroscopic instabilities are numerically investigated. The application of our approach to some numerical tests on an idealized rubber foam is also presented. For consistency a short review of the homogenization theory in nonlinear elasticity is provided.


  • This article has been cited by:

    1. Sébastien Boyaval, Reduced-Basis Approach for Homogenization beyond the Periodic Setting, 2008, 7, 1540-3459, 466, 10.1137/070688791
    2. Meiqun Jiang, Xingye Yue, Numerical homogenization of well singularities in the flow transport through heterogeneous porous media: fully discrete scheme, 2007, 41, 0764-583X, 945, 10.1051/m2an:2007044
    3. Antoine Gloria, An Analytical Framework for Numerical Homogenization. Part II: Windowing and Oversampling, 2008, 7, 1540-3459, 274, 10.1137/070683143
    4. Antoine Gloria, An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies, 2006, 5, 1540-3459, 996, 10.1137/060649112
    5. Antoine Gloria, Patrick Le Tallec, Marina Vidrascu, Foundation, analysis, and numerical investigation of a variational network-based model for rubber, 2014, 26, 0935-1175, 1, 10.1007/s00161-012-0281-6
    6. Roberto Alicandro, Marco Cicalese, Antoine Gloria, Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity, 2011, 200, 0003-9527, 881, 10.1007/s00205-010-0378-7
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3755) PDF downloads(53) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog