Research article

Far field refraction problem with loss of energy in negative refractive index material

  • Published: 02 February 2026
  • This paper studies the far field refraction problem in negative refractive index material with loss of energy, which is a remaining problem in E. Stachura, Nonlinear Anal. 2017;157:76-103. The analysis is divided into two cases according to the relative refractive index $ \kappa $, that is, $ \kappa < -1 $ and $ -1 < \kappa < 0 $. For each case, we use the Minkowski method to establish the existence of the weak solution when the target measure is either discrete or a finite Radon measure. Eventually, the inequality involving a Monge-Ampère type operator satisfied by the solution of the problem is derived, which is useful to understand this complex optical phenomenon.

    Citation: Haokun Sui, Feida Jiang. Far field refraction problem with loss of energy in negative refractive index material[J]. Mathematics in Engineering, 2026, 8(1): 98-139. doi: 10.3934/mine.2026004

    Related Papers:

  • This paper studies the far field refraction problem in negative refractive index material with loss of energy, which is a remaining problem in E. Stachura, Nonlinear Anal. 2017;157:76-103. The analysis is divided into two cases according to the relative refractive index $ \kappa $, that is, $ \kappa < -1 $ and $ -1 < \kappa < 0 $. For each case, we use the Minkowski method to establish the existence of the weak solution when the target measure is either discrete or a finite Radon measure. Eventually, the inequality involving a Monge-Ampère type operator satisfied by the solution of the problem is derived, which is useful to understand this complex optical phenomenon.



    加载中


    [1] I. Amro, F. Fneish, R. Kansoh, A. Sabra, W. Tabbara, Inverse problems with hybrid lenses, J. Math. Anal. Appl., 539 (2024), 128645. https://doi.org/10.1016/j.jmaa.2024.128645 doi: 10.1016/j.jmaa.2024.128645
    [2] M. Born, E. Wolf, Principles of optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7 Eds., Cambridge University Press, 2013.
    [3] S. Collardey, A. C. Tarot, P. Pouliguen, K. Mahdjoubi, Use of electromagnetic band-gap materials for RCS reduction, Microw. Opt. Techn. Lett., 44 (2005), 546–550. https://doi.org/10.1002/mop.20693 doi: 10.1002/mop.20693
    [4] W. Ding, L. Chen, C. H. Liang, Characteristics of electromagnetic wave propagation in biaxial anisotropic left-handed materials, Prog. Electroma. Res., 70 (2007), 37–52. https://doi.org/10.2528/PIER07011001 doi: 10.2528/PIER07011001
    [5] R. De Leo, C. E. Gutiérrez, H. Mawi, On the numerical solution of the far field refractor problem, Nonlinear Anal., 157 (2017), 123–145. https://doi.org/10.1016/j.na.2017.03.009 doi: 10.1016/j.na.2017.03.009
    [6] L. C. Evans, Partial differential equations, American Mathematical Society, 2010.
    [7] S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, P. Vincent, A metamaterial for directive emission, Phys. Rev. Lett., 89 (2002), 213902. https://doi.org/10.1103/PhysRevLett.89.213902 doi: 10.1103/PhysRevLett.89.213902
    [8] C. E. Gutiérrez, Q. Huang, The refractor problem in reshaping light beams, Arch. Ration. Mech. Anal., 193 (2009), 423–443. https://doi.org/10.1007/s00205-008-0165-x doi: 10.1007/s00205-008-0165-x
    [9] C. E. Gutiérrez, Q. Huang, The near field refractor, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 655–684. https://doi.org/10.1016/j.anihpc.2013.07.001 doi: 10.1016/j.anihpc.2013.07.001
    [10] C. E. Gutiérrez, Q. Huang, H. Mawi, Refractors in anisotropic media associated with norms, Nonlinear Anal., 188 (2019), 125–141. https://doi.org/10.1016/j.na.2019.05.020 doi: 10.1016/j.na.2019.05.020
    [11] C. E. Gutiérrez, H. Mawi, The refractor problem with loss of energy, Nonlinear Anal., 82 (2013), 12–46. https://doi.org/10.1016/j.na.2012.11.024 doi: 10.1016/j.na.2012.11.024
    [12] C. E. Gutiérrez, H. Mawi, On the numerical solution of the near field refractor problem, Appl. Math. Optim., 84 (2021), 1877–1902. https://doi.org/10.1007/s00245-021-09814-3 doi: 10.1007/s00245-021-09814-3
    [13] C. E. Gutiérrez, A. Sabra, Aspherical lens design and imaging, SIAM J. Imaging Sci., 9 (2016), 386–411. https://doi.org/10.1137/15M1030807 doi: 10.1137/15M1030807
    [14] C. E. Gutiérrez, A. Sabra, Freeform lens design for scattering data with general radiant fields, Arch. Ration. Mech. Anal., 228 (2018), 341–399. https://doi.org/10.1007/s00205-017-1196-y doi: 10.1007/s00205-017-1196-y
    [15] C. E. Gutiérrez, E. Stachura, Uniform refraction in negative refractive index materials, J. Opt. Soc. Am. A, 32 (2015), 2110–2122. https://doi.org/10.1364/JOSAA.32.002110 doi: 10.1364/JOSAA.32.002110
    [16] C. E. Gutiérrez, E. Stachura, Metamaterial lens design, J. Opt. Soc. Am. A, 33 (2016), 2020–2026. https://doi.org/10.1364/JOSAA.33.002020 doi: 10.1364/JOSAA.33.002020
    [17] C. E. Gutiérrez, F. Tournier, Surfaces refracting and reflecting collimated beams, J. Opt. Soc. Am. A, 28 (2011), 1860–1863. https://doi.org/10.1364/JOSAA.28.001860 doi: 10.1364/JOSAA.28.001860
    [18] C. E. Gutiérrez, F. Tournier, Local near field refractors and reflectors, Nonlinear Anal., 108 (2014), 302–311. https://doi.org/10.1016/j.na.2014.06.004 doi: 10.1016/j.na.2014.06.004
    [19] C. E. Gutiérrez, F. Tournier, Regularity for the near field parallel refractor and reflector problems, Calc. Var., 54 (2015), 917–949. https://doi.org/10.1007/s00526-014-0811-0 doi: 10.1007/s00526-014-0811-0
    [20] C. E. Gutiérrez, F. Tournier, $C^{1, \alpha}$-estimates for the near field refractor, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 577–600. https://doi.org/10.1016/j.anihpc.2020.08.002 doi: 10.1016/j.anihpc.2020.08.002
    [21] F. Jiang, Weak solutions of generated Jacobian equations, Math. Eng., 5 (2023), 1–20. https://doi.org/10.3934/mine.2023064 doi: 10.3934/mine.2023064
    [22] F. Jiang, N. S. Trudinger, On Pogorelov estimates in optimal transportation and geometric optics, Bull. Math. Sci., 4 (2014), 407–431. https://doi.org/10.1007/s13373-014-0055-5 doi: 10.1007/s13373-014-0055-5
    [23] F. Jiang, N. S. Trudinger, On the second boundary value problem for Monge–Ampère type equations and geometric optics, Arch. Ration. Mech. Anal., 229 (2018), 547–567. https://doi.org/10.1007/s00205-018-1222-8 doi: 10.1007/s00205-018-1222-8
    [24] L. Liu, S. He, Near-field optical storage system using a solid immersion lens with a left-handed material slab, Opt. Express, 12 (2004), 4835–4840. https://doi.org/10.1364/OPEX.12.004835 doi: 10.1364/OPEX.12.004835
    [25] J. Liu, X. J. Wang, Light refraction is nonlinear optimisation, J. Math. Study, 54 (2021), 142–163. https://doi.org/10.4208/jms.v54n2.21.02 doi: 10.4208/jms.v54n2.21.02
    [26] H. Mawi, Freeform optics: optimal transport, Minkowski method, and Monge–Ampère-type equations, Notices Amer. Math. Soc., 70 (2023), 223–230. https://doi.org/10.1090/noti2613 doi: 10.1090/noti2613
    [27] X. N. Ma, N. S. Trudinger, X. J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151–183. https://doi.org/10.1007/s00205-005-0362-9 doi: 10.1007/s00205-005-0362-9
    [28] J. B. Pendry, S. A. Ramakrishna, Near-field lenses in two dimensions, J. Phys.: Condens. Matter, 14 (2002), 8463. https://doi.org/10.1088/0953-8984/14/36/306 doi: 10.1088/0953-8984/14/36/306
    [29] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (2000), 3966. https://doi.org/10.1103/PhysRevLett.85.3966 doi: 10.1103/PhysRevLett.85.3966
    [30] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84 (2000), 4184. https://doi.org/10.1103/PhysRevLett.84.4184 doi: 10.1103/PhysRevLett.84.4184
    [31] R. A. Shelby, D. R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science, 292 (2001), 77–79. https://doi.org/10.1126/science.1058847 doi: 10.1126/science.1058847
    [32] E. Stachura, Existence of weak solutions to refraction problems in negative refractive index materials, Nonlinear Anal., 157 (2017), 76–103. https://doi.org/10.1016/j.na.2017.03.013 doi: 10.1016/j.na.2017.03.013
    [33] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of $\epsilon$ and $\mu$, Phys. Usp., 10 (1968), 509–514. https://doi.org/10.1070/PU1968v010n04ABEH003699 doi: 10.1070/PU1968v010n04ABEH003699
    [34] X. J. Wang, On the design of a reflector antenna, Inverse Probl., 12 (1996), 351. https://doi.org/10.1088/0266-5611/12/3/013 doi: 10.1088/0266-5611/12/3/013
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(14) PDF downloads(2) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog