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ABSTRACT. We describe, analyze, and test a direct numerical approach to a
homogenized problem in nonlinear elasticity at finite strain. The main ad-
vantage of this approach is that it does not modify the overall structure of
standard softwares in use for computational elasticity. Our analysis includes a
convergence result for a general class of energy densities and an error estimate
in the convex case. We relate this approach to the multiscale finite element
method and show our analysis also applies to this method. Microscopic buck-
ling and macroscopic instabilities are numerically investigated. The application
of our approach to some numerical tests on an idealized rubber foam is also
presented. For consistency a short review of the homogenization theory in
nonlinear elasticity is provided.

1. Physical motivation. Whereas the development of computational tools has
helped engineers to design pieces with specific mechanical properties, chemists and
physicists have developed new types of materials enjoying new types of properties
and characterized by a high heterogeneity. Because of this heterogeneity the nu-
merical methods commonly used by engineers cannot directly deal with these new
materials. The reason is that classical analytical constitutive laws do not model
correctly all the regimes encountered by these materials at the macroscopic scale.

A computational approach to circumvent the difficulty related to macroscopic
constitutive laws could be to use a finite element method (FEM) at a scale for
which classical constitutive laws are relevant. Unfortunately this is often out of
reach of computers to date since the meshsize would have to be of the order of the
micrometer e.g., which is prohibitive.

The landscape is then the following: direct computations at the microscopic
scale are too expensive whereas computations at the macroscopic scale are delicate
because of the lack of relevant analytical constitutive laws. An alternative track is
provided by the homogenization approach.

The article is organized as follows. To start with, some results of the mathemati-
cal theory of periodic homogenization for nonlinear energy densities are recalled.The
reader familiar with the state of the art of the homogenization theory for minimiza-
tion problems and elliptic operators in divergence form can easily skip Section (2.
Our specific contribution is detailed throughout Sections|3/tol6. Section|3lis devoted
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to an approximation result for a nonlinear elasticity problem with a homogenized
constitutive law and to the derivation of an error estimate in the convex case. The
numerical method introduced in Section 4! consists in replacing an unknown ana-
lytical constitutive law at the macroscopic scale by a numerical constitutive law
computed at each macroscopic point by the resolution of a so-called cell-problem
at the microscopic level. This approach is well developed and has been applied to
linear materials (FE? method [13]) and nonlinear materials at small strain ([24]).
It is adapted here to the finite strain case, for which convergence properties of
Newton algorithms are very sensitive to the approximation of the second derivative
of the constitutive law ([30],[20]). The computation of such a stiffness matrix has
not been addressed in the literature to the knowledge of the author. This is one
purpose of this article. In Section |5 this direct approach is related to the multiscale
finite element method introduced by Hou and co-authors and the error estimate
of Section 13| is proved to apply to the MSFEM, at least in the periodic case. Fi-
nally the question first introduced by Geymonat, Miiller and Triantafyllidis in [14]
concerning buckling in the cell-problem and instabilities of the homogenized energy
density is numerically addressed. The convergence properties of the method for a
class of energy densities which is not covered by the mathematical theory is also
investigated.

2. A quick review of periodic homogenization theory. For consistency, some
well-known results of the periodic homogenization theory applied to nonlinear en-
ergy densities with specific growth properties are recalled here. Such theoretical
results guide the numerical strategy and tell in what sense mechanical quantities
are approximated. To fully illustrate the situation, and for the sake of comparison,
a synthesis of what is theoretically known for energy densities of several types and
for general elliptic operators in divergence form is given. The following results of
homogenization of nonconvex energies can be found in the original work of Braides
[4] and Miiller [25]. For convenience, references are borrowed from the book of
Braides and Defranceschi [6]. The theoretical point of view preferably uses the
energy minimization problem whereas the PDE approach is more relevant for the
numerical practice. This theory makes use of the growth condition (1)) introduced in
Definition 3/ below. In practice, several problems do not satisfy this condition. This
is the case for porous materials and Ogden materials. To model porous media, we
consider a perforated domain where the energy density satisfies (1) and we let the
size of the holes, where the energy vanishes, go to zero. In a way this homogeniza-
tion is also geometric since the domain is not fixed. Unlike porous materials, Ogden
materials can violate (1) almost everywhere. Therefore the approach introduced in
Section 4] is still to be justified mathematically. These limitations are summarized
in the last paragraph of this section.

2.1. Convexity and minimization problems. Throughout the article 2 denotes
an open bounded connected subset of R3. The following definitions and results (see
e.g. [28]) will be extensively used in the sequel.

Definition 1. Given an integer p > 1, a function W : M3(R) — [0, +o0] is W1P-
quasiconvex if for all A € M3(R) (set of real square matrices of size 3), there exists
an open bounded subset E of R3 with |OE| = 0 such that:

W(A) = min {“;' /E W(A+ Vé(x))da | ¢ € WP (E; R3)}
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The function W is polyconvex when it can be expressed as a convex function of
the minors of orders 1,2,8 of A.

Property 1. If W is polyconvex then W is quasiconvex.

Definition 2. Let (z,A) — W(x, A) be a quasiconvex energy density defined on
Q x M3(R), for which there exist an integer p > 1, positive constants ¢ and C, such
that for almost all x € Q and for all A € M3(R),

AP < W(z,A) < C(1 + |A]P) (1)
The function W is then said to satisfy a standard growth condition (of order p).
Definition 3. The function W : Q x M3(R) — R, (z, A) — W(z, A) is a standard
energy density if W is a quasiconvex Carathéodory function, that is:

o W(-,-) is measurable in its first variable and continuous in its second variable
o Wi(x,-) is quasiconvex for almost every x € Q

and if W satisfies (1).

Definition 4. A standard minimization problem refers in the literature to a min-
imazation problem associated to a standard energy density that reads: given u €
WP (Q,R?), solve

inf {/Q W(z,V(u+a))dx |u € T/I/()l’p(Q,R3)} (2)

The direct method of the calculus of variations shows
Theorem 1. Forp > 1, the minimization problem (2) admits at least a minimizer
in WyP (Q,R3).
Theorem 1] is a consequence of the following lemma.
Lemma 1. If1 < p < oo, and W : M3(R) — R is a quasiconvez function satisfying
0<W(A) <C(1+]|AP) for all A € M3(R),

then the functional J(u) = / W (Vu) is weakly lower semi-continuous on WP (Q).
Q

2.2. Basic homogenization result. Periodic functions are defined as follows.

Definition 5. A function ¢ : R®> — R is said N-periodic, N € N, if for almost
every (ae) x € R3, and for all (i,j, k) € N3,

Y(x +iNei + jNes + kNes) = ()
with €1 = (17070)7 €2 = (07 1’0) and €3 = (O’O’ 1)

For convenience, in the sequel of the article, only 1-periodic energy densities are
considered, instead of general periodic functions. Theoretical results still hold mu-
tatis mutandis for periodic functions whose periodic cells have shapes with piecewise
regular boundaries.

Periodic homogenization aims at studying problems for which the energy density
W, is of the form
x
We(z, A) = W(=,A),
€
where W is periodic in space. This heterogeneous energy density is commonly used
to model composite materials.

The limit ¢ — 0 of the minimization problem (2) with W is described by
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Theorem 2. ([6], Section 14.2) Let W : R?® x M3(R) — [0,+00) be a standard
energy density satisfying the periodicity assumption

W (-, A) is 1-periodic for all A € M3(R)

and the growth condition (1) of order p > 1.
For Q a bounded open set of R3, u € WHP(Q,R3) and € > 0, we set

Jo(u) = /Q W(%,Vu(x))dx

Then, for all i € WP(Q,R3),

lim inf{Je(u +a) |u € Wy ()} = inf{Jpom(u+ @) [u € Wy P(D)},  (3)

where Jhom(u) = / Whom(Vu(z))dr and Whom : M3(R) — [0,400) is a standard
energy density functional defined by the asymptotic homogenization formula

1
Whom(A) = lim —— inf W (x, A+ Vo(z))dz|v e Wy (0, N)?,R?)
N—oo N3 (0,N)3
(4)

for all A € M3(R). The function When, satisfies in particular condition (1l) of order
.
In addition, if uc is a minimizing sequence of J.(- + @) on Wol’p(Q,RS) weakly

converging to some u in WyP(Q,R®), then u is a minimizer of Jhom(- + @) on
WyP(Q,R3).

Remark 1. ([6], Remark 14.6) The asymptotic homogenization formula (4) can be
replaced by

Whom(A4) = lim — inf {/ W(z, A+ Vo(z))dz|v € W#P((O,N)?"Rs)
(0,N)?

(5)
where W#p((O,N)?’,R?’) is the set of N-periodic functions v of WP((0, N)3 R3)
such that /v = 0. Note that the limit N — oo can be replaced by an infimum on

Q
N e N in (4l) and (5).

2.3. Homogenization for connected media. Connected media are defined as
follows.

Definition 6. Let E be an infinite 1-periodic, connected, open subset of R (that is
in particular a periodic replication of a subset of (0,1)2) with a Lipschitz boundary,
and 2 be a bounded open subset of R3. Given e € Ry, QNeFE is called a connected
medium.

Theorem 2 also holds in a weaker form for connected media:

Theorem 3. ([6], Section 19.1) Let E and 2 be as in Definition!6. Given a standard
energy density W : E x M3(R) — R with W(-, A) 1-periodic for every A € M3(R),
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satisfying condition (1) with p > 1, let J. : LP(Q;R3) — [0, +00] be the functional
defined for every e > 0 by

W(E,Vu(z))de i ujgnes € WP(Q N eE; R3),
Je(u) = QNeE €

+00 otherwise.

Then there exist a constant ky > 0 depending on E and p, and a standard energy
density functional Wheom, : Ms(R) — R satisfying

Al < Wion(4) < CJ(0,1)° N BI(1+ | A?),

for all A € M3(R), and such that, defining the functional Jyom : LP(;R3) —
[0, +00] by

/ Whom(Vu(x))dz  if u € WHP(;R3),
Jhom(u) = Q

400 otherwise,
we have, for all u € WHP(Q),
lim inf{Je(u+a)|u € WoP(Q)} = inf{Jpom(u+a) | u € Wy P(Q)}.

The functional When, is given by the asymptotic homogenization formula

Wiom(A) = lim inf i/ W (z, Vo(z) + A)dz | v € WEP((0, N)% R?)
N—oo {N3 (0,N)3NE
for all A € M3(R).
In addition, if u. is a minimizing sequence of J.(- + @) on Wy (Q,R3) weakly
converging to some u in Wol’p(Q,R3), then u is a minimizer of Jpom(- + @) on
Wy (Q,R3).

2.4. Homogenization of elliptic operators in divergence form. If W is dif-
ferentiable and the minimization problems (2) for W, and Wyepm, and (5) or (4)
are attained, the minimizers satisfy the Euler-Lagrange equations. In that case we

denote by 5
W
a(xvé-) = Tg(x,g)

Keeping the notation of Theorem 2, the Euler-Lagrange equation for the minimiza-
tion of J. reads

u. =1u on ON.

{ —div (a(%,VUE)) =f inQ (6)

On the other hand, if We(x, ) is strictly convex for almost every x € Q, the one for
Jhom is

{—div (anom(Ve)) =7 i (7)

u =u on Jf,

where apom, is defined by M3(R) 3 € — apom(§) = / a(y, Vue(y) + €)dy and
(0,1)?

ve is the periodic solution in W;P((o, 1)3,R3) of
—div (a(y, Ve(y) +¢)) =0, (8)
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the latter equation being called the cell-problem (see [6]).

It may be noticed that (8) is the Euler-Lagrange equation of (5) for N = 1. In
fact the infimum in (5)) is attained for N = 1, due to convexity. We abusively say
that N =1 in the cell-problem (8g]).

Considering non-symmetric operators a, monotonicity assumptions (see [2I] and
[26]) extend the results of Theorem [2] and provide more precise results on the ho-
mogenized operator, as stated in the following theorem.

Theorem 4. ([26], Sections 3.2.4 and 3.3.2) Assume p > 2. Let p’ satisfy %+ ﬁ =

1. Let a: R3 x M3(R) — M3(R), (z,£) — a(z,€) be Carathéodory and 1-periodic
in . Assume also that a(-,0) is bounded and that the following continuity and
monotonicity properties hold

J0<a<p—-1,C>0 | foraexcR>VE,E € M3(R)
la(z,£1) — a(z, &) < C(L+ & + [&[)PT7é — &%, 9)

32<B< +00,¢>0 | foraexcR3VE, E € M3(R)
(a(z,&1) = a(z, &), & = &) > e(1+ [&] + [&)P 7|6 — &7 (10)
Then, given f € L¥ (Q,R3), the solution u, € Wol’p(Q,]R3) of
—div (a(*, Vuo) = f

weakly converges in WyP(Q,R3) to the solution u € Wy (Q,R3) of
—div (apom(Vu)) = f,
where apom : M3z(R) — M3(R) is defined by

amﬂ@Zl)aWA+WM@Wy
0,1)3

and uy € W;’p(((), 1)3,R3) is the solution of
—div (a(y, A+ Vua(y))) = 0.

In addition apom satisfies (10) with the same coefficients as a and (9) with v =
/(8 — «) instead of a.

The existence of a corrector, which allows to obtain a strong convergence instead
of the weak convergence of Theorem /4] is given

Theorem 5. ([26], Section 3.5.2) Under the hypotheses and notation of Theorem/|),
let (M¢)e be the set of mean operators defined by

M, : LP(Q) — LP(Q), ¢(z) — M.p(z) = 1/63/
(e[, (Y+1)))?
with Y € Z3 such that x € (e[Y, (Y + 1)])%. The set {M.¢}. is a set of piecewise
constant functions strongly converging to ¢ in LP(Q).
The corrector v, associated to u is then given by
ve: Q=R z e (e[Y, (Y +1)))° — ve(x) = UE’Y(f)’

where vy € W#p(((), 1)3,R3) is the periodic solution of
—div a(y, McVu(z) + Voey (y)) = 0. (11)
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And the following strong convergence in WP (£, R?) holds,

[(u+ €ve) = uclip0 — 0,

|- |1,p.0 standing for the norm of WhP ().

In the remainder of the article all the monotone operators considered will be
symmetric and associated to a strictly convex energy density.

2.5. Some open issues. The conclusions of Theorem 2 are specific to the growth
condition (1) and the minimization space W, *(92,R3). They can be extended to
Neumann boundary conditions and mixed Dirichlet and Neumann boundary con-
ditions in weak form. However, two open questions prevent us from applying rig-
orously the above results to general nonlinear elasticity whose energy densities do
not satisfy (1), e.g. general polyconvex energies.

First, it is not known whether Theorem [2 holds if I/VO1 P(Q) is replaced by the set
{u € WyP(Q)| det(Vu + Vi) = 1 ae}. This variational set models incompressible
materials.

The second open question deals with the more general problem of I'-convergence
of sequentially lower semicontinuous functionals. The I'-convergence is an approach
which can be applied to prove Theorem 2| (see e.g. [0]). In this case, it requires
the growth condition (IJ), which is also used to prove the lower semicontinuity of
the integral functional J. of Theorem 2. Given that other mathematical properties
than the growth condition (I) can ensure the lower semicontinuity of the functional
(typically the polyconvexity), a natural issue would be to try to generalize the
application of the I'-convergence theory to general sequentially lower semicontinuous
functionals, which is still an open issue today. It is to be noticed that polyconvexity
can be lost by homogenization, as shown in [5].

The answers to several questions related to what has been recalled in this sec-
tion for different types of energies and operators in divergence form are collected
in Table 1. The number N of cells to consider in (4) and (5) to attain convergence
depends on the problem at stake and on the functional space. The question rela-
tive to the existence of correctors is of importance since it allows to recover strong
convergence of minimizers. The existence of correctors is extensively used to derive
error estimates for numerical methods, such as e.g. the multiscale finite element
method proposed by Hou and co-authors ([17],[11]). For minimization problems
with quasiconvex energies, the minimizers are not necessarily unique, thus equa-
tion (11) does not have a unique solution and does not properly define a corrector.

A last comment concerns the issue of non-periodic homogenization. General
compactness results exist for general homogenization problems without periodicity
assumptions in the framework of I'-convergence ([6]). However the I'-limit may
depend on the extraction considered and is not given by any homogenization formula
as (4). Therefore it cannot be computed by a direct method as the one developed
throughout the present work. The question of numerical homogenization of non-
periodic elliptic problems will be addressed in [16], in the convex case.
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Type Homogenized Existence Mumber of cells &V
of correctors to consgider in
Operator Operator problem (8]
Linear +eoe Linear+cc Trus 1
Monotone +(1074+(9) Monotone+( 10)+(9) True 1
Energy density Energy density formula (4] | formula (5]
Convex +8gc © Convex+3zc True co 1
(Juasiconvex | +3g¢ Juasiconvextage Te oo oo
+polyconvex +3gc | Juasiconvex+3ze 7 oo o
+polyconvex ? 7 7 7

Trble 1: Summary of some homogenization reqults awmilable to date

2ooercive and cantinucus on W2, in arder to apply LaseMilgram lemma
tstandard growth condition of arder
2unknown todasy

3. Approximation result for the standard homogenization problem. Two
results of approximation are recalled in details for nonlinear elasticity boundary
problems in the standard case. They show that isolated minimizers u of (2) can be
approximated by minimizers uy of

inf{/QW(x,V(uh +@))d | up € Vh},

where (V) are finite dimensional subspaces of W(} P(£,R?). Under an assumption
on the form of the energy density W (Theorem [6) or up to adding a vanishing per-
turbing term to the energy density (Theorem [7)), u; converges to u in W(} P(Q,R3).
In Section [3.2 a similar result is proven for the standard homogenization problem
(Theorem [§)), in the context of Theorem 2. In Section [3.3] an error estimate is de-
rived for a nonlinear elasticity problem with a strictly convex energy density in the
context of Section 2.4l

3.1. Approximation theory for standard energy densities. The first result
of this section is classical. The proof, given for completeness, is simpler than that
of Le Tallec in [20] due to the restricted class of energies considered. The second
result exploits the idea of Pedregal in [27] to get rid of the assumption on the form
of the energy density, by adding a vanishing perturbing term.

Definition 7. Let W : Q x M3(R) — R be a standard energy density. The integral
functional J is defined by

J: W@ — R
v — /QW(x7Vv(w))dx.

Given i € WIP(Q), we consider an isolated minimizer (strict local minimizer) u of
inf{J(v+a),v e Wy P(Q)}
on B(u,7), 7 > 0, that is a minimizer such that
Ju+a) < Jw+a) Yoe WP QRY | |u—v|i, <7 andv # .

In the remainder of the paper, for v € W1P(Q) and p > 0, the open ball centered
at v and of radius p in WHP(Q) is denoted by B(v, p).

The following lemma on Carathéodory functions will be used in the proofs of the
approximation results.
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Lemma 2. [19] Let ® be a function of the type

D(y)(z) = ((x,y(2)),
where ¢ is Carathéodory and such that ® sends LP(2) into LU(Q). Then @ is
continuous from LP(Q) into LI(Q).

Theorem 6. Let W, @, J, u and B(u,7) be as in Definition 7. Let W satisfy:
W(z,A) = c(z)|A]P + Wi(z, A) (12)
with ¢(x) > ¢/2 a.e. in Q and Wi a standard energy density. Assume that there
exist discrete spaces Vi, € Wy P(Q,R®) and a sequence {wy}n, wy, € Vi, 0 B(u,7),
satisfying u = }llin%)wh in WHP(Q,R3).
Then the minimum values
inf{J(vp, + @) | vn, € Vi, N B(u,7)} (13)

are attained, and any sequence uy, of minimizers of (13) converges to u in WP (Q).

Proof. Since V}, is finite dimensional, the subset V}, N B(u,7) 3 wy, is non empty,
bounded and closed in WP (Q), it is therefore a compact subset. As .J is continuous
on WHP(Q) (Lemma [2) and Vj, N B(u,#) 3 wy, is compact, J(- + ) attains its
minimum on Vi, N B(u, 7). Let up denote one of the minimizers.

The sequence uy, is bounded by [uly, + 7 in WHP(Q). Thus there exists an
extracted sequence, still denoted by uy, that converges weakly in WP(Q2) to some
Uso € B(u, 7).

By definition of up,

J(up + @) < J(wp, + @) for all h.
As J is lower semi-continuous for the weak topology (Lemma [I) and continuous for
the strong topology of W1P(Q), the inequalities
J (oo + 1) liminf J(up, + @)
lim J (wp, + @)
J(u+a)

[l IAIA

hold.
Since u is the unique minimizer of J(-+@) on B(u, 7), the latter inequality implies
Uoo = w and lim J(up + @) = J(u + 1)

The limit uo, = u being independent from the extraction, the whole original
sequence uy, converges weakly to u in W1HP(Q).

Next, the strong convergence comes from the particular form of the energy func-
tional: since (z, A) — c(x)| AP and (z, A) — Wi (z, A) are quasiconvex for almost
every = € {2 and satisfy (1)), the integral functionals associated to these two energies
are lower semi-continuous (Lemma [T]), which implies

/ c(2)|V(u(z) + a(x))|Pde < lim inf/ () |V (up(z) + a(z))[Pdx
Q Q

and
/ Wi (z,u(x) + a(z))dz < lim inf/ Wi (z,up(z) + a(x))dz.
Q Q

As in addition lim J(up, + @) = J(u + @), necessarily

1im/Qc(z)|V(uh(x) + a(z))|Pdr = /Qc(x)\V(u(a:) + a(x))|Pdx (14)
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Since € is bounded, combining the weak convergence of V(u + uy) to V(a + u)
in LP(Q) with (14), the strong convergence of V(@ + uyp) holds, and consequently:
lu = unfrp —0

O
Energy densities satisfying (12) are indeed the ones that are most encountered

in practice. If an energy density does not satisfy (12)), the addition of a vanishing
term allows to recover strong convergence, as stated by

Theorem 7. Let W, u, J, u and B(u,T) be as in Definition|7. Assume that there
exist discrete spaces Vi, C WP (Q,R3) and a sequence {wp}n, wy, € Vi, 0 B(u,7),
satisfying u = }lbin%)wh in WP, Let {J,} be the set of perturbed energy functionals

defined by
Jn(v) =J(v) +n 5 IV (v)[?, (15)

forn >0 and v e WHP(Q).
The minimum values

inf{.J, (v + @) |vn € Vi N B(u,7)} (16)

are attained and minimizers of Jp(u + -) on Vi N B(u, ) are denoted by wyp.
For any extracting function ¢, such that the sequence uy, 4 () weakly converges in
WP (Q,R?) as h goes to zero, the convergence is actually strong and

lim lim w5, =uin WH(Q,RY).

Proof. Following [27] the perturbed energy density is obtained by adding the term
17/ |VolP to J, for n € RT,
Q

Jp(v) =J()+n [ |[Vof.
Q

The following three assertions hold:
(i) Jp(-+ @) has at least a minimizer u, in B(u, )
(ii) u, is a minimizing sequence of J(- + @) on B(u,T)
(iii) w, — u strongly in W?(Q) as n — 0
Assertion (i) is a consequence of the lower semi-continuity of J,, as the sum of
two lower semi-continuous functionals.
Assertion (ii) follows from the inequalities
J(u+a) < J(uy +u) < Jy(uy +a) < Jy(u+a), (17)
where have been successively used that w minimizes J(- + u) and w, minimizes
Jy(-+u) on B(u, 7). Next, for all v € W1P(Q), lin%)Jn(U) = J(v), thus (17) implies
n—
that J(u, + ) — J(u+ @) as n — 0, that is (ii).
To prove (iii), it may first be noticed that (ii) implies that
u, —u in WHP(Q), (18)
arguing as in the proof of Theorem (6] since u is the unique minimizer of J(- 4+ @) on
B(u,T).
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The following observation

n/ﬂ\wwvw < nA\vUn+Va|P+%(J(un+a)—J(u+a))
= L) - St )
n n
< 1J,,(u—&-ﬁ)—lJ(u—i—ﬂ)
n n
= 77/9\Vu+V12|p, (19)

combined with (18), implies (iii).

As in the proof of Theorem [6, the set of minimizers {u,} of J,(a + -) on
Vi N B(u,T) is weakly compact. Thus there exists a subsequence {u, 4 (n)}n which
weakly converges to some w, € B(u, ). Due to the perturbing term n [ [Vv|P, J,

Q

satisfies (12) and (14) holds with ¢(x) = 5. This implies the strong convergence of
the subsequence in W1?(Q). Combined with assertion (iii), it proves

B L g, =u - in WHP(Q).

O

3.2. Approximation result for a homogenized energy density . This section
is devoted to the proof of a result of approximation for a problem of type (2) with
the energy density (4), when W, *(€,R?) in (2) and W,P((0, N)3,R3) in (4) are
replaced by finite dimensional subspaces.

Definition 8. For N € N, {Vn i} is a family of finite dimensional subspaces of
Wy (0, N)3, R3) satisfying

ha<hi = Vnhn CVnNh,,

and such that UV, = WaP((0, N)3,R3).
Similarly, {Va,u} is a family of finite dimensional subspaces of Wol’p(Q,R3) such
that Ug Vo, g = Wol’p(Q,Rg).

Given a standard energy density W and the homogenized energy density Wyom,

associated by formula (4)), for any (N, h) the approzimate homogenized energy den-
sity WNP 2 M3(R) — R is defined by

1
A WNMA) = o int {/(0 - W(z, A+ Vo(z))dr : v € VN,h} - (20

Its associated approximate energy functional is
JNh () = / WNh(Tv)  on WHP(Q). (21)
Q

The approximation result is given by

Theorem 8. Let W, Whom, Vn,n, Va,u and JNM be as in Definition 8. Assume
that Whom also satisfies (12) (see however Remark 2 below).
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Given 4 € WHP(Q), u is defined as an isolated minimizer of
inf {/Q Whom(V (v +@))dx | v € ngp(m} . (22)
The minimum values
inf { JN" (v + @)dz |v € Vo, N B(u,7)} (23)

are attained and let {uy"} g N denote sequences of minimizers of (23).

Then, for all extracted sequences in N and h, still denoted by ug’h, such that
lim lim ug’h exists,
N—o00 h—0
lim lim lim uZ’h =u in WHP(Q). (24)

H—0 N—oco h—0

Proof. Step 1: convergence in H

In view of Theorem 2, Wp,,, is a quasiconvex function satisfying (I). In ad-
dition, Whom, satisfies (12) by assumption. The application of Theorem |6 to the
minimization problem (22)) implies that any sequence uy of minimizers of

inf {/ Whom(V(v +@))dz |v € Vo u N B(u,F)} ) (25)
Q
converges to u:
I}Iimo up =u in Wy P(Q). (26)

Step 2: convergence in N
In the limit taken in (4), let us consider the approximate energy density

. 1
WHN(A) = inf {]\73 /(o s W (z,Vo(x)+ A)dx : v € W()l’p((O,N)3,R3)} , (27)
and define an approximation of problem (25) by replacing Whom by W¥:
inf{/ WN(V(U+EL))|UGVQ,HOB(u,f)}. (28)
Q

In the sequel, JV (v) = / W (Vv)da.
Q

The second step consists in proving that for all N € N* the minimum value (28])
is attained and that any converging subsequence of minimizers u% of (28) converges
in W1P(Q) to a minimizer uy of (25) as N goes to infinity.

Let us prove that W is a continuous function on M3(R). Let (4;)ien €
(M3(R))N satisfy 4; — A € M3(R) and let (uga,); and and us be minimizers
of

. 1
inf {NB/ W (x,Vo(x) + B)dx : v € W&’p((O,N)?’,R?’)} ,
(0,N)3
with B = A; and B = A respectively.

From Theorem [I such minimizers exist. Thanks to (1), (ua,); is bounded in
WyP((0,N)3). There exists a subsequence, still denoted by wu4,, which weakly
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converges to some uy_ € Wy ((0,N)?). Lemma 2 ensures that v — / W (x, Vo)
Q

is continuous on WP(€), which implies

/ W(z,A+ Vuy) = lim Wz, Ai + Vua). (29)
(0,N)? 10 J(0,N)?

By definition of u4, and after taking the inferior limit, we have

17— 00 11— 00

lim inf/ Wz, A; + Vua) > lim inf/ Wz, A; + Vua,). (30)
(0,N)? (0,N)?

The lower semi-continuity of v — W(x,Vv) for the weak topology of
(0,N)3
WLP((0,N)3) implies
li_rninf/ W(x,A; + Vua,) > / W(x, A4+ Vua_). (31)
oo J(o,N)3 (0,N)3

Combining (29), (30) and (31) gives

/ W(a, A+ Vun) 2/ Wz, A+ Via_). (32)
(0.N)® (0.N)®
The definition of uy and (32) then imply
W (4) = Wz, A+ Vi) :/ Wz, A+ Vua).
(0,N)3 (0,N)3

Therefore lim W (A;) = W (A) does not depend either on the sequence A; nor on

the subsequence u 4, considered, which proves the continuity of W¥. Consequently,
W is Carathéodory and satisfies (1). The same result and proof hold for WN:".

Lemma 2 implies that JV and JY" are continuous on W'?(Q). The same
property holds for Jpom since Whom, is also a Carathéodory function satisfying (1)
(Theorem 2). As Vo i N B(u,7) is a compact set of Wy (Q) and JV is continuous,
the minimum value (28)) is attained.

Let {uﬁ} ~ be a sequence of minimizers of (28). As Vi m is compact, there exists
a subsequence uZH ™) which converges to some u$y in WHP(Q). To prove that uS?
is a minimizer of (25)), it suffices to show that JV converges to Jjom uniformly on
Vo, N B(u, 7).

For all xy € WyP((0,2V)3), let x* € W, P((0,2V*1)3) denote the function ob-
tained by the periodization of y. Consequently W2" ' (4) < W2 (A) for all
A € M;3(R), which implies JQNH(v) < g2 (v) for all v € WHP(Q). As J2
is a decreasing sequence of continuous functions which converges to a continuous
function Jjem on the compact set Vo g N B(u,7), Dini’s theorem implies that T2
converges uniformly to Jyom on Vo g N B(u, 7). Actually this shows that the whole
sequence JV converges uniformly on Vg g N B(u, ), as proved below.

For all € > 0, there exists I € N such that for all v € Vo g N B(u,7),

172 (v) = Tnom (v)] < €. (33)
For all M > 2! and v € Vo i N B(u,7), either JM(v) < JQI(U) and
|JM(U) = Jhom (V)] <€, (34)
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since Jpom < JV for all N € R (Remark [1)), or

0< JM(w) — 2 (v). (35)
IRk
For all x € W3P((0,27)3), let x** € Wy ((0, M)?) be defined by [21} replications

M 3
of x on <0, {21] 21) and be extended by zero elsewhere in (0, M )3, where [-] stands
for the integer part. Thus

of

which implies, using (1)),

M3 — ([24] 21y
I
s - 7% ) < LA o ), (36)
As |v]1p < |ul1,p + 7, the right hand side of (36) converges to zero uniformly on
Va,u N B(u,7) when M goes to infinity. Therefore, there exists N* > 27 such that
for all v € Vo g N B(u,7) and M > N* either (34) holds or

[T (0) = Tnom (0)] < [T (0) = Jnom (0)| + 7 (v) = TV (v)] < 2e,
by combining (33), (35) and (36). This implies the uniform convergence of JV to
Jhom ON VQ,H N B(u,f).

We are now in position to prove that 4% is a minimizer of Jyom on Vo g NB(u,T).
The triangle inequality implies

79 g ) = Tnom (u)] < 1795 (g ) = Tnom (it ™)
+|Jhom(u<}é]H(N)) - Jhom(uoHo)|'
(N)

gence of J?#(V) whereas the second term goes to zero thanks to the continuity of
Jhom-
Thus, lim J¢# ™) (UEH(N)) = Jhom(u%). In addition, for all v € Vo g N
N—o0

The first term goes to zero independently of u?[H thanks to the uniform conver-

B(u,7) and N € N, Joa(N)(y) > J¢H(N)(UZH(N)). Passing to the limit, we
obtain Jyom (v) > Jhom(u3), which implies that 3 is a minimizer of Jpon, on
VQ,H N B(u,F).

For any extraction function ¢y such that the sequence u
of (28) converges as N goes to infinity, (26) then shows

)y i (). (37)

N .
ZH () of minimizers

lim lim w
H—0N—oco
Step 3: convergence in h

Step 3 consists in determining an adequate approximation of ug by restricting
(25)) to a finite dimensional subspace as prescribed by Definition 8!

For hy > ha, Vvh, C Vi.h,, thus, for all A € M3(R), WN-h2(A) < WNhi(4),
showing that {J":"}, is a decreasing sequence of functions. As JN* and JV
are continuous on WP (), hypotheses of Dini’s theorem hold and J™* converges
uniformly to JY on Vg g NB(u, 7). Arguing as in Step 2, there exists a subsequence
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WD) of minimizers of (23) which converges to a minimizer u%o of (28) in
WLP(Q) as h goes to zero.

For any extraction function 1 i such that the sequence ug’w’ A

of (22) converges as h goes to zero, (37) finally shows
lim lim lim g " Yen0m )
H—0 N—oo h—0

() of minimi
OI MINIMIZErs

u in WHP(Q). (38)
g

Let err be an error range, Theorem 8 implies that there exist N, H and h
depending on err such that

u—uN" 1., < err. 39
H l1p

Whereas minimizers ug of (25) cannot be computed directly (Wpn, is not available
analytically), ug"h can actually be computed by a finite element method.

Remark 2. The energy density Whom does not satisfy (12) in general (see [14]),
even if W(x,-) does satisfy it almost everywhere in x. Theorem |8 has been stated
this way for the sake of simplicity. In general the homogenized energy density has
to be modified as in (15), which leads to a straightforward adaptation of Theorem|8;
Theorem |7 then allows to pass to the limit as 1 goes to zero, showing, with obvious
notation, .

. . . . N,

312 2 AL M = 1)
The question of the existence of an isolated minimizer u is partly discussed in Sec-

tion 6l in view of [14].

Remark 3. Theorem(8 has been stated and proved in the framework of formula (4).
The proofs and result also hold with formula () and straightforward adaptations,
replacing Wy ((0, N)?) by W;P((o, N)3). In particular, when dealing with a convex
energy density and W;p((O, N)3), the limit in N in (38) can be skipped.

3.3. Error estimates in the convex case. Theorem 8 does not provide the
explicit dependence of H, N and h upon err in (39). For general quasiconvex
energy densities, no error estimate can be derived to complete the approximation
result since there is no general error estimate related to Theorem |6. Theorem 8
remains thus abstract. However, in some particular cases, it turns out to be possible
to give an error estimate.

The analysis is more difficult for NV than for H and h, as N is indeed closely linked
to buckling phenomena (see [14] and [25]) in the cell-problem and strongly depends
on the load A in (4) and not only on err. This issue is investigated numerically in
Section (6l

In the example of a convex energy density treated here, the general analysis for
N need not be handled, since formula (5) applies with N = 1 (see Table 1). It is
thus enough to deal with W1" and J'" defined by (20) and (21), where V5, is a
subspace of W;&’p ((0,1)3,R3) (see Remark 3). With the notation of Theorem |8 and
Remark 2, (40) is replaced by

limy Lim lim uply =u in WHP(Q,R?). (41)

It will be seen next that modifying the homogenized energy as in Remark 2/is indeed
unnecessary in this case.
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Two different error estimates for convex energy densities associated to symmetric
monotone operators are presented: one relying on the continuity property (9) with
a > 0 and another one also valid for &« = 0 (see Theorems 9 and 10/ below).
The proofs of these theorems are based on regularity properties of the solutions to
monotone elliptic systems.

Optimal regularity results of Savaré ([29]) and of Ebmeyer et al. ([10]) are re-
called for symmetric monotone systems on Lipschitz and convex domains. An error
estimate is then obtained for the cell-problem and finally a global error estimate is
derived for problem (23).

Hypotheses 1. The energy density W : R x M3(R) > (y,£) — W(y,£) €R is a
continuous function, 1-periodic in y and convex in & for almost everyy € (0,1)3 that

satisfies (1) with p > 2. The operator a := 575 is monotone and continuous in the

sense of (10) and (9), and a(y,0) = 0 for ally € (0,1) (without loss of generality).
In addition W enjoys the following uniform Lipschitz property with respect to vy,

3L >0: W (y1,€) —W(y2,&)| < Llys —ya| 1+ €]P),  Vy1,y2 € R, V¢ € M3(R).

Lemma 3. Under Hypotheses|1 and for p > 2, let O be an open bounded domain
of R3, @ € W2/PP(O,R?) and u € Wy (O, R3) be the solution of

—div a(xz, V(u + @)) = 0.
Then,

o if O is Lipschitz, u € WOHA/p’p(O,R?’) for all X € [0,1] (|29], Theorem 2),
o if O is conver, u € WOH)‘/p’p((’),R3) for all X € [0,2] (]10], Theorem 2.1 and
Remark 2.2).

Remark 4. Lemmal3 also holds when Wol’p and W01+>‘/p’p are respectively replaced
by Wiﬁ’p and W;r)‘/p’p.
For simplicity, in the remainder of the section, {2 is supposed to be convex.

Definition 9. With the notation of Hypotheses 1l and for all A € M3(R), ua is
defined as the unique solution in W;p((o, 1)3,R3) of

—div a(x,Vus +A) =0. (42)
Given a family {V}n of finite dimensional subspaces of W;E’p((O, 1)3,R3) such that

UV = W;;”((o, 1)3,R3), u¥ denotes an approzimation of ua in Vi, defined as the
unique solution in Vi, of the variational problem

/ a(z, Vuy + A) - Vo, =0 Yoy € V. (43)

Lemma 4. Assume Hypotheses 1l and in addition « > 0 in (9) andp > § > 2
in (10), and let A € M3(R), ua € W;&’p((O, 1)2,R3) be the solution of (42) and u®
be the solution of (43). Then there exists a constant C > 0 independent of h such
that

lua = whlp < Cinf {Jua = vnlf on € Vi), (44)

with s = (a+ 1) /5.
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Proof. Since u4 and u®} are solutions to (42) and (43), for any v, € Vi,
/ (a(z, A+ Vua) —a(z, A+ Vuly)) - (ua —ul})
(0,1)3

= /(0 s (a(x,A—i— Vua) —a(z, A+ Vuffl)) ~(ua —op)

< C(L+2/A| + Jualyp + [yl

1p)P T ua — a5 (45)
using (9).

The monotonicity property (10) also implies
/ (a(z, A+ Vua) — a(z, A+ Vul)) - (ua —uy) > clua — u’}‘|\§p. (46)
(0,1)3

Combining (45) with (46) and taking the infimum on v, € V},, (44) follows.
O

Lemmata |3 and 4 allow us to prove the

Theorem 9. Assume Hypotheses 1 and in addition o > 0 in (9) andp > 5 > 2
in (10). Let Tp, be a regular triangulation of (0,1)3, Tg be a regular triangulation
of Q and Vi, and Vi be linear finite element subspaces of W;’p((o, 1)3,R3) and of

Wy (Q,R3) respectively associated to Ty, and Tyr. Let @ € W2/ (Q R3) and u be

the minimizer of (22). Theorem!8 and formula (41) provide a minimizer u? = u}j’lh

of (23).
Then there exist positive constants C1 and Cs independent of h and H, such that

a41)

( o

[u—ulli, < Cih™ 5 55T 4 CuH T . (47)
Proof. Theorems 2, 4 and 6, Remark 3 and property (41) ensure the existence and
uniqueness of u and u’;, minimizers of (22) and (23).

We denote by W" the energy density W' since there is no ambiguity. For
A € M3(R), let us introduce the notation:

o (A) = ”gfgm (A), (48)
and
h
an(4) = a;g (4). (49)

Functions apem and ap may be shown to be well-defined respectively using the
homogenization theory of elliptic operators and the implicit function theorem (see
Section 4.2] for details).

The proof is divided in two steps, which aim at estimating apom(A) — ap(A)
for A € M3(R) and / (ahom(Vv) - ah(Vv)) -Vw for v € WHP(Q,R3) and w €
)

VVO1 P(2,IR3) respectively. The concluding argument uses monotonicity.
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Step 1. By definition,

Whom(A) = inf{ W(z,vU(x)+A)dz:veW;’P((o, 1)3,R3)}, (50)
(0,1)3

w"(4)

inf{ W(z,Vu(z)+ A)dx :v € Vh}. (51)
(0,1)®

As W is strictly convex, both minima are uniquely attained at v4 and v/. Inequal-
ity (9) then implies

(anom(A) — an(4)| < / oz A+ Voa) —a(z, A+ V)| (52)
(0,1)3
< CO|Vva— Vi, (14 A+ Voalop + (53)

|4+ Volifop) 7

On one hand, as v, is the minimizer of (50) and {x — 0} € W;#’p(((), 1)3,R3),
(L) implies
C(1+|APP) > W(z,A) > W (x, A+ Vva) > c|A+ Voalg -
(0,1)3 (0,1)3 ’
Thus o
~ L+ AP) = |A+ Voalg,,. (54)
The same inequality holds for v/.

On the other hand, Lemma [4 applied to v4 and v¥ with the regularity given by
Lemma 3| provides the error estimate

[va = vl < CRMP, (55)

1
for all A € [0,2[ and for s = atl

7 using the interpolation theory for P1-finite

elements.
Combining inequalities (52), (54) and (55) gives

|ahom(A) — an(A)| < Ch*MP(1 4 |AP~172). (56)
Step 2. Forallv € WHP(Q,R3) and w € W, *(€2, R?), (56) and the Holder inequality
imply
/ (ahom(Vv) - ah(VU)) : Vw‘ < ChseMp / (1 + |Vo(z)P~1=0)) | V|dz

Q Q
< CReNP (L4 [Vl ) [Vl -

(57)

Let uy be the unique solution in Vg of
/ tnom (Vg + Vi) - Vogr =0 Yoy € Vi, (58)
Q

and recall that u/; is the minimizer of (23), which thus satisfies the Euler-Lagrange
equation

/ an(Vauly + V) - Vo =0 Yoy € Vi, (59)
Q
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Taking v = u’}I + @, inequality (57) reads

‘/ (ahom(V(uﬁI + @) — an(V(uly + ﬁ))) : Vw‘
Q
< Ch*NP (14 |V (uly + @), Vewlop-
The same arguments as in the proof of (54) show
/ (ahom(V(u}}I +a))— ah(V(uZ + ﬂ))) . Vw‘
Q
< Ch*eNP (14 | Valy, )| Vw

(60)

|0,p-

As ug solves (58), ufy solves (59) and ug — ul; € Vg is an admissible test function
for both problems,

/Q (a0 (Vg + ) — (Yt + ) - V(ur —uf) =0, (61)

The monotonicity (10) of apem given by Theorem 4 implies

| (@hom (Vs + ) = anon(V (uly +0))) - Vs - u;;)\ > | Vun — Vil
Q

whereas inequalities (60)) and (61) give

/Q (ahom(V(uH + @) — anom (V(uly + a))) V(ug — uf,;)’

<

/Q<ahom(V(uH +a)) — ap(V(uly + ﬂ))) Y (u — u’ﬁ)’

+ /Q(ah(V(u’;{m))—ahom(V(ugm))) -V(uH—u;z,)‘

< Chsa)\/p(l + ”quug;l)HVuH — vu?[”O,p.

The Poincaré inequality shows that there exists a constant C; depending only on
¢, C, ay, B, |9, 4 and p, such that,

lurr — gl < CiR™/PED), (62)

As apom satisfies (9) with v = instead of «, a variant of Lemma 4/ implies

the existence of a constant C5 such that |u — ug|:p, < CoH 77 =7. The latter in-
equality, combined with (62)) for A = 2, implies

lu—ullip < CLR 55 55T 4+ CoH 7w,

O
This result is also true for scalar monotone equations as the Laplace equation, for
2 1 2
which p =2, a=1and § = 2. Inthiscase,M @ =land —— =
pB B-1 p(B —a)

According to Theorem [9, an optimal error is obtained for h ~ H in (47). This is
in agreement with the analysis performed by Allaire in [I]. In the general setting
of monotone operators for which the continuity assumption (9) is only assumed for
a = 0, the previous analysis is no longer valid. However the following more general
result holds.
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Theorem 10. With the notation of Theorem |9, assume Hypotheses |1 with o > 0
in (9) and p > B > 2 in (10). Then there exist positive constants Cy and Cy
independent of h and H, such that

2(a+1)

lu— w1, < Cih™ o5 B + CoH o . (63)

Proof. Let us follow the proof of Theorem [9 and focus on W instead of a. As the
continuity property (9) implies
1
W) - Wil = | [ a6 +ie - ) (@ - e
0

Clé —&|(L+ &P + 16 - &P
Cléo — &A1+ &P + &P,

IAIN

(57) can be replaced by

[ Whon(V0) =W (w0) | < CHAo(1 -+ D0, (64)
(60) by
/Q Whom(V (ujy +1)) = WH(V(ufy + @))| < ChMP(1 + [Valf,"), (65)
and (61) by
‘ /Q Whom (V(ug + @) — WV (uly + a))‘ < ChAMP(L+|Valfh). (66)

Inequality (66) is a direct consequence of the control of Wi,em — W close to the
minima on Vi of Wi,om and W

igf{AWho,,L(V(v+u))} —/QW’L(V(uHﬂLu))‘ < ChMP(1+|valh,h,

i%f{/QWh(V(eru))} - /QWhom(V(u}IfI—l-u))‘ < ChMP(1+|Valfh).

The following consequence of the monotonicity (10) of apnem (Theorem 1 in [29])
allows to conclude: since uy is a minimizer of / Whom(V (@ + +)) on the convex
Q

set Vg and u’}{ € Vy,

[ Wi (7 +0)) = Waam (V0 + a))\ > | Vur - Vg2, (67)
Q

Formula (63) is then obtained by combining (64), (65), (66) and (67).
O

1
Depending on how — compares with Ll’ either formula (47) or formula (63)

gives a better estimate. However Theorem [10/ is more general. The worst case is
a =0 and § = p, and then h ~ HP yields the optimal error in (63).

For the general quasiconvex case, we are not able to have a similar result. We
may however suppose that the optimal meshsize h for the cell problem given the
meshsize H for the homogenized problem could depend on p, the order of the growth
condition (1)).
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4. Numerical method. In this section, a direct approach to numerical homog-
enization in the framework of nonlinear elasticity is introduced. The numerical
resolution of (3)-(22) is directly tackled by solving (23)).

The method is presented in the convenient case of zero body force and Dirichlet
boundary conditions. The numerical tests of Section 6/ are also performed in this
setting. However the method adapts straightforwardly to more general body forces
and boundary conditions provided classical adaptations of the energy density and
of the variational spaces.

4.1. Presentation. The numerical analysis performed above makes use of a ball
B(u,T) where the minimizer u of (22)) is isolated. The minimizer u, and consequently
the ball B(u,7), being unknown in practice, the numerical approach consists in
considering, instead of (23), the problem

inf {JN" (v + a@)dz |v € Vo, }, (68)

for N and h fixed, using the notation (20)-(21).
This minimum value is attained since J™" is continuous on W1?(Q), JN¥:"(v) —
oo when |v|;,, — oo and Vg g is a finite dimensional space.

In the remainder of Section 4.1 the energy density W™:" defined by (20) is
supposed to be twice continuously differentiable. In this case, if u is a minimizer
of (68)) then u satisfies the Euler-Lagrange equation in the following weak form: for
all v € VQ, H,

6WN7]'L
o 0
The nonlinear equation (69) is solved by an iterative Newton-Raphson method.
Knowing u™ at step n, the associated linearized problem at step n + 1 reads: find
u™*1 such that for all v € Vo,

awN,h B " 82wN,h
/Q( o€ (V(a+u ))-1-7852

and iterate until convergence.

To perform the Newton-Raphson method, an explicit expression of the stress
N,h 92W N
and the stiffness matrix ———— is needed. This is the matter of

23 0¢?

the following section.

(V(u+a)) - Vo = 0. (69)

(V(@+u™) - (Vu"+! — vu")) Vv =0, (70)

tensor

4.2. Computation of the stress tensor and the stiffness matrix. This section
aims at introducing two quantities (Theorem [12) that can actually be computed
and that may be identified as the stress tensor and the stiffness matrix of the
homogenized constitutive relation in some simple cases (Theorem [13)). The validity
of this identification is discussed in the general case at the end of this section.

Let

I Ms(R) x WiP((0,N)?) —R

& o) — W(y, &+ Vo(y))dy,
(0,N)3

and {¢;}; be a basis of Vi 5.
The following hypotheses are made so that I be regular.
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Hypotheses 2. The function W (y,-) is three times continuously differentiable on
M3(R) and satisfies (1) and the followz'ng growth properties

O3W

wac{|F 0 G ol S ol <caslen @
In addition V., C WH22((0, N)3).
Let us first study the differentiability of I.
Lemma 5. If W and Vi, satisfy Hypotheses|2, then I € C3(M3(R) x Vi p,R).

Proof. This proof is classical (see [20] e.g.) and is only sketched for the first
derivative.

As Vi € L*®((0,N)3) = LY((0,N)3) and %Z(y, -) sends LP((0,N)3) on
L*((0,N)3) thanks to (71), Lemma 2 implies that for all ¢ € Vi, and ¢ € M3(R),

(y,( + Vx) - V¥ is continuous on Vi j,.
(o.nys OE

Next, for all ¢ € Vi, and ¢ € M3(R), oy ¢ is defined by

o+ (69) = 5 (W5, C+ Tx(y) + 190(9) ~ Wiy, ¢+ Vx()).

The Fréchet derivative of W at ¢ + Vx(y) in the direction Vi (y) is given by

lim O'w((ﬁ, y)dy
t—0 (0,N)3
o ow
Pointwise, hm 10y, c(y,t) = G —(y, ¢+ V() - Vi (y).
As W(y,-) is C’l for all t € (0,1) there exists 6 € (0,1) such that

ow
Tuc(:t) = e (0, C+ Vx(y) + 0Ve(y)) - Vo ly).
Using (71), oy ¢(y,t) is uniformly dominated in ¢ by the integrable function
(v, ) = CA+ (V)] + [V )] + <D ]1,00-

The Lebesgue dominated convergence theorem shows

oI 1%
afd)(ax)-d)— oy D8 - W, (+Vx) - V. (72)
Similarly,
oI 1914
0= [ Gy (73)

where Id is the fourth order identity tensor. As the right hand sides are continuous
n (72) and (73), I is C* on M3(R) X Vi p.

Repeating the same arguments, I is proved to be three times continuously dif-
ferentiable.
O
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Definition 10. For all A € M3(R), ¢ € Vi is said to be a local minimizer of
I(A,-) on Vi if there exists r > 0 such that for all y € B(¢,r) NV, I(A,¢) <
I(A,1).

A local minimizer ¢ is global if for all ¢ € Vv i, I(A, ¢) < I(A, ).

A minimizer ¢ on Vi, is isolated if there exists p > 0 and if for all ¢ € B(¢,p) N
Vn.n such that ¢ # ¢, 1(A, ¢) < I(A, ).

Hypotheses 3. Given A € M3(R), there exists a minimizer ¢ of I(A,-) on Vy p,
satisfying
o ¢ is an isolated global minimizer on Vy j
2

o the Hessian matrix / V%(y)T . g VQV(y,A +Vo(y)) - Vi (y)dy is
(O’N)S ag

2]

positive definite.

Theorem 11. Let W and Vi, satisfy Hypotheses|2 and (A, ¢) € M3(R) x Vyp,
satisfy Hypotheses!|3, then there exist two open balls B4 C M3(R) and By C Vy p,
and there exists a function g5 € C*(Ba, By), such that for all € € Ba, g4(§) is an
isolated local minimizer of I(§,-) on Vi .

In addition, for {e;}1<i<9 @ basis of M3(R),

MK:A ei = Vo,

23

where v; is the solution in V5, of

W
/ (a(z%g)f—A+v¢(y) “(ei + sz-)> VY =0 Yoe Vi (74)
(0.N)? 9¢

and 92 ©
Vge(&
TgZK:A tej Qe = Vwij,
where w;; is the solution in Vi ,;, of
PW(y,€)
/(0 Ny ( og2 |e=A+Yow) - Vwij+ (75)
W (y,
@g(g 5)’|£:A+v¢(y) (e + Vi) - (e + VUj)) VYp=0 VyeVyn.

Proof. In this proof, v and {¥;}1<;<, denote the dimension and a basis of Vi .
Theorem (11! is a direct application of the implicit function theorem to
I Mg(R) X VN,h — RY
(¢, x) = (¢, X)),

where

0
| B e x) Vel
(0,N)?

m(Cx) =
ow
/ e W ¢+ Vx(y)) - Vi (y)dy
o,n) 08
As I'is C3, m € C*(M3(R) x Vy 5, RY) and by definition of ¢, m(A,¢) = 0. As
on
ax

(A, ¢) is invertible since it is the Hessian matrix of Hypotheses [3, the implicit
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function theorem shows that there exist two open balls Bs > A and By > ¢ and a
function g4 : Ba — By such that for all ( € Ba, g4({) is the unique solution in By
of (¢,-) = 0. In addition, g, is twice continuously differentiable.

77
— (A, ¢) is positive definite, there exists a non

ox

As 8—7T(§, 94(C)) is continuous and
X
~ 0
empty open ball By C B4 such that for all { € Ba, %((,g(f,(g)) is also positive

definite, which implies that g4(¢) is an isolated local minimizer of I({,-) on Vi .

Equations (74) and (75) are then obtained by differentiating once and twice

respectively ¢ — (¢, g4(¢)) at ¢ = A.
O

Theorem 12. Assume that W satisfies Hypotheses 2 and that (A, ¢) satisfies Hy-
potheses [3, then, with the notation of Theorem [11, the function & — I(&, gs(§)) is
twice continuously differentiable on By at £ = A and its derivatives are given by

d _ W (y,§)

&I(gﬂ g¢(§)))§:A - /(;) N)Si‘ﬁ A+V¢o(y d% (76)
d? _ 0Vgy(£) ’
S1en©)_, - /( . (Id+ )| A) )

Wy, §) 3Vg
o ‘s A+vVe(y) - | 1d+ ¢ ‘5A dy,

where Id is the fourth order identity tensor.

Proof. The function & — I(§, g4(€)) is twice continuously differentiable on B4 at
¢ = A as the composition of two differentiable functions. A direct calculus shows

d oW ( oV
d—g[(&%(f))\g:fx = /(o N)Syf‘g AYVe(y) * (Id+ gz(O ‘5—A(?J)) dy.
As ¢ satisfies 7(A, ¢) =0 and v (%(5) € Vn,
AW (y,€) IVygs(§) _
/(0 N)3T§‘£ A+Vo(y) * Tg’f:ﬁt(y)dy =0,

which proves (706).

An analogous calculus leads to formula (77).
O

In general, whereas W (¢) is only defined by (20), (£, g4(€)) is the only quan-
tity that can be computed. If the global minimizer defining W*-"(¢) is unique and
depends continuously on & then WN:"(¢) = I(€, g4(€)). This is indeed the case for
strictly convex energy densities as stated in

Theorem 13. In addition to Hypotheses |2 and 3, assume, with the notation of
Theorem [11), that W (y,-) is strictly convex for almost every y. Then, for all A €
M3 (R), the minimizer ¢ of I(A,-) on Vi is unique, WN-" is twice differentiable,
WNh(€) = 1(£,94(€)) and its derivatives are given by the right hand sides of (76)
and (77) respectively.
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Proof. Thanks to strict convexity and Hypotheses 3, the minimizer ¢ is unique and
the Hessian is positive definite for all couples (A, ¢(A)). The function g4 does not
depend on ¢ and is denoted by g. It is defined on M3(R) and for all £ € M3(R), g(&)
is the unique global minimizer of I(£, ) on Vi 5, which implies WN"(¢) = I(¢, g(£)).

O

When dealing with nonconvex energy densities, the simple analysis performed
above does not apply. We however use the derivatives of I(£, g,(§)) in practice in
order to compute the stress tensor and the stiffness matrix for the homogenized
constitutive law. The assumption that I(£, g(§)) is a global minimizer is strong
since its validity cannot be infered a posteriori. If the Newton algorithm converges,
we have found a critical point of a numerical energy, that is expected to be close to
the homogenized energy.

Following the work of Geymonat, Miiller and Triantafyllidis in [14], this section
can be rewritten in a variational setting. More precise results can be obtained
assuming the exclusion of discontinuous bifurcations in the minimization of the cell-
problems and making other assumptions hard to verify in practice. Our presentation
is restricted to what the algorithm can actually perform and is therefore limited to
local minimizers in general. If the computed minimizer happens to be global, then
the results of [14] (Section 5.2) apply and justify the numerical approach.

4.3. Implementation of the algorithm in a nonlinear elasticity software.
The direct approach to numerical homogenization presented here can be used in a
nonlinear elasticity solver by using the right hand sides of (76) and (77) as derivatives
for the stress tensor and the stiffness matrix in (70). This method has the important
advantage not to modify the structure of the existing solver.

This method has been implemented within a classical finite element code (Mod-
ulef, INRIA, see [30] and [23]). The call of an analytical formula giving the stress
tensor and the stiffness matrix at each Gauss point has been replaced by a subrou-
tine solving itself a nonlinear elasticity cell problem (20) and providing the main
program with (76) and (77). The global structure of the code remains therefore
unchanged. Any sophisticated technique already used in the code directly adapts
without modification: mixed finite elements, augmented Lagrangians, arc-length
continuation and parallelization (see [30] and [20]). Numerical tests are reported on
in the last section.

The major part of the computational cost comes from the computation of the
homogenized constitutive law, as opposed to a classical nonlinear elasticity problem
for which this is a simple evaluation of an analytical formula. For the computation
of this homogenized constitutive relation itself, the main cost comes from solving the
cell-problem (20). The resolution of linear systems is performed by direct inversions,
such as Cholesky factorization, because of the large condition number and the lack
of efficient preconditionners for nonlinear elasticity problems. Once the cell-problem
is solved, the computation of (76) and (77) is obtained by solving a linear system
with nine different right hand sides. This linear system is indeed the same as in
the last iteration of the Newton algorithm solving the cell-problem, it is therefore
already factorized.

On a PC with 2GB of memory, a three dimensional elasticity problem with
40 000 degrees of freedom can be solved without domain decomposition methods,
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which means for Q2-finite elements a mesh with 12 nodes per dimension in the cell-
problem. In that sense, the cell-problems are a limiting factor. On the other hand
the global CPU time does not vary too much with respect to the number of degrees
of freedom of the macroscopic problem provided efficient domain decomposition
methods and parallel computing for the macroscopic problem are used.

A simple way to reduce the cost of computation of the homogenized constitutive
law is not to recompute it at each step if the strain gradient has not changed too
much and to use the solution at the previous step or at a neighboring Gauss point
as an initial guess in the cell-problem. Going further in this direction, another pos-
sibility would be to precompute and tabulate the homogenized constitutive relation
for a wide number of strain gradients, in the spirit of the numerical practice for
combustion problems. The latter issue has not been addressed in this work. How-
ever it is worth noticing that the convergence property of the Newton algorithm is
very sensitive to the approximation of the stiffness matrix, which can be an obstacle
for this kind of approach.

5. Alternative method: multiscale finite elements (MsFEM). It is inter-
esting to relate the direct method with more elaborate approaches, such as the
multiscale finite element method.

5.1. Description of the method. We refer to the work of Hou, Efendiev and
coauthors ([17],[11],]26]) for the detailed description of the MSFEM in the linear
and nonlinear settings.

This method has primarily been designed in [I7] to solve efficiently the linear
elliptic equation arising in porous media flows in heterogeneous materials. It has
then beem extended from the linear case to the monotone case in [11] and [26]. This
method is proved to converge in the periodic setting. It has also been used in a
more general context and turns out to be quite efficient in the cases reported on by
the authors.

Basically, the MsFEM is a Galerkin method for which the solution is searched in
a specific space associated to the elliptic operator. Its convergence is then proved
thanks to the homogenization theory. Conversely, in problem (23), a classical
Galerkin space (classical finite elements) is used but the original elliptic opera-
tor is approximated by its homogenized operator. Although the methods seem to
be different at first sight, they turn out to be identical under some hypotheses.

In the setting of periodic homogenization, Hou and coworkers exploit the peri-
odicity of the operator to compute the multiscale finite element manifold on one
periodic cell instead of one element (triangle or tetrahedra), which drastically re-
duces the size of the problems. In this case, the MSFEM exactly consists in solv-
ing (23) as shown in the next paragraph and coincides with the direct approach.
This observation allows us to apply Theorem |9, which thus provides us with some
insight in the choice of the meshsize of the fine triangulation used in the MsMFEM.
In their analysis, Hou and coauthors have focused on the resonance error linked to
the boundary condition used to build the multiscale finite elements. They have not
addressed the question of the influence on the global error of the approximation by
a Galerkin method of the multiscale map itself. This has been answered by Allaire
in [1] in the linear case. The result may indeed be different in the nonlinear setting
as shown by Theorem [9.



NUMERICAL HOMOGENIZATION IN FINITE ELASTICITY 135

5.2. Comparison of the two methods in the periodic setting. The analysis
of the MSFEM requires a corrector result. In order to compare the two methods
a monotone operator is considered in the setting of periodic homogenization of
Section 2.4 The notation of Theorems |4/ and |5/ is used.

We suppose that the macroscopic mesh perfectly fits to the underlying periodic
structure so that there is no mismatch (triangular mesh with equilateral triangles
and periodic structure with equilateral triangle in 2D e.g.). This technical require-
ment allows us to use a single periodic cell in order to compute the multiscale map
(i.d. basis functions in the linear case), as pointed out in [11]. In this case, there is
no resonance error due to the boundary conditions.

Let us give some details on the computation of the multiscale finite element
map in the Pl-Lagrange case. The triangulation 7y and the finite element space
Vi introduced in Theorem 9] are used. Given an element T' € 7g and a function
u € Vg, the associated multiscale function w is defined on T" by

x
w(z) = u(z) + GVU“T(E)’
where v,,,. is the solution in VV;;”((O7 1)3) of

—div (a(y, Vur + Vo, (y))) =0 in (0,1)3, (78)

and Vur is the gradient of u, which is constant on T since u € V. As u € Vg
implies M .Vu = Vu, (78) is exactly (11) and the multiscale function w is thus
exactly the sum of a classical part, the finite element function u, and of its associated
corrector given by Theorem 5. In order to compare the formulation (7)), completed
by the corrector, to the MsFEM, we just have to compare the classical parts of the
solutions.

Consider the multiscale finite element solution wpsspgy of problem (6) in the
sense of a Petrov-Galerkin formulation, see [1I]. By definition of the MSFEM, for
all P1-Lagrange shape functions {u;}; on 7y, we have with obvious notation:

/ a(f’ Vwysrem(z)) - Vu, (o)
Q €

= XT:/Ta,(f,VuMSFEM(x) +eruT(§)) - (Vuj)r

XT:/Tahom((VUMsFEM>T) - (Vuy)r
/Qahom (VUMSFEM(SC)> - Vu,(z).

Therefore, warsprnm is the MSFEM solution to (6) if and only if uaspear is the
(classical) finite element solution ugy to (7).

In the previous analysis, (78) is solved exactly. Suppose from now on that (78])
is solved on V}, as in Theorem 9. Denoting by wﬁ/ls reay the approximate multiscale
solution, the same calculation as above shows

x
[ oV uhssras(@) - Vus(@) = [ on(Vibrapen(@) - Vo)
where ay, is given by (49). Thus, u?, gy = by, where u’; is the solution of (23) in
the particular case of Theorem 9. Therefore the error analysis of Section 3.3/ can be

applied to the MsFEM, providing an a priori indication for the order of magnitude
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of the meshsize h of the fine triangulation in function of the meshsize H of the rough
triangulation and of the continuity and properties (9) and (10) of the operator a.

6. Numerical tests. This section is dedicated to numerical tests in nonlinear elas-
ticity. The numerical tests of the first paragraph confirm the simple analysis pre-
sented above for convex energy densities. In the subsequent paragraphs, some issues
of theoretical and practical interest are investigated with the use of numerical ex-
periments:

e buckling in the cell-problem;
e instability of the homogenized energy;
e application of the method to a wider class of energy densities.

6.1. The convex case. Problem (22) is considered with the following energy den-
sity:
W: (0,12 x M3(R) — R
(y,€) = nE*+ 0P,

where 71,72 > 1 is Lipschitz and 1-periodic on R?. Theorem [9 and Lemma [4] apply
with p =4, a =1, = 2 so that the error estimate (47) reads

|1,p < Clhl/Q—‘rCQHl/Q. (79)

o — iy

In this case, the algorithm indeed converges, the result does not depend on the
number of periodic cells N considered. The numerical tests performed so far seem
to show that the rate of convergence (79)) is not sharp. Definite conclusions on this
optimality issue are yet to be obtained (see [15]).

6.2. Buckling of the cell-problem in the standard case. In the convex case,
the infimum in (5)) is attained on one periodic cell, for N = 1. In [25], S. Miiller
gives an example in two dimensions for which the infimum in (5)) is strictly smaller
than the infimum on one single periodic cell. This example relies on the mechanical
concept of buckling of a rigid bar in compression: there is a bifurcation and the
equilibrium state with the lowest energy breaks the symmetry of the problem.

In three dimensions, the corresponding energy density reads

W: MsR — R
3 = [€* 4 h(det(€)),

where h is given by

h: R — R
12(1 2
roe #712(1+a)79 if 7> 0,
r+a
12(1 2 12(1 2
M—12(1+a)—9—¥r ifr <o,
r+a a

with a €]0,1/2].

In the numerical tests, a = 0.25 and the following energy density has been
used in the periodic cell (0,1)%: W(y,&) = C(y)W(€), where C(y) = 0.01 if y €
(0,1/2) x (0,1)* and C(y) = 10 if y € (1/2,1) x (0,1)%. This models a layered
material, whose energy density satisfies the hypotheses of Theorem 2.
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Period 1= 3 g 2 13 17 3
Energy 5.813 5.388 4.313 3.736 3.587 3.530 3405
Ratio? 0 -T4A% -25.8% -35.8% -538.3% -30.3% -39.9%
—0.0623 —0.0461 —0.0541 —0.0621 —0.0620 —0.0587 —0.0553
Stre=s tenzor® —9.35 —4.30 —-1.78 —0.693 —0.426 —0.319 —0.246
—36.8 —16.1 —6.41 —2.45 —1.50 —-112 —0.867

Table 2: Mumerical teata on 5. Miller's example

2reference
bdifference with the reference energy
“thiz ten=cr turns out to be diagonal

Tk h Th T.h
Pz i | g™ — g lhallug s
0.2620 14 12%

Table 3: Influence of ¥ on ug’h

The cell-problem (20) has been solved for

1 0 O
A=1 01 0
0 0 08

and different numbers of periodic cells. The results are collected in Table 2. The
energies of the solutions and the associated stress tensors are displayed versus the
periods of the solutions. As the periods of the solutions increase, the energies
of the solutions decrease and the material relaxes its stress. Therefore, several
periodic cells have to be taken into account to reach the limit in (5)). This is not
an easy task since tracking bifurcations is quite hard in practice with a Newton
method. In addition, even in the cases presented above, for which the form of the
bifurcation is intuitive, the solution is very sensitive to the initial guess. This makes
the automation of the procedure quite tricky.

We have also checked on an example the influence of the buckling of the cell-
problem on the solution of the macroscopic problem itself. The test consists in
the compression of 20% of a cube in the vertical direction, it is simple enough
to allow us to automatically find the buckling in the cell-problems and complex
enough not to have a trivial solution. The result shows that the minimizers of the
numerical homogenized energies are also very different, even when the test is quite
simple. The resolution of the macroscopic problem does not simplify or reduce
the influence of buckling of the cell-problem. This test has been performed for
1-periodic (no buckling) and 3-periodic solutions (buckling) of the cell-problems.
The norm of the difference between the two macroscopic solutions is reported on
in Table 3. Qualitatively both macroscopic solutions respect the anisotropy of the
heterogenous material in the (0x) direction. However, the more the solutions of the
cell-problems get relaxed, the smaller the macroscopic deformation is.

The way to choose the number N of cells for computing the homogenized prop-
erties of a nonconvex energy is not clear. Either there is no such phenomenon as
buckling and one periodic cell is enough, or several cells have to be considered.
In the latter case, the numerical practice is complex since local minimizers of the
cell-problem strongly depend on the initial guess. Without an a priori knowledge
of the behavior of the minimizers (as opposed to the case dealt with in the present
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Ficure 1. 2, 3 and 4 shear bands

section), the global algorithm cannot be used in practice. This a priori knowl-
edge is problem-dependent and can only be obtained by a systematic study of the
cell-problem at stake.

6.3. Shear band instabilities. In [I4], Geymonat et. al. have studied the sta-
bility of homogenized energy densities and have suggested that, under some hy-
potheses, the homogenized material can develop shear band instabilities, that is no
resistance of the material in at least one shear direction.

These shear band instabilities are linked to a loss of strict rank-one convexity of
the homogenized energy density: there exist two vectors a,b € R? such that for all
A € M3(R) the function R — R, ¢ — Whom (A + ta ® b) is convex but not strictly
convex.

We have performed numerical tests and have obtained several corresponding
shear bands, strongly depending on the mesh. The problem considered is of type (68)
and is posed on a cube submitted to:

e u(x) = —0.2x3e3 on the faces z3 = 0 and z3 = 1;
e homogeneous natural boundary conditions elsewhere.

The cell-problem has been posed on one single periodic cell. The deformed solutions
showing the shear bands are plotted on Figure [1.

This shear band instability is the cause of two major difficulties: the approxi-
mation result of Section [3 is not valid any more since the minimizer is not isolated
and the Newton algorithm fails to converge. Mechanically speaking this property
of the homogenized energy density is an artefact due to the homogenization pro-
cedure: the real layered material with € > 0 is strictly rank-one convex and does
not have shear band instabilities at any scale. Therefore, the homogenized energy
has non-mechanical minimizers, which makes the numerical practice impossible. In
order to be able to compute minimizers and to recover an approximation result we
can stabilize the approximate energy density by adding a small strictly rank-one
convex perturbation.

This stabilization procedure, which is naive and may certainly be improved in
many ways, can also be seen as a filtering procedure which allows us to get rid of
a range of meaningless minimizers. In numerical tests, stabilizing in such a way is
not always sufficient to guarantee the convergence of the Newton algorithm as the
macroscopic mesh gets finer. We are indeed limited by the ratio between the mesh
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FIGURE 2. Two examples of unit cell (in 2D)

of the cell-problem and the mesh of the macroscopic domain to go further in the
numerical study.

Buckling is clearly a limit of the numerical approach developed throughout the
paper. We have thus tried to determine numerically, for specific periodic cells, the
occurrence of buckling in the cell-problem for a given range of loads A. With the
constitutive law of S. Miiller and a ratio of 1000, as for C(y), we have not been able
to make cell-problems buckle within a wide range of loads for two simple geometries:
a cubic inclusion in a matrix and a three-dimensional chessboard. This is no proof
that we have reached a solution with the lowest energy but it allows us to deal with
numerically stable cases.

6.4. Tests on a wider class of energies. Cases of practical interest do not usually
satisfy the growth condition (1)) and the homogenization formula (4) has not been
proved in this framework. We have however tested the numerical method in such a
case. The basic example of a polyconvex energy density dealt with models an ideal
rubber foam, that is a material made of a rubber matrix with air bubbles of a few
microns at a given concentration. Several constitutive laws have been proposed in
the literature to model rubber foams. They are however more likely to give a coarse
description than provide with quantitative results ([3],[9]).

The material considered is obtained by the periodic replication of a unit cell.
This cell is composed of a rubber matrix and a bubble of air. The rubber matrix is
a cube and the bubble is supposed spherical as in Figure 2. The proportion of air
ranges from 5% to 15% in the numerical experiments.

A classical constitutive law for rubber-like materials is the Ciarlet-Geymonat con-
stitutive law. Its stored energy function W is polyconvex and depends on the three
invariants of the strain tensor Vu, it is characterized by three positive constants
C1, Cq, a, and is given by

W(F) = Cl(Il — 3) + CQ(IQ — 3) + a(Ig — 1) — (Cl +2C5 + a)lnI3,
where I; = Tr(C), I, = 1/2(Tr(C)? — Tr(C?)) and I3 = det(C), with
C =T (Id+ Vu) - (Id + Vu). The term In(I3) does not satisfy (1).

The numerical values of the above constants are typically

Ci = 0.5MPa,
Cy = 0.0056 M Pa.
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FIGURE 3. Compression and extension (15%) of a porous rubber

W is compressible for finite a, typically of the order of C;. In the limit a — oo
the material becomes incompressible. Quasi-incompressible materials are materials
with a finite but quite important a. In the quasi-incompressible case, numerical
difficulties arise (locking) if the volumetric part of W (that is the part depending
on I3) is not treated correctly ([20]). In Modulef, this difficulty is overcome thanks
to a mixed formulation ([30]).

We have carried out some numerical tests with such cell-problems and constitu-
tive relations. Among these were the Rivlin cube test, a test of compression and
a test of extension of a simple cube (Figure [3). In the cases under investigation,
the algorithm is quite stable for a wide range of loads and has not encountered
the convergence difficulties linked to the loss of strict rank-one convexity. The ge-
ometry has been chosen in order to allow us to use a unique periodic cell in the
cell-problem. Therefore we have not numerically investigated the influence of the
number of periodic cells for Ogden laws. The aim of the tests is to check the fea-
sibility of the approach; the behavior of the solution when H and h go to zero has
not been addressed in the present work.
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