Research article Special Issues

The fractional $ p $-Laplacian on hyperbolic spaces

  • Published: 27 January 2026
  • We present three equivalent definitions of the fractional $ p $-Laplacian $ (-\Delta_{\mathbb{H}^{n}})^{s}_{p} $, $ 0 < s < 1 $, $ p > 1 $, with normalizing constants, on hyperbolic spaces. The explicit values of the constants enable us to study the convergence of the fractional $ p $-Laplacian to the $ p $-Laplacian as $ s \to 1^{-} $.

    Citation: Jongmyeong Kim, Minhyun Kim, Ki-Ahm Lee. The fractional $ p $-Laplacian on hyperbolic spaces[J]. Mathematics in Engineering, 2026, 8(1): 70-97. doi: 10.3934/mine.2026003

    Related Papers:

  • We present three equivalent definitions of the fractional $ p $-Laplacian $ (-\Delta_{\mathbb{H}^{n}})^{s}_{p} $, $ 0 < s < 1 $, $ p > 1 $, with normalizing constants, on hyperbolic spaces. The explicit values of the constants enable us to study the convergence of the fractional $ p $-Laplacian to the $ p $-Laplacian as $ s \to 1^{-} $.



    加载中


    [1] D. Alonso-Orán, A. Córdoba, A. D. Martínez, Integral representation for fractional Laplace-Beltrami operators, Adv. Math., 328 (2018), 436–445. https://doi.org/10.1016/j.aim.2018.01.014 doi: 10.1016/j.aim.2018.01.014
    [2] V. Banica, M del Mar González, M. Sáez, Some constructions for the fractional Laplacian on noncompact manifolds, Rev. Mat. Iberoam., 31 (2015), 681–712. https://doi.org/10.4171/rmi/850 doi: 10.4171/rmi/850
    [3] S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci., 35 (1949), 368–370. https://doi.org/10.1073/pnas.35.7.368 doi: 10.1073/pnas.35.7.368
    [4] C. Bucur, M. Squassina, An asymptotic expansion for the fractional $p$-Laplacian and for gradient-dependent nonlocal operators, Commun. Contemp. Math., 24 (202), 2150021. https://doi.org/10.1142/S0219199721500218 doi: 10.1142/S0219199721500218
    [5] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [6] L. Caffarelli, Y. Sire, On some pointwise inequalities involving nonlocal operators, In: S. Chanillo, B. Franchi, G. Lu, C. Perez, E. Sawyer, Harmonic analysis, partial differential equations and applications, Applied and Numerical Harmonic Analysis, Birkhäuser, 2017, 1–18. https://doi.org/10.1007/978-3-319-52742-0_1
    [7] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., 62 (2009), 597–638. https://doi.org/10.1002/cpa.20274 doi: 10.1002/cpa.20274
    [8] L. Capogna, J. Kline, R. Korte, N. Shanmugalingam, M. Snipes, Neumann problems for $p$-harmonic functions, and induced nonlocal operators in metric measure spaces, Amer. J. Math., 147 (2025), 1653–1711. https://doi.org/10.1353/ajm.2025.a975705 doi: 10.1353/ajm.2025.a975705
    [9] S. Y. A. Chang, M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410–1432. https://doi.org/10.1016/j.aim.2010.07.016 doi: 10.1016/j.aim.2010.07.016
    [10] Z. Q. Chen, T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Relat. Fields, 140 (2008), 277–317. https://doi.org/10.1007/s00440-007-0070-5 doi: 10.1007/s00440-007-0070-5
    [11] O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, J. L. Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math., 330 (2018), 688–738. https://doi.org/10.1016/j.aim.2018.03.023 doi: 10.1016/j.aim.2018.03.023
    [12] T. Coulhon, E. Russ, V. Tardivel-Nachef, Sobolev algebras on Lie groups and Riemannian manifolds, Amer. J. Math., 123 (2001), 283–342. https://doi.org/10.1353/ajm.2001.0009 doi: 10.1353/ajm.2001.0009
    [13] P. L. De Nápoli, P. R. Stinga, Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups, In: D. Danielli, A. Petrosyan, C. A. Pop, New developments in the analysis of nonlocal operators, American Mathematical Society, 723 (2019), 167–189.
    [14] F. del Teso, D. Gómez-Castro, J. L. Vázquez, Three representations of the fractional p-Laplacian: semigroup, extension and Balakrishnan formulas, Fract. Calc. Appl. Anal., 24 (2021), 966–1002. https://doi.org/10.1515/fca-2021-0042 doi: 10.1515/fca-2021-0042
    [15] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [16] F. Ferrari, B. Franchi, Harnack inequality for fractional sub-Laplacians in Carnot groups, Math. Z., 279 (2015), 435–458. https://doi.org/10.1007/s00209-014-1376-5 doi: 10.1007/s00209-014-1376-5
    [17] F. Ferrara, M. Miranda, D. Pallara, A. Pinamonti, Y. Sire, Fractional Laplacians, perimeters and heat semigroups in Carnot groups, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 477–491. https://doi.org/10.3934/dcdss.2018026 doi: 10.3934/dcdss.2018026
    [18] R. L. Frank, D. Lenz, D. Wingert, Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory, J. Funct. Anal., 266 (2014), 4765–4808. https://doi.org/10.1016/j.jfa.2014.02.008 doi: 10.1016/j.jfa.2014.02.008
    [19] M. González, Recent progress on the fractional Laplacian in conformal geometry, In: G. Palatucci, T. Kuusi, Recent developments in nonlocal theory, Warsaw, Poland: De Gruyter Open Poland, 2018,236–273. https://doi.org/10.1515/9783110571561-008
    [20] C. R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003), 89–118.
    [21] A. Grigor'yan, Heat kernels and function theory on metric measure spaces, Contemp. Math., 338 (2003), 143–172.
    [22] A. Grigor'yan, J. Hu, K. S. Lau, Estimates of heat kernels for non-local regular Dirichlet forms, Trans. Amer. Math. Soc., 366 (2014), 6397–6441.
    [23] A. Grigor'yan, M. Noguchi, The heat kernel on hyperbolic space, Bull. London Math. Soc., 30 (1998), 643–650. https://doi.org/10.1112/S0024609398004780 doi: 10.1112/S0024609398004780
    [24] L. Guo, B. Zhang, Y. Zhang, Fractional p-Laplacian equations on Riemannian manifolds, Electron. J. Diff. Eq., 2018 (2018), 1–17.
    [25] H. Ishii, G. Nakamura, A class of integral equations and approximation of $p$-Laplace equations, Calc. Var., 37 (2010), 485–522. https://doi.org/10.1007/s00526-009-0274-x doi: 10.1007/s00526-009-0274-x
    [26] C. M. Joshi, S. K. Bissu, Inequalities for some special functions, J. Comput. Appl. Math., 69 (1996), 251–259. https://doi.org/10.1016/0377-0427(95)00042-9 doi: 10.1016/0377-0427(95)00042-9
    [27] J. Kim, M. Kim, K. A. Lee, Harnack inequality for fractional Laplacian-type operators on hyperbolic spaces, arXiv, 2021. https://doi.org/10.48550/arXiv.2108.08746
    [28] J. Korvenpää, T. Kuusi, E. Lindgren, Equivalence of solutions to fractional $p$-Laplace type equations, J. Math. Pures Appl., 132 (2019), 1–26. https://doi.org/10.1016/j.matpur.2017.10.004 doi: 10.1016/j.matpur.2017.10.004
    [29] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7–51. https://doi.org/10.1515/fca-2017-0002 doi: 10.1515/fca-2017-0002
    [30] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, The NIST handbook of mathematical functions, Cambridge University Press, 2010.
    [31] P. R. Stinga, J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Part. Diff. Eq., 35 (2010), 2092–2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(86) PDF downloads(15) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog