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Abstract: This paper studies the far field refraction problem in negative refractive index material
with loss of energy, which is a remaining problem in E. Stachura, Nonlinear Anal. 2017;157:76-103.
The analysis is divided into two cases according to the relative refractive index κ, that is, κ < −1
and −1 < κ < 0. For each case, we use the Minkowski method to establish the existence of the weak
solution when the target measure is either discrete or a finite Radon measure. Eventually, the inequality
involving a Monge-Ampère type operator satisfied by the solution of the problem is derived, which is
useful to understand this complex optical phenomenon.
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1. Introduction

1.1. Background

Negative refraction was first proposed by the Russian scientist Veselago in 1968 [33], referring to
the phenomenon that when a light wave is incident from a material with a positive refractive index to
the interface of a material with a negative refractive index, the refraction of the light wave is opposite to
conventional refraction, with the incident and refracted waves located on the same side of the interface
normal. Negative refractive index materials are artificially structured materials with both permittivity ε
and permeability µ are negative. In such materials, the electric vector, magnetic vector, and wave vector
of electromagnetic waves form a left-handed system, hence they are also called “left-handed material”.
While traditional materials have positive refractive indices, the unique properties of negative refractive
index materials give them disruptive potential in fields like optics and electromagnetism.

In 2000, Smith et al. [30] artificially synthesized the world’s first medium with negative equivalent
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permittivity and permeability in the microwave range using copper-based composite materials. In 2001,
Shelby et al. [31] made a prism from existing negative refractive index materials, experimentally
confirming negative refraction and showing that light incident on a negative refractive index medium
surface refracts to the same side of the interface normal as the incident light. Since the beginning
of 21st century, negative refractive index materials have been widely used in optical invisibility [3],
perfect lens imaging [28, 29], wireless directional radiation [7] and manufacturing of novel optical
devices such as high-capacity optical discs [24].

In recent years, near field refraction and far field refraction problems have been widely researched
mathematically. Near field refraction problem refers that given two media I and II, and a light source in
medium I, constructing a refracting surface R separating media I and II, such that all ray emitted from
the light source refract through R to a specified point P in medium II. In 2014, Gutiérrez and Huang [9]
studied the single surface near field refraction problem in positive refractive index media without loss
of energy. The existence of weak solutions to the refraction problem was proved by using Minkowski
method and the corresponding partial differential equation was also derived. For related research on
near field refraction problem, see [12, 13, 18–20]. Far field refraction problem refers that given two
media I and II, and a light source in medium I, constructing a refracting surface Γ separating media
I and II, such that all ray emitted from the light source refract through Γ to a specified direction m in
medium II. In 2009, Gutiérrez and Huang [8] studied the single surface far field refraction problem in
positive refractive index media without loss of energy. They used the optimal transportation method
to prove the existence of weak solutions of this problem, derived the corresponding partial differential
equation and verified that the equation satisfies the A3 condition in [27]. In 2017, Gutiérrez and
Sabra [14] studied the double surface far field refraction problem in positive refractive index media
without loss of energy. They proved that given a lower surface, there exists an upper surface that
satisfies the Monge-Ampère type equation which can refract parallel light in a given direction. There
are also some other research on far field refraction, see [1, 5, 10, 17].

In 2015, Stachura and Gutiérrez [15] first studied the refraction problem in negative refractive
index media mathematically. They proposed the Snell’s law for negative refractive index material
and extending the near field and far field refraction problems from positive refractive index media to
negative refractive index media. Later in 2016, Stachura and Gutiérrez [16] further generalized their
previous work by investigating double refraction in both near and far fields in negative refractive index
media. In 2017, Stachura [32] conducted a deeper study of the refraction problem in negative refractive
index media. The Minkowski method was used to prove the existence of the weak solution of near
field refraction problem, and the optimal transmission method was used to prove the existence of weak
solution of far field refraction problem and derive the corresponding Monge-Ampère type equation.
However, these studies are based on the assumption of energy conservation. In fact, when the light ray
emitted from medium I strikes the interface between medium I and II, it gives two rays, some of the
ray will be refracted into medium II, while the other ray will be reflected back to medium I. Therefore,
the energy of the incident light ray is not equal to that of the refracted light ray. In 2013, Mawi and
Gutiérrez [11] studied the far field refraction problem with loss of energy in positive refractive index
media, showing the existence of the weak solution of far field refraction problem with loss of energy
and deriving the corresponding Monge-Ampère type equation. In fact, refraction with loss of energy
also occurs in negative refractive index material [4]. Figure 1 shows the refraction problem with loss of
energy in negative refractive index material, indicating that when an incident light ray having direction
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of propagation x ∈ S n−1 strikes at Γ, it will split into two rays: a reflected ray in direction r ∈ S n−1 back
into medium I and a refracted ray in direction m ∈ S n−1 transmitted into medium II.

Figure 1. Sketch of the refraction problem with loss of energy in negative refractive index
material.

1.2. Description of the problem

In this paper, we consider the following problem: Suppose that Ω and Ω∗ are two domains in S n−1,
f and g are two integrable functions on Ω and Ω∗ respectively, that is, f ∈ L1(Ω̄), g ∈ L1(Ω̄∗). Consider
two homogeneous, isotropic media: medium I and medium II, surrounded by Ω and Ω∗ respectively
which have different optical densities. Given a direction m ∈ Ω∗, we want to construct a surface Γ

separating media I and II, such that all rays emanate from the origin O, located in medium I, with
directions x ∈ Ω and intensity f (x), are refracted into medium II, with direction m ∈ Ω∗ and intensity
g(m). Assuming that the refractive index of medium I is n1 > 0, the refractive index of medium II is
n2 < 0, and set the relative refractive index κ =

n2

n1
, so κ < 0. Notice that in application, it is natural to

study the refraction problem in S 2, see Figure 2. However, in this paper, we directly study the problem
in S n−1 with n ≥ 2 for its generality.

Figure 2. Statement of the problem in S 2.
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1.3. Main results

There are three main methods for studying reflection and refraction problems [26]: The first method
is using variational method to transform the problem into optimal transportation problem, the second
method is using energy conservation conditions to derive the Monge-Ampère type equation which the
reflective or refractive surfaces satisfy, and the third method is Minkowski method. In this paper, we
mainly use Minkowski method to study the far field refraction problem with loss of energy in negative
refractive index medium.

Minkowski method is an iterative approach for solving refraction and reflection problems in
geometric optics. To sovle our problem, we first give some properties of refractor and Fresnel formula.
Then we introduce the definition of the weak solution of the problem. Next, the existence results
when the underlying measure is the finite sum of δ-measures is proved by using approximation by
hyperboloids or ellipsoids depending on whether κ < −1 or −1 < κ < 0, see Theorems 3.3 and 4.2.
Using these results, we prove the existence of the weak solution for the general finite Radon measure,
see Theorems 3.4 and 4.3.

Generally, refraction and reflection in geometric optics can be described by Monge-Ampère type
equation [21–23,25,34]. Based on the definition of the weak solution of the far field refraction problem
for the case κ < −1 and −1 < κ < 0, see Definitions 3.4 and 4.4, the inequality involving a Monge-
Ampère type operator which the solution of the problem satisfies, see Theorem 5.1, is also derived
in this paper. To the best of our knowledge, this work presents the first construction of a refractor in
negative refractive index material that accounts for the energy used in internal reflection.

The rest of the content is organized as follows: In Section 2, we give some preliminaries, namely
Snell law and Fresnel formula in negative refractive index material. In Section 3, we study the existence
of the weak solution when κ < −1. We first study the existence of weak solutions in discrete situation,
then use approximation by hyperboloids to investigate the existence of weak solutions in general
situation. In Section 4, we use similar way in Section 3 to study the existence of the weak solution
when −1 < κ < 0. The inequality involving a Monge-Ampère type operator which the solution of the
problem satisfies is driven in Section 5. Finally, in Section 6, we summarize our work and compare it
with previous research.

2. Preliminaries

In this section, we briefly introduce Snell law in vector form and Fresnel formula in negative
refractive index material.

2.1. Snell law in vector form

Suppose Γ is a surface in Rn that separates two homogeneous and isotropic media I and II, with
refractive indices n1 > 0 and n2 < 0. A ray of light emitted from O ∈ S n−1 in medium I with direction
x ∈ S n−1 strikes at Γ at the point P, then the refracted ray has the direction m ∈ S n−1 in medium II. Let
ν be the unit normal to Γ at P going towards medium II, θ1 be the angel between x and ν which called
the angle of incidence and θ2 be the angle between m and ν which called the angle of refraction. Then
we have the well-known Snell law in scalar form:

n1 sin θ1 = n2 sin θ2. (2.1)

Mathematics in Engineering Volume 8, Issue 1, 98–139.



102

This law can be written in vector form as:

n1(x × ν) = n2(m × ν). (2.2)

From (2.2), it is easily seen that x,m and ν are in the same plane. Since we have set κ =
n2

n1
,

then (2.2) can be written as
x − κm = λν, (2.3)

where λ ∈ R is given by

λ = x · ν +
√

(x · ν)2 − (1 − κ2) = x · ν + |κ|
√

1 − κ−2(1 − (x · ν)2). (2.4)

If we set
Φ(t) = t + |κ|

√
1 − κ−2(1 − t2), (2.5)

then we have λ = Φ(x · ν).
Furthermore, we need to determine the physical constraints of Ω̄ and Ω̄∗ to ensure that total internal

reflection cannot occur.
When κ < −1, that is, n1 < |n2|, in this case, the direction of refracted ray m is close to normal ν.

So when θ1 =
π

2
, the angle of refraction attains its maximum θ∗2 = arcsin

(
−

1
κ

)
:= θ∗c. Then from Snell

law (2.1), we have
θ1 + θ2 = arcsin(−κ sin θ2) + θ2.

Since the function h(θ) = arcsin(−κ sin θ) + θ is increasing on [0, θ∗c], then we have 0 ≤ θ1 + θ2 =
π

2
+ θ∗c,

so we have
x · m = cos(θ1 + θ2) ≥ cos

(
π

2
+ θ∗c

)
=

1
κ
.

When −1 < κ < 0, that is, n1 > |n2|, in this case, the direction of refracted ray m is away from
normal ν. So when sin θ1 = −κ = −

n2

n1
, the angle of refraction attains its maximum θ∗2 =

π

2
. Therefore,

the sine value of the angle of incident is no larger than −κ, that is, 0 ≤ θ1 ≤ θc := arcsin(−κ). Then
from Snell law (2.1), we have

θ1 + θ2 = arcsin
(
−

1
κ

sin θ1

)
+ θ1.

Since the function h(θ) = arcsin
(
−

1
κ

sin θ
)
+θ is increasing on [0, θc], then we have 0 ≤ θ1 +θ2 ≤

π

2
+θc,

so we have
x · m = cos(θ1 + θ2) ≥ cos

(
π

2
+ θc

)
= κ.

From the above analysis, we have the following lemma:

Lemma 2.1. Suppose that the refractive indices of media I and II are given by n1 > 0 and n2 < 0, and
set κ =

n2

n1
.

(a) If κ < −1, a light ray in medium I in the direction x ∈ S n−1 is refracted by some surface into a

light ray in medium II in the direction m ∈ S n−1 if and only if x · m ≥
1
κ

.

(b) If −1 < κ < 0, a light ray in medium I in the direction x ∈ S n−1 is refracted by some surface into
a light ray in medium II in the direction m ∈ S n−1 if and only if x · m ≥ κ.
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Remark 2.1. Lemma 2.1 is typically used to solve the refraction problem without loss of energy.
However, since this paper considers the refraction problem with loss of energy, we need to strengthen
the conclusions of Lemma 2.1 appropriately, see the following:

Suppose that the refractive indices of media I and II surrounded by Ω and Ω∗ respectively, are given
by n1 > 0 and n2 < 0, and set κ =

n2

n1
.

(a) For the case κ < −1, we assume that there exists ε > 0, such that

inf
x∈Ω̄,m∈Ω̄∗

x · m ≥
1
κ

+ ε, (2.6)

then from Lemma 2.1 (a), a light ray in medium I in the direction x ∈ S n−1 can be refracted by some
surface into a light ray in medium II in the direction m ∈ S n−1.

(b) For the case −1 < κ < 0, we assume that there exists ε > 0, such that

inf
x∈Ω̄,m∈Ω̄∗

x · m ≥ κ + ε, (2.7)

then from Lemma 2.1 (b), a light ray in medium I in the direction x ∈ S n−1 can be refracted by some
surface into a light ray in medium II in the direction m ∈ S n−1.

2.2. Fresnel formula

From the previous analysis, we know that when the incident light ray strikes the surface Γ, it will
split into refracted light ray and reflected light ray, so the energy of the incident light ray will be
distributed to the refracted light ray and reflected light ray. This subsection briefly gives the energy
distribution of reflected and refracted light ray according to the electromagnetic field theory of light
propagation.

Define E = E(r, t) as electric field vector and B = B(r, t) as magnetic field vector, where
r = r(x, y, z) represents a point in 3-d space and t is the time, then we have the following system
of Maxwell’s equations absent from charges:

∇ × E = −
µ

c
∂B
∂t
,

∇ × B = −
ε

c
∂E
∂t
,

∇ · (εE) = 0,
∇ · (µB) = 0,

(2.8)

where c is the speed of light in vacuum, µ = µ(x, y, z) is the magnetic permeability of the medium and
ε = ε(x, y, z) is the electric permittivity of the medium.

Assume that the waves are plane waves, that is, the waves have the same value at all points of any
plane perpendicular to the direction of propagation, then from (2.8), we have:

E = −
c
εω

(k × B),

B =
c
µω

(k × E),
(2.9)
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where c is the speed of light in free space, k =
ω

v
s represents the wave vector, ω represents the angular

frequency of the electromagnetic wave, v represents the speed of light ray in the medium and s is a unit
vector.

The flow of the energy in an electromagnetic wave with electric field E = E(r, t) and magnetic field
B = B(r, t) is given by Poynting vector

S =
c

4π
E × B. (2.10)

Then from (2.9), we have

S =
c

4π
E × (

c
µω

k × E) =
c

4π

√
ε

µ
E × s × E. (2.11)

We denote quantities referring to the incident wave by the suffix (i), to the refracted wave by (t) and
to the reflected wave by (r). Choose a system of coordinates such that the normal ν to the interface Γ at
the point of incidence is on the z-axis and the x and y axes are on the plane perpendicular to ν. So the
tangent plane to Γ at P is the xy-plane and the incident plane is the xz-plane. Then each of the electric
field and magnetic field vectors can be resolved into components parallel denoted by subscript ‖ and
perpendicular denoted by subscript ⊥. Then we obtain:

E(i)(r, t) = (−A‖ cos θi, A⊥, A‖ sin θi) cos(ω(t −
r · s(i)

v1
)) = E(i)

0 cos(ω(t −
r · s(i)

v1
)),

E(t)(r, t) = (−T‖ cos θt,T⊥,T‖ sin θt) cos(ω(t −
r · s(t)

v2
)) = E(t)

0 cos(ω(t −
r · s(t)

v2
)),

E(r)(r, t) = (−R‖ cos θr,R⊥,R‖ sin θr) cos(ω(t −
r · s(r)

v1
)) = E(r)

0 cos(ω(t −
r · s(r)

v1
)),

and 

B(i)(r, t) =

√
ε1

µ1
(−A⊥ cos θi,−A‖, A⊥ sin θi) cos(ω(t −

r · s(i)

v1
))

=

√
ε1

µ1
B(i)

0 cos(ω(t −
r · s(i)

v1
)),

B(t)(r, t) =

√
ε2

µ2
(−A⊥ cos θt,−A‖, A⊥ sin θt) cos(ω(t −

r · s(t)

v2
))

=

√
ε2

µ2
B(t)

0 cos(ω(t −
r · s(t)

v2
)),

B(r)(r, t) =

√
ε1

µ1
(−A⊥ cos θr,−A‖, A⊥ sin θr) cos(ω(t −

r · s(r)

v1
))

=

√
ε1

µ1
B(r)

0 cos(ω(t −
r · s(r)

v1
)),

where v1 =
c
√
ε1µ1

, v2 =
c
√
ε2µ2

, A, R and T are the amplitude vectors and s(i), s(t) and s(r) are

the directions of propagation of the corresponding fields. The boundary conditions expressing the
continuity of the tangential components of the electric and magnetic fields across the interface [2],
then we have k × E(i)

0 + k × E(r)
0 = k × E(t)

0 ,

k × B(i)
0 + k × B(r)

0 = k × B(t)
0 .

(2.12)
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From (2.11), we obtain 

A⊥ + R⊥ = T⊥,

cos θi(A‖ − R‖) = cos θtT‖,
A‖√
ε1

µ1

+
R‖√
ε1

µ1

=
T‖√
ε2

µ2

,

cos θi


A⊥√
ε1

µ1

−
R⊥√
ε1

µ1

 = cos θt
T⊥√
ε2

µ2

.

(2.13)

Define the wave impedance of the medium as z =

√
µ

ε
, then we obtain the following Fresnel formula

from (2.13): 

T‖ =
2z1 cos θi

z2 cos θi + z1 cos θt
A‖,

T⊥ =
2z1 cos θi

z1 cos θi + z2 cos θt
A⊥,

R‖ =
z2 cos θi − z1 cos θt

z2 cos θi + z1 cos θt
A‖,

R⊥ =
z1 cos θi − z2 cos θt

z1 cos θi + z2 cos θt
A⊥.

(2.14)

From Snell law (2.3) and the fact that x · ν = cos θi, m · ν = cos θt, (2.14) can be written as

T‖ =
2z1x · (x − κm)

(z2x + z1m) · (x − κm)
A‖,

T⊥ =
2z1x · (x − κm)

(z1x + z2m) · (x − κm)
A⊥,

R‖ =
(z2x − z1m) · (x − κm)
(z2x + z1m) · (x − κm)

A‖,

R⊥ =
(z1x − z2m) · (x − κm)
(z1x + z2m) · (x − κm)

A⊥.

(2.15)

Using Poynting vector (2.10), the amount of energies of incident, transmitted and reflected waves
leaving a unit area of the boundary per second is given by

J(i) = |Si| cos θi =
c

4π

√
ε1

µ1
|E(i)

0 |
2x · ν,

J(t) = |St| cos θt =
c

4π

√
ε2

µ2
|E(t)

0 |
2m · ν,

J(r) = |Sr| cos θr =
c

4π

√
ε1

µ1
|E(r)

0 |
2x · ν.
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Then we can define the reflection and transmission coefficients as
rΓ(x) =

J(r)

J(i) =

 |E(r)
0 |

|E(i)
0 |

2

,

tΓ(x) =
J(t)

J(i) =

√
ε2µ1

ε1µ2

m · ν
x · ν

 |E(t)
0 |

|E(i)
0 |

2

.

From Fresnel formula (2.15), we have

rΓ(x) =

[
z2 + κz1 − (z1 + κz2)x · m
z2 − κz1 + (z1 − κz2)x · m

]2 A2
‖

A2
‖

+ A2
⊥

+

[
z1 + κz2 − (z2 + κz1)x · m
z1 − κz2 + (z2 − κz1)x · m

]2 A2
⊥

A2
‖

+ A2
⊥

,

(2.16)

and by conservation of energy, we have

tΓ(x) = 1 − rΓ(x). (2.17)

Remark 2.2. Equations (2.16) and (2.17) are called Fresnel’s equation and rΓ(x) and tΓ(x) are called
Fresnel coefficients.

Remark 2.3. From Snell law (2.3) and Eqs (2.16) and (2.17), rΓ(x) and tΓ(x) are functions only
depending on x and ν.

3. Far field refraction problem for the case κ < −1 with loss of energy

In this section, we study the far field refraction problem for κ =
n2

n1
< −1. We first give the definition

and some properties of the refractor, then discuss properties of Fresnel coefficients and define the weak
solution of the far field refraction problem for the case κ < −1 with loss of energy. Finally, the existence
of weak solution in both discrete and general situations are proved. Recall from (2.6) in Remark 2.1,
we must have

inf
x∈Ω̄,m∈Ω̄∗

x · m ≥
1
κ

+ ε

for some ε > 0. Hence we have
1 − κx · m ≥ −εκ. (3.1)

3.1. Refractor and its properties

The definition of refractor in the case κ < −1 stems from [32].

Definition 3.1. A parameterized surface Γ in Rn given by Γ = {ρ(x)x; ρ ∈ C(Ω̄)} is a refractor from
Ω̄ to Ω̄∗ in the case κ < −1, if for any x0 ∈ Ω̄, there exists a semi-hyperboloid defined as H(m, b) =

{ρ(x)x; ρ(x) =
b

1 − κm · x
, x ∈ S n−1, x · m ≥

1
κ
}, such that ρ(x0) =

b
1 − κm · x0

and ρ(x) ≥
b

1 − κm · x
for all x ∈ Ω̄. Such H(m, b) is called a supporting hyperboloid to Γ at the point ρ(x0)x0.
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The following Figure 3 shows the semi-hyperboloid which refracts all ray emitted from the source
O to a specific direction for the case κ < −1.

Figure 3. Hyperboloid refracting when κ < −1, where O and P are focus of hyperboloid.

Now we turn to discuss some properties of the refractor for the case κ < −1.

Lemma 3.1. Any refractor is globally Lipschitz continuous on Ω̄, hence the set of singular points (set
of discontinuous points) is a null set.

Proof. Suppose Γ is a refractor from Ω̄ to Ω̄∗, parameterized by ρ(x)x, x ∈ Ω̄. Let x ∈ Ω and H(m, b)

supports Γ at ρ(x)x. Then for any y ∈ Ω̄, we have ρ(y) ≥
b

1 − κm · y
and ρ(x) =

b
1 − κm · x

.

Since ρ ∈ C(Ω̄), then there exists M > 0, such that ρ(x) ≤ M for all x ∈ Ω̄, thus b ≤ M. Using (3.1),
we have

|ρ(x) − ρ(y)| ≤ |
b

1 − κm · x
−

b
1 − κm · y

|

= |
bκm · (x − y)

(1 − κm · x)(1 − κm · y)
|

≤ −
bκ‖x − y‖

(−εκ)2

≤ −
M
ε2κ
‖x − y‖.

Exchanging the roles of x and y, then we can get |ρ(x)− ρ(y)| ≤ L‖x− y‖ for some L ≥ 0, hence ρ is
globally Lipschitz continuous on Ω̄. Then from Rademacher’s theorem [6], we get the singular points
set of ρ is a null set. �

Remark 3.1. If a refractor Γ parameterized by ρ has two distinct supporting semi-hyperboloid at
ρ(x)x, then ρ(x)x is a singular point of Γ.

Lemma 3.2. Suppose Γ = {ρ(x)x; ρ ∈ C(Ω̄)} is a refractor from Ω̄ to Ω̄∗, such that inf
x∈Ω̄

ρ(x) = 1, then

there exists a constant C > 0 depending on ε and κ, such that sup
x∈Ω̄

ρ(x) ≤ C.
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Proof. Suppose that there exists x0 ∈ Ω̄, such that ρ(x0) = sup
x∈Ω̄

ρ(x), and let H(m0, b0) be the supporting

hyperboloid to Γ at ρ(x0)x0. Then we have ρ(x0) =
b0

1 − κm0 · x0
, and ρ(x) ≥

b0

1 − κm0 · x
for all x ∈ Ω̄.

Since
b0

1 − κ
≤

b0

1 − κm0 · x
for all x ∈ Ω̄, so we have

b0

1 − κ
≤ inf

x∈Ω̄

b0

1 − κm0 · x
≤ inf

x∈Ω̄
ρ(x) = 1.

Hence we have b0 ≤ 1 − κ. Consequently,

ρ(x0) =
b0

1 − κm0 · x0
≤

1 − κ
1 − κm0 · x0

≤
1 − κ
−εκ

.

Then we get sup
x∈Ω̄

ρ(x) ≤ C. �

Next, we define refractor mapping and trace mapping, and discuss some properties of them.

Definition 3.2. Suppose the refractor Γ = {ρ(x)x; ρ ∈ C(Ω̄)} is given, the refractor mapping of Γ is a
multi-value map defined by

NΓ(x0) = {m ∈ Ω̄∗; H(m, b) supports Γ at ρ(x0)x0 f or some b > 0}. (3.2)

Given m ∈ Ω̄∗, the trace mapping of Γ is defined by

TΓ(m0) = {x ∈ Ω̄; m0 ∈ NΓ(x0)}. (3.3)

Lemma 3.3. If m ∈ Ω̄∗, then TΓ(m) is a closed set in Ω̄.

Proof. Let xn ∈ TΓ(m) and xn → x0, we need to prove that x0 ∈ TΓ(m).
For xn ∈ TΓ(m), then there exists b > 0, such that H(m, b) supports Γ at ρ(xn)xn, thus we have

ρ(xn) =
b

1 − κm · xn
. For x0 ∈ Ω̄, then from Lemma 3.1, we have ρ(xn)xn → ρ(x0)x0, so ρ(x0) =

b
1 − κm · x0

. Moreover, for x ∈ Ω̄, we have ρ(x) ≥
b

1 − κm · xn
, then ρ(x) ≥

b
1 − κm · x0

. So H(m, b)

supports Γ at ρ(x0)x0, that is, x0 ∈ TΓ(m). �

Lemma 3.4. For any F ∈ Ω̄∗, we have
(a) [TΓ(F)]c ⊆ TΓ(Fc);
(b) The setM = {F ⊆ Ω̄∗; TΓ(F) is Lebesgue measurable} is a σ-algebra containing all Borel sets

in Ω̄∗.

Proof. (a) If x ∈ [TΓ(F)]c, then NΓ(x) ∩ F = ∅, then NΓ(x) ∩ Fc , ∅. Then by the definition of trace
mapping (3.3), we have x ∈ TΓ(Fc).

(b) We first prove that the setM is a σ-algebra.
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Obviously, we have TΓ(∅) = ∅, TΓ(Ω̄∗) = Ω̄. For Fi ∈ M, we have

TΓ(
∞⋃

i=1

Fi) =
⋃

m∈
∞⋃

i=1
Fi

{x ∈ Ω̄; m ∈ NΓ(x)} =

∞⋃
i=1

⋃
m∈Fi

{x ∈ Ω̄; m ∈ NΓ(x)} =

∞⋃
i=1

TΓ(Fi),

soM is closed under countable union. Also for F ∈ M, using (a), we can get

TΓ(Fc) = (TΓ(Fc) ∩ [TΓ(F)]c) ∪ (TΓ(Fc) ∩ TΓ(F)) = [TΓ(F)]c ∪ [TΓ(Fc) ∩ TΓ(F)].

Since |TΓ(Fc) ∩ TΓ(F)| = 0 and TΓ(F) is measurable, then TΓ(Fc) is measurable, henceM is closed
under taking complements.

Next, we prove that the setM contains all Borel sets in Ω̄∗.
Indeed, choose a closed set K ⊆ Ω̄∗, obviously K is compact. Take xi ∈ TΓ(K), then there exist

mi ∈ NΓ(xi) ∩ K. Suppose that H(mi, bi) supports Γ at ρ(xi)xi, then we have ρ(xi) =
bi

1 − κmi · xi
and

ρ(x) ≥
bi

1 − κmi · x
for all x ∈ Ω̄. For 1 − κmi · x > 0 and 1 − κmi · xi > 0, we have

ρ(x)(1 − κmi · x) ≥ bi and ρ(xi)(1 − κmi · xi) = bi for all x ∈ Ω̄.

Assume that there exist constants 0 < a1 ≤ a2, such that a1 ≤ ρ(x) ≤ a2 on Ω̄, then we have

bi ≤ ρ(x)(1 − κmi · x) ≤ a2(1 − κmi · x) ≤ a2(1 − κ),

and
bi = ρ(xi)(1 − κmi · xi) ≥ a1(1 − κmi · xi) ≥ a1(−κε).

Thus we have
−a1κε ≤ bi ≤ a2(1 − κ),

so bis are bounded. Assume that there exist subsequences xi → x0 ∈ Ω̄, mi → m0 ∈ K and bi → b0 as
i→ ∞. Then for x ∈ Ω̄ and all i, we have

ρ(x)(1 − κmi · x) ≥ bi and ρ(xi)(1 − κmi · xi) = bi.

Taking the limit as i→ ∞, we have

ρ(x)(1 − κm0 · x) ≥ b0 and ρ(x0)(1 − κm0 · x0) = b0.

Hence H(m0, b0) supports Γ at ρ(x0)x0 and x0 ∈ TΓ(m0). Consequently, TΓ(K) is compact, hence M
contains all Borel sets in Ω̄∗. �

Lemma 3.5. Suppose that H(mk, bk) is a sequence of semi-hyperboloid, and mk → m0, bk → b0 as
k → ∞. Let zk ∈ H(mk, bk) with zk → z0 as k → ∞. Then z0 ∈ H(m0, b0), and the normal νk(zk) to the
semi-hyperboloid H(mk, bk) at zk satisfies νk(zk)→ ν(z0) the normal to the semi-hyperboloid H(m0, b0)
at the point z0.
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Proof. The Cartesian coordinate of the equation of H(mk, bk) is |z| − κmkz = bk, then the normal vector
at z is νk(z) =

z
|z|
− κmk, so we have

νk(zk) =
zk

|zk|
− κmk →

z0

|z0|
− κm = ν(z0).

�

Lemma 3.6. Assume that Γk = {ρk(x)x; x ∈ Ω̄}, k ≥ 1 is a sequence of refractors from Ω̄ to Ω̄∗.
Suppose that 0 < a1 ≤ ρk ≤ a2 and ρk → ρ uniformly on Ω̄. Then we have

(a) Γ := {ρ(x)x; x ∈ Ω̄} is a refractor from Ω̄ to Ω̄∗;
(b) For any compact set K ⊆ Ω̄∗,

lim
k→∞
TΓk(K) ⊆ TΓ(K);

(c) For any open set G ⊆ Ω̄∗,
TΓ(G) ⊆ lim

k→∞
TΓk(G) ∪ E,

where E is the singular set of Γ.

Proof. (a) Obviously we have ρ ∈ C(Ω̄) and ρ > 0. Fix x0 ∈ Ω̄, then there exist mk ∈ Ω̄∗ and bk > 0,
such that H(mk, bk) supports Γk at ρ(x0)x0, thus

ρk(x) ≥
bk

1 − κmk · x
and ρk(x0) =

bk

1 − κmk · x0
for all x ∈ Ω̄.

So for all x ∈ Ω̄ and k, we have

bk

1 − κmk · x0
≥ a1 and

bk

1 − κmk · x
≤ a2,

hence
a1(1 − κmk · x0) ≤ bk ≤ a2(1 − κmk · x).

Combing with (3.1), we have
−a1εκ ≤ bk ≤ a2(1 − κ)

for all k. Then there exist m0 ∈ Ω̄∗ and b0 > 0, such that mk → m0 and bk → b0. Hence we have

ρ(x0) = lim
k→∞

ρk(x0) = lim
k→∞

bk

1 − κmk · x0
=

b0

1 − κm0 · x0

and
ρ(x) = lim

k→∞
ρk(x) ≥ lim

k→∞

bk

1 − κmk · x
=

b0

1 − κm0 · x
.

for all x ∈ Ω̄, hence H(m0, b0) supports Γ at ρ(x0)x0. So Γ is a refractor.
(b) Let x0 ∈ lim

k→∞
TΓk(K). Without loss of generality, we assume that x0 ∈ TΓk(K) for all k ≥ 1, then

there exist mk ∈ NΓk(x0) ∩ K and bk > 0, such that

ρk(x0) =
bk

1 − κmk · x0
and ρk(x) ≥

bk

1 − κmk · x
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for all x ∈ Ω̄. We may assume that there exist m0 ∈ K and b0 > 0, such that mk → m0 and bk → b0,
then as in proof of (a), H(m0, b0) supports Γ at ρ(x0)x0, hence x0 ∈ TΓ(m0). Consequently, x ∈ TΓ(K).

(c) Suppose that G ⊆ Ω̄∗ is a open set, then Gc is a compact set. From (b), we have

lim
k→∞
TΓk(G

c) ⊆ TΓ(Gc).

Besides, by Lemma 3.4, we also have

lim
k→∞

[TΓk(G)]c ⊆ lim
k→∞

[TΓk(G)]c ∪ [TΓk(G) ∩ TΓk(G
c)] = lim

k→∞
TΓk(G

c).

From (b), we have

lim
k→∞

[TΓk(G)]c ⊆ TΓ(Gc) = [TΓ(G)]c ∪ [TΓ(G) ∩ TΓ(Gc)]. (3.4)

Taking complements in (3.4), we have

lim
k→∞
TΓk(G) ⊇ TΓ(G) ∩ [TΓ(G) ∩ TΓ(Gc)].

Hence
TΓ(G) ∩ [ lim

k→∞
TΓk(G)]c ∪ E ⊆ lim

k→∞
TΓk(G) ∪ E.

However, lim
k→∞
TΓk(G) ⊆ E, hence

TΓ(G) ⊆ TΓ(G) ∪ E ⊆ lim
k→∞
TΓk(G) ∪ E.

�

3.2. Properties of Fresnel coefficients

Recall the Fresnel coefficients in (2.16) and (2.17)

rΓ(x) =

[
z2 + κz1 − (z1 + κz2)x · m
z2 − κz1 + (z1 − κz2)x · m

]2 A2
‖

A2
‖

+ A2
⊥

+

[
z1 + κz2 − (z2 + κz1)x · m
z1 − κz2 + (z2 − κz1)x · m

]2 A2
⊥

A2
‖

+ A2
⊥

,

tΓ(x) = 1 − rΓ(x).

We first discuss the boundedness of rΓ(x) and tΓ(x).

For simplicity, let σ =
z2

z1
=

√
µ2ε1

µ1ε2
> 0 and introduce a function

ψ(t) :=
[
σ + κ − (1 + κσ)t
σ − κ + (1 − κσ)t

]2

α +

[
1 + κσ − (σ + κ)t
1 − κσ + (σ − κ)t

]2

β, (3.5)

Mathematics in Engineering Volume 8, Issue 1, 98–139.



112

where α =
A2
‖

A2
‖

+ A2
⊥

, β =
A2
⊥

A2
‖

+ A2
⊥

. Then rΓ(x) = ψ(x · m), tΓ(x) = 1 − ψ(x · m). From (2.6), we know

t ∈
[
1
κ

+ ε, 1
]
. We denote

p(t) =
σ + κ − (1 + κσ)t
σ − κ + (1 − κσ)t

and q(t) =
1 + κσ − (σ + κ)t
1 − κσ + (σ − κ)t

.

For p(t), we have p′(t) =
2σ(κ2 − 1)

[σ − κ + (1 − κσ)t]2 . For κ < −1, then κ2 − 1 > 0, so p(t) increases on[
1
κ

+ ε, 1
]
. Hence

p2(t)max = max
{

p2
(
1
κ

+ ε

)
, p2(1)

}
.

We have p2(1) =

[
σ − 1
σ + 1

]2

, p2

(
1
κ

+ ε

)
=

[
κ2 − 1 − εκ(1 + κσ)
1 − κ2 + εκ(1 − κσ)

]2

. For ε is small enough, then p2(t)max =

p2

(
1
κ

+ ε

)
.

For q(t), we have q′(t) =
2σ(κ2 − 1)

[1 − κσ + (σ − κ)t]2 . For κ < −1, then κ2 − 1 > 0, then q(t) increases on[
1
κ

+ ε, 1
]
. Hence

q2(t)max = max
{

q2
(
1
κ

+ ε

)
, q2(1)

}
.

We have q2(1) =

[
−
σ − 1
σ + 1

]2

, q2

(
1
κ

+ ε

)
=

[
σ(κ2 − 1) − εκ2(σ + 1)
σ(1 − κ2) + εκ(σ − κ)

]2

. For ε is small enough, then

q2(t)max = q2

(
1
κ

+ ε

)
.

From above analysis, we obtain the following proposition:

Proposition 3.1. Suppose that Ω̄ and Ω̄∗ satisfy (2.6), Γ is a refractor from Ω̄ to Ω̄∗, then there exists a
constant Cε associated with ε, such that rΓ(x) ≤ Cε and Cε < tΓ(x) < 1.

Next, we discuss the continuity of tΓ(x).

Proposition 3.2. Suppose that Γ = {ρ(x)x; x ∈ Ω̄} is refractor from Ω̄ to Ω̄∗ and E is the singular set
of Γ, then tΓ(x) is continuous on Ω̄\E.

Proof. To prove tΓ(x) is continuous on Ω̄\E, we only need to prove rΓ(x) is continuous on Ω̄\E. From
previous analysis, we can assume that there exist constants C1,C2 > 0, such that C1 ≤ ρ(x) ≤ C2.
From (2.16), we know that rΓ(x) is a function φ(x) = G(x, ν(x)) define on Ω̄\E, and G(x,m) is
continuous on Ω̄ × Ω̄∗.

To prove rΓ(x) is continuous on Ω̄\E, we only need to prove rΓ(x) is both upper and lower semi-
continuous on Ω̄\E. We first prove rΓ(x) is upper semi-continuous on Ω̄\E, that is, for any α ∈ R, the
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set Mα = {x ∈ Ω̄\E; φ(x) ≤ α} is a closed set in Ω̄\E. Then we need to prove that for a sequence
xk ∈ Mα and x0 ∈ Ω̄\E, if xk → x0, then x0 ∈ Mα.

We claim that for xk, x0 ∈ Ω̄\E, if xk → x0, then there exists a subsequence xk j , such that ν(xk j) →
ν(x0) as j→ ∞.

Indeed, suppose that H(mk, bk) support Γ at ρ(xk)xk, then we have

ρ(x) ≥
b

1 − κmk · x
and ρ(xk) =

bk

1 − κmk · xk
.

Hence from (3.1), we have
−C1κε ≤ bk ≤ C2(1 − κ).

Then there exist subsequence bk j → b0 and mk j → m0 as j → ∞. From Lemma 3.5, the claim holds
true.

Consequently, if xk ∈ Mα, then φ(xk) = G(xk, ν(xk)) ≤ α. However, from claim, there exists a
subsequence xk j , such that ν(xk j) → ν(x0) as j → ∞. Then for G is continuous, we know that rΓ(x) is
upper semi-continuous on Ω̄\E.

Using the similar argument, we can prove that rΓ(x) is lower semi-continuous on Ω̄\E. Then rΓ(x)
is continuous on Ω̄\E. �

Remark 3.2. From Lemma 3.1, the singular points set of ρ is a null set, then rΓ(x) is well-defined on
Ω a.e., hence rΓ(x) is measurable in Ω.

From above analysis, we can get the following lemma and theorem, which are useful in proving the
existence of the weak solution.

Lemma 3.7. Let Γk and Γ be refractors with defining functions ρk(x) and ρ(x), the corresponding
fresnel coefficients are tk and t. Suppose that ρk → ρ pointwise in Ω̄ and there exist constants C1,C2 >

0, such that C1 ≤ ρk(x) ≤ C2 in Ω̄. Then for y < E, there exists a subsequence tk j(y) → t(y) as j → ∞,
where E is the union of singular points of refractors Γk and Γ.

Proof. Given y < E and k, there exist bk > 0 and mk ∈ Ω̄∗, such that

ρk(y) =
bk

1 − κmk · y
and ρk(z) ≥

bk

1 − κmk · z
for all z ∈ Ω̄.

So we have C1 ≤
bk

1 − κmk · y
≤ C2, then from (3.1), we get

−C1κε ≤ bk ≤ C2(1 − κ).

So bks are bounded and away from 0 and ∞, then there exist subsequence bk j → b > 0 and mk j →

m ∈ Ω̄∗, hence H(m, b) supports Γ at yρ(y), so y ∈ TΓ(m). For y < E, the normal νk j(y) to the
semi-hyperboloid H(mk j , bk j) equals to the normal to the refractor Γk j at y, and the normal ν(y) to the
semi-hyperboloid H(m, b) equals to the normal to the refractor Γ at y. Since H(mk j , bk j) → H(m, b) as
j→ ∞, then νk j(y)→ ν(y) for y < E as j→ ∞. So we have tk j(y)→ t(y) as j→ ∞. �
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Theorem 3.1. Assume that the hypotheses and notations of Lemma 3.7 hold, and let F ⊆ Ω̄∗ be a
compact set, set Fk = TΓk(F). Then for all y < E, we have

(a) lim
k→∞

χFk(y)tk(y) = t(y) lim
k→∞

χFk(y); (3.6)

(b) lim
k→∞

χFk(y)tk(y) = t(y) lim
k→∞

χFk(y). (3.7)

Proof. See Theorem 5.5 in [11]. �

3.3. Weak solution of the far field refraction problem for the case κ < −1 with loss of energy

In this subsection, we define the weak solution of the far field refraction problem for the case κ < −1
with loss of energy. We first give the definition of refractor measure originated from [11].

Definition 3.3. Suppose Γ is a refractor from Ω̄ to Ω̄∗, f ∈ L1(Ω̄) and inf
Ω̄

f > 0. The refractor measure

associated with Γ and f is defined by a set function on Borel subsets of Ω̄∗:

GΓ(F) :=
ˆ
TΓ(F)

f (x)tΓ(x) dx, (3.8)

where dx is the surface measure on S n−1.

Remark 3.3. GΓ(F) is a finite Borel measure defined onM, whereM is defined in Lemma 3.4 (b).

Now we can define the weak solution of the far field refraction problem for the case κ < −1 with
loss of energy.

Definition 3.4. Suppose that µ is a Radon measure on the Borel subset of Ω̄∗ and f ∈ L1(Ω̄), a refractor
Γ is a weak solution of the far field refraction problem for the case κ < −1 with emitting illumination
intensity f (x) and prescribe refracted illumination intensity µ if for any Borel set ω ⊆ Ω̄∗, there holds:

GΓ(ω) =

ˆ
TΓ(ω)

f (x)tΓ(x)dx ≥ µ(ω). (3.9)

Remark 3.4. Since a small portion of energy is used for internal reflection, a little extra energy is
required to ensure that light can be refracted into Ω̄∗, so we use “≥” in (3.9).

From Definition 3.4, we can prove that the weak solution is unique up to a multiplicative constant.

Theorem 3.2. If Γ = {ρ(x)x; x ∈ Ω̄} is a weak solution of the refraction problem, then for any c > 0,
cΓ = {cρ(x)x; x ∈ Ω̄} is also a weak solution of the refraction problem.

Proof. If H(m, b) supports Γ at ρ(x)x, then H(m, cb) supports cΓ at cρ(x)x. Then for any ω ∈ Ω̄∗, we
have TΓ(ω) = TcΓ(ω) and tΓ(x) = tcΓ(x), hence cΓ is also a weak solution. �

The existence of weak solution is discussed in the following two subsections.
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3.4. Existence of the weak solution when µ is discrete measure

In this subsection, we assume that µ equals finite sum of δ-measures, hence all rays are refracted
into finite directions. Based on this assumption, we establish the existence of the weak solution of the
far field refraction problem for the case κ < −1 with loss of energy when µ is discrete measure.

Remark 3.5. Suppose that m1,m2, . . . ,ml, l ≥ 2 are discrete points in Ω̄∗, then for b =

(b1, b2, · · · , bl) ∈ Rl, bi > 0, the refractor is defined as

Γ(b) = {ρ(x)x; x ∈ Ω̄, ρ(x) = max
1≤i≤l

bi

1 − κmi · x
}. (3.10)

Now we show the existence of the weak solution when µ equals the linear combination of the δ-
measures at m1,m2, . . . ,ml.

Theorem 3.3. Suppose that f ∈ L1(Ω̄) and inf
x∈Ω̄

f (x) > 0, m1,m2, . . . ,ml, l ≥ 2 are discrete points in

Ω̄∗, g1, g2, . . . , gl > 0. Let µ be the Borel measure defined on Ω̄∗ by µ =
l∑

i=1
giδmi(ω), where ω ∈ Ω̄∗ is

Borel set. Also suppose that ˆ
Ω̄

f (x)dx ≥
1

1 −Cε

µ(Ω̄∗),

where Cε is defined in Proposition 3.1. Then there exist b0 ∈ R
l and refractor Γ(b0), such thatˆ

TΓ(b0)(mi)

f (x)tΓ(b0)(x)dx = gi

for i = 2, . . . , l, and ˆ
TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx > g1,

namely the weak solution of the far field refraction problem for the case κ < −1 with loss of energy
exists.

Remark 3.6. If l = 1, this problem might be overdetermined. In this case, we have Γ(b) equals

H(m1, b1), hence this predetermines the value of tΓ(x) and
ˆ

Ω̄

f (x)tΓ(x)dx, so we must have

ˆ
TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx > g1.

In order to prove Theorem 3.3, we need some lemmas.

Lemma 3.8. Suppose that f ∈ L1(Ω̄) and inf
x∈Ω̄

f (x) > 0, m1,m2, . . . ,ml, l ≥ 2 are discrete points in Ω̄∗,

g1, g2, . . . , gl > 0. Suppose that W ⊆ Rl is a set defined by W := {b = (1, b2, . . . , bl); bi > 0 f or i =

2, . . . , l}, and for any b ∈ W, Γ(b) satisfies GΓ(b)(mi) =

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx ≤ gi for i = 2, . . . , l. Then

we have:
(a) W , ∅;

(b) If b = (1, b2, . . . , bl) ∈ W, then bi <
1 − κ
−εκ

for i = 2, . . . , l.
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Proof. (a) If for some i , 1, H(mi, bi) supports Γ at ρ(x)x, then we have

1
1 − κ

≤
1

1 − κm1 · x
≤ ρ(x) =

bi

1 − κmi · x
≤

bi

−κε
,

so bi ≥
−κε

1 − κ
.

We claim that if for some i , 1, there holds bi <
−κε

1 − κ
, then TΓb(mi) ⊆ E, where E is the singular

point set of Γ(b).
Indeed, if x ∈ TΓb(mi), then there exist b > 0, such that H(m, b) supports Γ at ρ(x0)x0. Then we have

ρ(x) = max
1≤i≤l

bi

1 − κmi · x
, ρ(x) ≥

b
1 − κmi · x

and ρ(x0) =
b

1 − κmi · x0
,

hence
bi

1 − κmi · x0
≤ ρ(x0) =

b
1 − κmi · x0

,

so we have bi ≤ b. If bi = b, then H(mi, bi) supports Γ, that is a contradiction, so bi < b. Then for any

x ∈ Ω̄, we have ρ(x) ≥
b

1 − κmi · x
>

bi

1 − κmi · x
, so ρ(x) = max

j,1

b j

1 − κm j · x
. Consequently, there exist

k , i, such that

ρ(x0) =
bk

1 − κmk · x0
and ρ(x) ≥

bk

1 − κmk · x
for all x ∈ Ω̄.

So x0 ∈ E, then we have TΓb(mi) ⊆ E.
So we have

GΓ(b)(mi) =

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx ≤
ˆ

E
f (x)tΓ(b)(x)dx < gi.

Take b = (1, b2, . . . , bl), such that bi <
−κε

1 − κ
for 2 ≤ i ≤ l, then b ∈ W, hence W , ∅.

(b) From Remark 3.1, we first claim that if b ∈ W, then g1 ≤ GΓ(b)(m1).
Indeed, for we have

l∑
i=1

GΓ(b)(mi) =

l∑
i=1

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx

=

ˆ
l⋃

i=1
TΓ(b)(mi)

f (x)tΓ(b)(x)dx =

ˆ
Ω̄

f (x)tΓ(b)(x)dx

≥ (1 −Cε)
ˆ

Ω̄

f (x)dx ≥ µ(Ω̄∗)

=

l∑
i=1

gi.

So we have

g1 −GΓ(b)(m1) +

l∑
i=2

[gi −GΓ(b)(mi)] ≤ 0.
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If b ∈ W, then we have g1 ≤ GΓ(b)(m1).
Let Γ(b) = {ρ(x)x; x ∈ Ω̄}, we claim that there exists ρ(x0)x0, such that ρ(x0)x0 ∈ Γ(b) ∩ H(m1, 1)

and ρ(x0)x0 < H(mi, bi) for all i ≥ 2.
Indeed, if not, we have TΓ(b)(m1) ⊆ E, then

GΓ(b)(m1) =

ˆ
TΓ(b)(m1)

f (x)tΓ(b)(x)dx ≤
ˆ

E
f (x)tΓ(b)(x)dx = 0

for |E| = 0. This is a contradiction with g1 > 0, hence

ρ(x0) =
1

1 − κm1 · x0
>

bi

1 − κmi · x0
,

and thus we have
bi <

1 − κmi · x0

1 − κm1 · x0
<

1 − κ
−κε

.

�

Lemma 3.9. Let bk = (bk
1, . . . , b

k
l ) and b0 = (b0

1, . . . , b
0
l ) with bk → b0 in Rl. Suppose that Γk = Γ(bk) =

{ρk(x)x; x ∈ Ω̄}, Γ0 = Γ(b0) = {ρ(x)x; x ∈ Ω̄}, then ρk → ρ uniformly on Ω̄.

Proof. For x0 ∈ Ω̄, we have

|ρ(x0) − ρk(x0)| = |
bi

1 − κmi · x0
− ρk(x)| for some i

≤ |
bi

1 − κmi · x0
−

bk
i

1 − κmi · x0
|

≤
‖b − bk‖

−κε
,

hence ρk → ρ uniformly on Ω̄. �

Lemma 3.10. Let τ > 0, then GΓ(b)(mi) =

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx is continuous on the region Rτ =

{(1, b2, . . . , bl); 0 < bi ≤ τ, i = 2, . . . , l}, for any 1 ≤ i ≤ l.

Proof. Suppose that bk is a sequence converges to b0 in Rτ, and let Γ(bk) = {ρk(x)x; x ∈ Ω̄}, Γ(b0) =

{ρ0(x)x; x ∈ Ω̄}. Then from Lemma 3.9, ρk → ρ uniformly on Ω̄. Besides, for any x ∈ Ω̄ and k ≥ 1,
we have

ρk(x) =
bk

i

1 − κmi · x
≤ max{

τ

−κε
,

1
−κε
}

and

ρk(x) = max
1≤i≤l

bk
i

1 − κmi · x
≥

1
1 − κm1 · x

≥
1

1 − κ
.

for some i ∈ {1, 2, . . . , l}. Hence there exist 0 < a1 ≤ a2, such that a1 ≤ ρk(x) ≤ a2.
Suppose that G ⊆ Ω̄∗ is a neighborhood of mi, such that m j < G for all j , i. If x0 ∈ TΓ(bk)(G) and

x0 < E, then there exists a unique m ∈ G and b > 0, such that

ρk(x0) =
b

1 − κm · x0
and ρk(x) ≥

b
1 − κm · x

for all x ∈ Ω̄.
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From the definition of Γ(bk) in Lemma 3.9, we have m = m j for some j = 1, 2, . . . , l, hence we have
m = m j, then TΓ(bk)(G) ⊆ TΓ(bk)(mi) ∪ E. For |E| = 0, from Lemma 3.6, we have

ˆ
TΓ(b0)(G)

f (x)tΓ(b0)(x)dx ≤
ˆ

lim
k→∞
TΓ(bk )(mi)∪E

f (x)tΓ(b0)(x)dx

≤

ˆ
lim
k→∞
TΓ(bk )(mi)

f (x)tΓ(b0)(x)dx +

ˆ
E

f (x)tΓ(b0)(x)dx

=

ˆ
Ω̄

χ lim
k→∞
TΓ(bk )(mi) f (x)tΓ(b0)(x)dx.

(3.11)

Obviously, we have
χ lim

k→∞
TΓ(bk )(mi)(x) = lim

k→∞
χTΓ(bk )(mi)(x). (3.12)

Applying Theorem 3.1, (3.12) and Fatou lemma to (3.11), we have
ˆ
TΓ(b0)(G)

f (x)tΓ(b0)(x)dx ≤
ˆ

Ω̄

lim
k→∞

χTΓ(bk )(mi)(x)tΓ(bk) f (x)dx

≤ lim
k→∞

ˆ
Ω̄

χTΓ(bk )(mi)(x)tΓ(bk) f (x)dx

= lim
k→∞

ˆ
TΓ(bk )(mi)

tΓ(bk) f (x)dx.

(3.13)

Besides, we also have
χ lim

k→∞
TΓ(bk )(mi)(x) = lim

k→∞
χTΓ(bk )(mi)(x). (3.14)

From inverse Fatou lemma, Lemma 3.6, Theorem 3.1 and (3.14), we have

lim
k→∞

ˆ
TΓ(bk )(mi)

tΓ(bk) f (x)dx ≤
ˆ

Ω̄

lim
k→∞

χTΓ(bk )(mi)(x)tΓ(bk) f (x)dx

=

ˆ
Ω̄

χ lim
k→∞
TΓ(bk )(mi)(x) f (x)tΓ(b0)(x)dx

=

ˆ
lim
k→∞
TΓ(bk )(mi)

f (x)tΓ(b0)(x)dx

≤

ˆ
TΓ(b0)(G)

f (x)tΓ(b0)(x)dx.

(3.15)

Combining (3.13) with (3.15), we get GΓ(b)(mi) is continuous on the region Rτ. �

Based on the above lemmas, now we prove the existence of the weak solution.

Proof of Theorem 3.3. Fixed b = (1, b2, . . . , bl), consider the set W = {bi = (1, b2, . . . , bl);
bi ≤ bi, i = 2, . . . , l}, then from Lemma 3.8 and Lemma 3.10, W is a compact set. Define a mapping

d : W → R; b 7→
l∑

i=1

bi.
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Let b∗ = arg max
b∈W

d(b), for the compactness of W, then we know d is a continuous mapping hence b∗

exists.
Taking b0 = b∗, we first prove that

ˆ
TΓ(b0)(mi)

f (x)tΓ(b0)(x)dx = gi for i = 2, . . . , l.

Indeed, if not, we may assume that
ˆ
TΓ(b0)(m2)

f (x)tΓ(b0)(x)dx < g2. Taking ξ > 1 and let bξ =

(1, ξb∗2, . . . , b
∗
l ). If x0 ∈ TΓ(bξ)(mi) \ E∗ξ , where E∗ξ is the singular point set of bξ, then we have

ρ(x0) =
b∗i

1 − κmi · x0
and ρ(x) ≥

b∗i
1 − κmi · x

for all x ∈ Ω̄,

hence x0 ∈ TΓ(b∗)(mi), then TΓ(b∗ξ)(mi) \ E∗ξ ⊆ TΓ(b∗)(mi). So we have
ˆ
TΓ(b∗

ξ
)(mi)

f (x)tΓ(b∗ξ)dx =

ˆ
TΓ(b∗

ξ
)(mi)

f (x)tΓ(b∗)dx ≤
ˆ
TΓ(b∗)(mi)

f (x)tΓ(b∗)dx.

Let ξ → 1, then from Lemma 3.10, we have GΓb∗
ξ
< g2, hence b∗ξ ∈ W, this is a contradiction with

d(b∗ξ) ≤ d(bξ).

Now we prove that
ˆ
TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx > g1.

Indeed, from Lemma 3.8, we have
ˆ
TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx ≥ g1. If the equality holds, then we have

ˆ
Ω̄

f (x)tΓ(b0)(x)dx =

l∑
i=1

gi ≤ (1 −Cε)
ˆ

Ω̄

f (x)dx,

hence ˆ
Ω̄

f (x)[1 −Cε − tΓ(b0)(x)]dx ≥ 0.

From (2.17), we have tΓ(b0)(x) ≥ 1 − Cε. But for inf
x∈Ω̄

f (x) > 0, then we must have tΓ(b0)(x) = 1 − Cε for

a.e. x ∈ Ω̄. From (3.5), for x ∈ TΓ(b0)(m1)\E, we have ψ(x · m1) = Cε, then |TΓ(b0)(m1)\E| > 0.
We claim that the set D = {x · m1; x ∈ TΓ(b0)(m1)} is infinite.
Indeed, if not, then there exist c1, . . . , cn, such that D = c1, . . . , cn. Let D j = {x ∈ TΓ(b0); x ·m1 = c j},

then D =
n⋃

j=1
D j. But D j contains in S n−1 intersected with the plane {x; x ·m1 = c j}, hence its spherical

measure is 0, then |TΓ(b0)(m1)\E| = 0. This is a contradiction, hence D = {x · m1; x ∈ TΓ(b0)(m1)} is
infinite. Besides, from Proposition 3.1, we know that the set {t; ψ(t) = c} is a finite set for any constant

c, then we cannot have ψ = Cε on D. So we must have
ˆ
TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx > g1. �

3.5. Existence of the weak solution when µ is a finite Radon measure

In this subsection, we assume that µ is a finite Radon measure, and the existence of the weak solution
of the far field refraction problem for the case κ < −1 with loss of energy in this situation is established
by using discrete measures to approximate.
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Theorem 3.4. Suppose that f is integrable on Ω̄ and inf
x∈Ω̄

f (x) > 0. Let µ be a Radon measure on Ω̄∗

and ˆ
Ω̄

f (x)dx ≥
1

1 −Cε

µ(Ω̄∗), (3.16)

where Cε is defined in Proposition 3.1. Then there exists a refractor Γ, such that for any Borel subset
ω ⊆ Ω̄∗, we have

µ(ω) ≤
ˆ
TΓ(ω)

f (x)tΓ(x)dx,

that is, there exists a weak solution of the refraction problem for the case κ < −1 with emitting
illumination intensity f and prescribed refracted intensity µ.

Proof. Let ι be an integer, ι ≥ 2. Segmenting Ω̄∗ into finite disjoint subsets ωι
1, ω

ι
2, . . . , ω

ι
lι
, such that

diam(ωι
i) ≤

1
ι

for i = 1, 2, . . . , lι. Take mι
i ∈ ω

ι
i and consider the measure µι :=

lι∑
i=1
µ(ωι

i)δmι
i

defined on

Ω̄∗.
We claim that µι → µ weakly as ι→ ∞.
Indeed, take h ∈ C(Ω̄∗), then we have

ˆ
Ω̄∗

hdµι −
ˆ

Ω̄∗
hdµ =

lι∑
i=1

ˆ
Ω̄∗

hµ(ωι
i)dδmι

i
−

ˆ
Ω̄∗

hdµ

=

lι∑
i=1

ˆ
ωιi

h(mι
i)dµ −

lι∑
i=1

ˆ
ωιi

h(x)dµ =

lι∑
i=1

ˆ
ωιi

(h(mι
i) − h(x))dµ.

For h ∈ C(Ω̄∗) and diam(ωι
i) ≤

1
ι
, hence

ˆ
Ω̄∗

hdµι →
ˆ

Ω̄∗
hdµ as ι→ ∞. Consequently, µι → µ weakly

as ι→ ∞.
From (3.16), we have µι(Ω̄∗) = µ(Ω̄∗) ≤ (1 − Cε)

ˆ
Ω̄

f (x)dx, then from Theorem 3.3, there exists a

refractor Γι = {ρι(x)x; ρι(x) = max
1≤i≤lι

bi

1 − κmι
i · x
}, such that µι(ω) =

ˆ
TΓι (ω)

f (x)tΓι(x)dx. Normalized Γι,

such that inf
x∈Ω̄

ρι(x) = 1, then from Lemma 3.2, there exists a constant C > 0, such that sup
x∈Ω̄

ρι(x) ≤ C for

all ι ≥ 1.
Besides, if x0, x1 ∈ Ω̄ and H(m0, b0) supports Γι at ρι(x0)x0, then for x1 ∈ Ω̄, we have

|ρι(x0) − ρι(x1)| ≤ |
b0

1 − κm0 · x0
−

b0

1 − κm0 · x1
|

≤
κb0

(1 − κm0 · x0)(1 − κm0 · x1)
‖x0 − x1‖

≤
b0

−κε2 ‖x0 − x1‖ ≤
C
−κε2 ‖x0 − x1‖.

Exchanging the roles of x0 and x1, we have

|ρι(x1) − ρι(x0)| ≤
C
−κε2 ‖x1 − x0‖,
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hence {ρι(x); ι ≥ 1} is a family of bounded uniformly and equicontinuous functions. Then from
Arezlà-Ascoli Theorem, ρι(x) → ρ(x) uniformly as ι → ∞ for all x ∈ Ω̄. Then from Lemma 3.6 (a),
Γ = {ρ(x)x; x ∈ Ω̄} is a refractor.

Let GΓι(ω) :=
ˆ
TΓι (ω)

f (x)tΓι(x)dx and GΓ(ω) :=
ˆ
TΓ(ω)

f (x)tΓ(x)dx. In order to prove the existence

of the weak solution, we still need to prove that GΓι → GΓ weakly as ι→ ∞.
Indeed, on the one hand, for any compact set K ⊆ Ω̄∗, from inverse Fatou lemma, we have

lim
ι→∞

GΓι(K) = lim
ι→∞

ˆ
TΓι (K)

f (x)tΓι(x)dx

≤

ˆ
Ω̄

lim
ι→∞

χTΓι (K) f (x)tΓι(x)dx

≤

ˆ
TΓ(K)

f (x)tΓ(x)dx = GΓ(K).

On the other hand, for any open set F ⊆ Ω̄∗, from Fatou lemma, we have

GΓ(F) =

ˆ
TΓ(F)

f (x)tΓ(x)dx

≤

ˆ
Ω̄

lim
ι→∞

χTΓι (F) f (x)tΓ(x)dx

≤ lim
ι→∞

ˆ
Ω̄

χTΓι (F) f (x)tΓ(x)dx = lim
ι→∞

GΓι(F).

Consequently, we have GΓι → GΓ weakly as ι → ∞, hence we have proved the existence of the weak
solution. �

4. Far field refraction problem for the case −1 < κ < 0 with loss of energy

In this section, we use the similar way as Section 3 to study the far field refraction problem for the
case −1 < κ < 0 with loss of energy. Recall from (2.7) in Remark 2.1, we mast have

inf
x∈Ω̄,m∈Ω̄∗

x · m ≥ κ + ε

in this case.

4.1. Refractor and its properties

The definition of refractor in the case −1 < κ < 0 also stems from [32].

Definition 4.1. A parameterized surface Γ in Rn given by Γ = {ρ(x)x; ρ ∈ C(Ω̄)} is a refractor
from Ω̄ to Ω̄∗ in the case −1 < κ < 0, if for any x0 ∈ Ω̄, there exists a semi-ellipsoid defined as

E(m, b) = {ρ(x)x; ρ(x) =
b

1 − κm · x
, x ∈ S n−1, x · m ≥ κ}, such that ρ(x0) =

b
1 − κm · x0

and

ρ(x) ≤
b

1 − κm · x
for all x ∈ Ω̄. Such E(m, b) is called a supporting ellipsoid to Γ at the point ρ(x0)x0.
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The following Figure 4 shows the semi-ellipsoid which refracts all ray emitted from the source O
to a specific direction for the case −1 < κ < 0.

Figure 4. Ellipsoid refracting when −1 < κ < 0, where O and P are focus of ellipsoid.

The following lemmas are similar as Lemmas 3.1 and 3.2.

Lemma 4.1. Any refractor is globally Lipschitz continuous on Ω̄, hence the set of singular points is a
null set.

Lemma 4.2. Suppose Γ = {ρ(x)x; ρ ∈ C(Ω̄)} is a refractor from Ω̄ to Ω̄∗, such that inf
x∈Ω̄

ρ(x) = 1, then

there exists a constant C > 0 depending on κ, such that sup
x∈Ω̄

ρ(x) ≤ C.

Proof. Suppose that there exists x0 ∈ Ω̄, such that ρ(x0) = inf
x∈Ω̄

ρ(x), and let E(m0, b0) be the supporting

ellipsoid to Γ at ρ(x0)x0. Then we have 1 = ρ(x0) =
b0

1 − κm0 · x0
, and ρ(x) ≤

b0

1 − κm0 · x
. Hence we

have b0 = 1 − κm0 · x0 ≤ 1 − κ. Consequently,

ρ(x) ≤
b0

1 − κm0 · x
≤

1 − κ
1 − κ2 ≤

1
1 + κ

.

Then we get sup
x∈Ω̄

ρ(x) ≤ C. �

Remark 4.1. Compared with Lemma 3.2, in this case, the constant C only depends on κ.

Remark 4.2. If a refractor Γ parameterized by ρ has two distinct supporting semi-ellipsoid at ρ(x)x,
then ρ(x)x is a singular point of Γ.

We can also define refractor mapping and trace mapping for the case −1 < κ < 0 and discuss some
properties of them.

Definition 4.2. Suppose that the refractor Γ = {ρ(x)x; x ∈ Ω̄} is given, the refractor mapping of Γ is a
multi-value map defined by

NΓ(x0) = {m ∈ Ω̄∗; E(m, b) supports Γ at ρ(x0)x0 f or some b > 0}. (4.1)

Given m ∈ Ω̄∗, the trace mapping of Γ is defined by

TΓ(m0) = {x ∈ Ω̄; m0 ∈ NΓ(x0)}. (4.2)
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The proofs of the following properties are analogous to those in Section 3.1.

Lemma 4.3. If m ∈ Ω̄∗, then TΓ(m) is a closed set in Ω̄.

Lemma 4.4. For any F ∈ Ω̄∗, we have
(a) [TΓ(F)]c ⊆ TΓ(Fc);
(b) The setM = {F ⊆ Ω̄∗; TΓ(F) is Lebesgue measurable} is a σ-algebra containing all Borel sets

in Ω̄∗.

Lemma 4.5. Suppose that E(mk, bk) is a sequence of semi-ellipsoid, and mk → m0, bk → b0 as k → ∞.
Let zk ∈ E(mk, bk) with zk → z0 as k → ∞. Then z0 ∈ E(m0, b0), and the normal νk(zk) to the semi-
ellipsoid E(mk, bk) at zk satisfies νk(zk) → ν(z0) the normal to the semi-ellipsoid E(m0, b0) at the point
z0.

Lemma 4.6. Assume that Γk = {ρk(x)x; x ∈ Ω̄}, k ≥ 1 is a sequence of refractors from Ω̄ to Ω̄∗.
Suppose that 0 < a1 ≤ ρk ≤ a2 and ρk → ρ uniformly on Ω̄. Then we have

(a) Γ := {ρ(x)x; x ∈ Ω̄} is a refractor from Ω̄ to Ω̄∗;
(b) For any compact set K ⊆ Ω̄∗,

lim
k→∞
TΓk(K) ⊆ TΓ(K);

(c) For any open set G ⊆ Ω̄∗,
TΓ(G) ⊆ lim

k→∞
TΓk(G) ∪ E,

where E is the singular set of Γ.

4.2. Properties of Fresnel coefficients

Recall again the Fresnel coefficients in (2.16) and (2.17),

rΓ(x) =

[
z2 + κz1 − (z1 + κz2)x · m
z2 − κz1 + (z1 − κz2)x · m

]2 A2
‖

A2
‖

+ A2
⊥

+

[
z1 + κz2 − (z2 + κz1)x · m
z1 − κz2 + (z2 − κz1)x · m

]2 A2
⊥

A2
‖

+ A2
⊥

,

tΓ(x) = 1 − rΓ(x).

We can also discuss the boundedness of rΓ(x) and tΓ(x).

Proposition 4.1. Suppose that Ω̄ and Ω̄∗ satisfy (2.7), Γ is a refractor from Ω̄ to Ω̄∗, then there exists a
constant Cε associated with ε, such that rΓ(x) ≤ Cε and Cε < tΓ(x) < 1.

Proof. Similar to the discussion in section 3.2, we introduce a function

ψ(t) :=
[
σ + κ − (1 + κσ)t
σ − κ + (1 − κσ)t

]2

α +

[
1 + κσ − (σ + κ)t
1 − κσ + (σ − κ)t

]2

β, (4.3)
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where σ =
z2

z1
=

√
µ2ε1

µ1ε2
, α =

A2
‖

A2
‖

+ A2
⊥

and β =
A2
⊥

A2
‖

+ A2
⊥

. Then rΓ(x) = ψ(x · m), tΓ(x) = 1 − ψ(x · m).

From (2.7), we know t ∈ [κ + ε, 1]. We denote

p(t) =
σ + κ − (1 + κσ)t
σ − κ + (1 − κσ)t

and q(t) =
1 + κσ − (σ + κ)t
1 − κσ + (σ − κ)t

.

For p(t), we have p′(t) =
2σ(κ2 − 1)

[σ − κ + (1 − κσ)t]2 . For −1 < κ < 0, then κ2 − 1 < 0, so p(t) decreases

on [κ + ε, 1]. Hence
p2(t)max = max{p2(κ + ε), p2(1)}.

We have

p2(1) =

[
σ − 1
σ + 1

]2

, p2(κ + ε) =

[
σ(1 − κ2) − ε(1 + κσ)
σ(1 − κ2) + ε(1 − κσ)

]2

.

For ε is small enough, then p2(t)max = p2(κ + ε).

For q(t), we have q′(t) =
2σ(κ2 − 1)

[1 − κσ + (σ − κ)t]2 . For −1 < κ < 0, then κ2 − 1 < 0, then q(t) decreases

on [κ + ε, 1]. Hence
q2(t)max = max{q2(κ + ε), q2(1)}.

We have q2(1) =

[
−
σ − 1
σ + 1

]2

, q2(κ + ε) =

[
1 − κ2 − ε(σ + κ)
1 − κ2 + ε(σ − κ)

]2

. For ε is small enough, then q2(t)max =

q2(κ + ε).
From above analysis, we can get there exists a constant Cε associated with ε, such that rΓ(x) ≤ Cε,

and for tΓ(x) = 1 − rΓ(x), then Cε < tΓ(x) < 1. �

We can also get the continuity of tΓ(x).

Proposition 4.2. Suppose that Γ = {ρ(x)x; x ∈ Ω̄} is refractor from Ω̄ to Ω̄∗ and E is the singular set
of Γ, then tΓ(x) is continuous on Ω̄\E.

The following lemma and theorem are similar as those in Section 3.2, which are useful in proving
the existence of the weak solution.

Lemma 4.7. Let Γk and Γ be refractors with defining functions ρk(x) and ρ(x), the corresponding
fresnel coefficients are tk and t. Suppose that ρk → ρ pointwise in Ω̄ and there exist constants C1,C2 >

0, such that C1 ≤ ρk(x) ≤ C2 in Ω̄. Then for y < E, there exists subsequence tk j(y) → t(y) as j → ∞,
where E is the union of singular points of refractors Γk and Γ.

Theorem 4.1. Assume the hypotheses and notations of Lemma 4.7 hold, and let F ⊆ Ω̄∗ be a compact
set, set Fk = TΓk(F). Then for all y < E, we have

(a) lim
k→∞

χFk(y)tk(y) = t(y) lim
k→∞

χFk(y); (4.4)

(b) lim
k→∞

χFk(y)tk(y) = t(y) lim
k→∞

χFk(y). (4.5)
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4.3. Weak solution of the far field refraction problem for the case −1 < κ < 0 with loss of energy

In this subsection, we will give the definition of refractor measure and the weak solution of the
far field refraction problem for the case −1 < κ < 0 with loss of energy. The definition of refractor
measure is same as Definition 3.3.

Definition 4.3. Suppose Γ is a refractor from Ω̄ to Ω̄∗, f ∈ L1(Ω̄) and inf
Ω̄

f > 0. The refractor measure

associated with Γ and f is defined by a set function on Borel subsets of Ω̄∗:

GΓ(F) :=
ˆ
TΓ(F)

f (x)tΓ(x)dx, (4.6)

where dx is the surface measure on S n−1.

Based on the definition of refractor measure, we can define the weak solution of the far field
refraction problem for the case −1 < κ < 0 with loss of energy.

Definition 4.4. Suppose that µ is a Radon measure on the Borel subset of Ω̄∗ and f ∈ L1(Ω̄), a
refractor Γ is a weak solution of the far field refraction problem for the case −1 < κ < 0 with emitting
illumination intensity f (x) and prescribe refracted illumination intensity µ if for any Borel set ω ⊆ Ω̄∗,
there holds:

GΓ(ω) =

ˆ
TΓ(ω)

f (x)tΓ(x)dx ≥ µ(ω). (4.7)

Remark 4.3. Similar to Remark 3.4, in order to ensure that light can be refracted into Ω̄∗, we use “≥”
in (4.7).

Remark 4.4. From Definition 4.4, we can get that if Γ is a weak solution of the refraction problem,
then for any c > 0, cΓ is also a weak solution of the refraction problem, namely the weak solution is
unique up to a multiplicative constant.

The existence of the weak solution is discussed in the following two subsections.

4.4. Existence of the weak solution when µ is discrete measure

In this subsection, we assume that µ equals finite sum of δ-measures, hence all rays are refracted
into finite directions. Based on this assumption, we establish the existence of the weak solution of the
far field refraction problem for the case −1 < κ < 0 with loss of energy when µ is discrete measure.

Remark 4.5. Suppose that m1,m2, . . . ,ml, l ≥ 2 are discrete points in Ω̄∗, then for b =

(b1, b2, · · · , bl) ∈ Rl, bi > 0, the refractor is defined as

Γ(b) = {ρ(x)x; x ∈ Ω̄, ρ(x) = min
1≤i≤l

bi

1 − κmi · x
}. (4.8)

Now we show the existence of the weak solution when µ equals the linear combination of the δ-
measures at m1,m2, . . . ,ml.
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Theorem 4.2. Suppose that f ∈ L1(Ω̄) and inf
x∈Ω̄

f (x) > 0, m1,m2, . . . ,ml, l ≥ 2 are discrete points in

Ω̄∗, g1, g2, . . . , gl > 0. Let µ be the Borel measure defined on Ω̄∗ by µ =
l∑

i=1
giδmi(ω), where ω ∈ Ω̄∗ is

Borel set. Also suppose that ˆ
Ω̄

f (x)dx ≥
1

1 −Cε

µ(Ω̄∗),

where Cε is defined in Proposition 4.1. Then there exist b0 ∈ R
l and refractor Γ(b0), such that

ˆ
TΓ(b0)(mi)

f (x)tΓ(b0)(x)dx = gi

for i = 2, . . . , l, and ˆ
TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx > g1,

namely the weak solution of the far field refraction problem for the case −1 < κ < 0 with loss of energy
exists.

Remark 4.6. Similar to Remark 3.6, in order to avoid this problem being overdetermined, we must
have ˆ

TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx > g1.

To prove Theorem 4.2, we also need the following lemmas which are similar as Lemmas 3.8–3.10.

Lemma 4.8. Suppose that f ∈ L1(Ω̄) and inf
x∈Ω̄

f (x) > 0, m1,m2, . . . ,ml, l ≥ 2 are discrete points in Ω̄∗,

g1, g2, . . . , gl > 0. Suppose that W ⊆ Rl is a set defined by W := {b = (1, b2, . . . , bl); bi > 0 f or i =

2, . . . , l}, and for any b ∈ W, Γ(b) satisfies GΓ(b)(mi) =

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx ≤ gi for i = 2, . . . , l. Then

we have:
(a) W , ∅;
(b) If b = (1, b2, . . . , bl) ∈ W, then bi > 1 + κ for i = 2, . . . , l.

Proof. (a) If for some i , 1, E(mi, bi) supports Γ at ρ(x)x, then we have

bi

1 − κ
≤

bi

1 − κmi · x
= ρ(x) ≤

1
1 − κm1 · x

≤
1

1 − κ2 ,

so bi ≤
1

1 + κ
.

We claim that if for some i , 1, there holds bi >
1

1 + κ
, then TΓb(mi) ⊆ E, where E is the singular

point set of Γ(b).
Indeed, if x ∈ TΓb(mi), then there exists b > 0, such that E(m, b) supports Γ at ρ(x0)x0. Then we have

ρ(x) = min
1≤i≤l

bi

1 − κmi · x
, ρ(x) ≥

b
1 − κmi · x

and ρ(x0) =
b

1 − κmi · x0
,
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hence
b

1 − κmi · x0
= ρ(x0) ≤

bi

1 − κmi · x0
,

so we have b < bi. If b = bi, then E(mi, bi) supports Γ, that is a contradiction, so b < bi. Then for any

x ∈ Ω̄, we have ρ(x) ≤
b

1 − κmi · x
<

bi

1 − κmi · x
, so ρ(x) = min

j,1

b j

1 − κm j · x
. Consequently, there exist

k , i, such that

ρ(x0) =
bk

1 − κmk · x0
and ρ(x) ≤

bk

1 − κmk · x
for all x ∈ Ω̄.

So x0 ∈ E, then we have TΓb(mi) ⊆ E.
So we have

GΓ(b)(mi) =

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx ≤
ˆ

E
f (x)tΓ(b)(x)dx < gi.

Take b = (1, b2, . . . , bl), such that bi >
1

1 + κ
for 2 ≤ i ≤ l, then b ∈ W, hence W , ∅.

(b) From Remark 4.2, we first claim that if b ∈ W, then g1 ≤ GΓ(b)(m1).
Indeed, for we have

l∑
i=1

GΓ(b)(mi) =

l∑
i=1

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx

=

ˆ
l⋃

i=1
TΓ(b)(mi)

f (x)tΓ(b)(x)dx =

ˆ
Ω̄

f (x)tΓ(b)(x)dx

≥ (1 −Cε)
ˆ

Ω̄

f (x)dx ≥ µ(Ω̄∗)

=

l∑
i=1

gi.

So we have

g1 −GΓ(b)(m1) +

l∑
i=2

[gi −GΓ(b)(mi)] ≤ 0.

If b ∈ W, then we have g1 ≤ GΓ(b)(m1).
Let Γ(b) = {ρ(x)x; x ∈ Ω̄}, we claim that there exists ρ(x0)x0, such that ρ(x0)x0 ∈ Γ(b) ∩ E(m1, 1)

and ρ(x0)x0 < E(mi, bi) for all i ≥ 2.
Indeed, if not, we have TΓ(b)(m1) ⊆ E, then

GΓ(b)(m1) =

ˆ
TΓ(b)(m1)

f (x)tΓ(b)(x)dx ≤
ˆ

E
f (x)tΓ(b)(x)dx = 0

for |E| = 0. This is a contradiction with g1 > 0, hence

ρ(x0) =
1

1 − κm1 · x0
<

bi

1 − κmi · x0
,

and thus we have
bi >

1 − κmi · x0

1 − κm1 · x0
> 1 + κ.

�
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Lemma 4.9. Let bk = (bk
1, . . . , b

k
l ) and b0 = (b0

1, . . . , b
0
l ) with bk → b0 in Rl. Suppose that Γk = Γ(bk) =

{ρk(x)x; x ∈ Ω̄}, Γ0 = Γ(b0) = {ρ(x)x; x ∈ Ω̄}, then ρk → ρ uniformly on Ω̄.

Proof. For x0 ∈ Ω̄, we have

|ρk(x0) − ρ(x0)| = |ρk(x0) −
bi

1 − κmi · x0
| for some i

≤ |
bk

i

1 − κmi · x0
−

bi

1 − κmi · x0
|

≤
‖bk − b‖
1 − κ2 ,

hence ρk → ρ uniformly on Ω̄. �

Lemma 4.10. Let τ > 0, then GΓ(b)(mi) =

ˆ
TΓ(b)(mi)

f (x)tΓ(b)(x)dx is continuous on the region Rτ =

{(1, b2, . . . , bl); bi > τ, i = 2, . . . , l}, for any 1 ≤ i ≤ l.

Proof. Suppose that bk is a sequence converges to b0 in Rτ, and let Γ(bk) = {ρk(x)x; x ∈ Ω̄}, Γ(b0) =

{ρ0(x)x; x ∈ Ω̄}. Then from Lemma 4.9, ρk → ρ uniformly on Ω̄. Besides, for any x ∈ Ω̄ and k ≥ 1,
we have

ρk(x) =
bk

i

1 − κmi · x
≥

τ

1 − κmi · x
≥

τ

1 − κ
and

ρk(x) = min
1≤i≤l

bk
i

1 − κmi · x
≤

1
1 − κm1 · x

≤
1

1 − κ2 .

for some i ∈ {1, 2, . . . , l}. Hence there exist 0 < a1 ≤ a2, such that a1 ≤ ρk(x) ≤ a2.
Suppose that G ∈ Ω̄∗ is a neighborhood of mi, such that m j < G for all j , i. If x0 ∈ TΓ(bk)(G) and

x0 < E, then there exist a unique m ∈ G and b > 0, such that

ρk(x0) =
b

1 − κm · x0
and ρk(x) ≤

b
1 − κm · x

for all x ∈ Ω̄.

From the definition of Γ(bk) in Lemma 4.9, we have m = m j for some j = 1, 2, . . . , l, hence we have
m = m j, then TΓ(bk)(G) ⊆ TΓ(bk)(mi) ∪ E. For |E| = 0, from Lemma 4.6, we have

ˆ
TΓ(b0)(G)

f (x)tΓ(b0)(x)dx ≤
ˆ

lim
k→∞
TΓ(bk )(mi)∪E

f (x)tΓ(b0)(x)dx

≤

ˆ
lim
k→∞
TΓ(bk )(mi)

f (x)tΓ(b0)(x)dx +

ˆ
E

f (x)tΓ(b0)(x)dx

=

ˆ
Ω̄

χ lim
k→∞
TΓ(bk )(mi) f (x)tΓ(b0)(x)dx.

(4.9)

Obviously, we have
χ lim

k→∞
TΓ(bk )(mi)(x) = lim

k→∞
χTΓ(bk )(mi)(x). (4.10)
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Applying Theorem 4.1, (4.10) and Fatou Lemma to (4.9), we have
ˆ
TΓ(b0)(G)

f (x)tΓ(b0)(x)dx ≤
ˆ

Ω̄

lim
k→∞

χTΓ(bk )(mi)(x)tΓ(bk) f (x)dx

≤ lim
k→∞

ˆ
Ω̄

χTΓ(bk )(mi)(x)tΓ(bk) f (x)dx

= lim
k→∞

ˆ
TΓ(bk )(mi)

tΓ(bk) f (x)dx.

(4.11)

Besides, we also have
χ lim

k→∞
TΓ(bk )(mi)(x) = lim

k→∞
χTΓ(bk )(mi)(x). (4.12)

From inverse Fatou lemma, Lemma 4.6, Theorem 4.1 and (4.12), we have

lim
k→∞

ˆ
TΓ(bk )(mi)

tΓ(bk) f (x)dx ≤
ˆ

Ω̄

lim
k→∞

χTΓ(bk )(mi)(x)tΓ(bk) f (x)dx

=

ˆ
Ω̄

χ lim
k→∞
TΓ(bk )(mi)(x) f (x)tΓ(b0)(x)dx

=

ˆ
lim
k→∞
TΓ(bk )(mi)

f (x)tΓ(b0)(x)dx

≤

ˆ
TΓ(b0)(G)

f (x)tΓ(b0)(x)dx.

(4.13)

Combining (4.11) with (4.13), we get GΓ(b)(mi) is continuous on the region Rτ. �

Based on the above lemmas, we can prove the existence of the weak solution when µ is discrete
measure.

Proof of Theorem 4.2. Fixed b = (1, b2, . . . , bl), consider the set W = {bi = (1, b2, . . . , bl); bi ≤ bi, i =

2, . . . , l}, from Lemma 4.8 and Lemma 4.10, W is a compact set. Define a mapping

d : W → R; b 7→
l∑

i=1

bi.

Let b∗ = arg min
b∈W

d(b), for the compactness of W, then we know d is a continuous mapping hence b∗

exists.
Taking b0 = b∗, we first prove that

ˆ
TΓ(b0)(mi)

f (x)tΓ(b0)(x)dx = gi for i = 2, . . . , l.

Indeed, if not, we may assume that
ˆ
TΓ(b0)(m2)

f (x)tΓ(b0)(x)dx < g2. Taking ξ > 1 and let bξ =

(1, ξb∗2, . . . , b
∗
l ). If x0 ∈ TΓ(bξ)(mi) \ E∗ξ , where E∗ξ is the singular point set of bξ, then we have

ρ(x0) =
b∗i

1 − κmi · x0
and ρ(x) ≤

b∗i
1 − κmi · x

for all x ∈ Ω̄,
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hence x0 ∈ TΓ(b∗)(mi), then TΓ(b∗ξ)(mi) \ E∗ξ ⊆ TΓ(b∗)(mi). So we have

ˆ
TΓ(b∗

ξ
)(mi)

f (x)tΓ(b∗ξ)dx =

ˆ
TΓ(b∗

ξ
)(mi)

f (x)tΓ(b∗)dx ≤
ˆ
TΓ(b∗)(mi)

f (x)tΓ(b∗)dx.

Let ξ → 1, then from Lemma 4.10, we have GΓb∗
ξ
< g2, hence b∗ξ ∈ W, this is a contradiction with

d(b∗ξ) ≥ d(bξ).

The proof of
ˆ
TΓ(b0)(m1)

f (x)tΓ(b0)(x)dx > g1 is same as which in Theorem 3.3. �

4.5. Existence of the weak solution when µ is a finite Radon measure

In this subsection, we discuss the existence of the weak solution of the far field refraction problem
for the case −1 < κ < 0 with loss of energy when µ is a finite Radon measure. We use the similar
method as Section 3.5 to prove the following theorem.

Theorem 4.3. Suppose that f is integrable on Ω̄ and inf
x∈Ω̄

f (x) > 0. Let µ be a Radon measure on Ω̄∗

and ˆ
Ω̄

f (x)dx ≥
1

1 −Cε

µ(Ω̄∗), (4.14)

where Cε is defined in Proposition 4.1. Then there exists a refractor Γ, such that for any Borel subset
ω ⊆ Ω̄∗, we have

µ(ω) ≤
ˆ
TΓ(ω)

f (x)tΓ(x)dx,

that is, there exists a weak solution of the refraction problem for the case −1 < κ < 0 with emitting
illumination intensity f and prescribed refracted intensity µ.

Proof. Let ι be an integer, ι ≥ 2. Segmenting Ω̄∗ into finite disjoint subsets ωι
1, ω

ι
2, . . . , ω

ι
lι
, such that

diam(ωι
i) ≤

1
ι

for i = 1, 2, . . . , lι. Take mι
i ∈ ω

ι
i and consider the measure µι :=

lι∑
i=1
µ(ωι

i)δmι
i

defined on

Ω̄∗. From the proof of Theorem 3.4, we know that µι → µ weakly as ι→ ∞.

From (4.14), we have µι(Ω̄∗) = µ(Ω̄∗) ≤ (1 − Cε)
ˆ

Ω̄

f (x)dx, then from Theorem 4.2, there exists a

refractor Γι = {ρι(x)x; ρι(x) = min
1≤i≤lι

bi

1 − κmι
i · x
}, such that µι(ω) ≤

ˆ
TΓι (ω)

f (x)tΓι(x)dx. Normalized Γι,

such that inf
x∈Ω̄

ρι(x) = 1, then from Lemma 4.2, there exists a constant C > 0, such that sup
x∈Ω̄

ρι(x) ≤ C for

all ι ≥ 1.
Besides, if x0, x1 ∈ Ω̄ and E(m0, b0) supports Γι at ρι(x0)x0, then for x1 ∈ Ω̄, we have

|ρι(x1) − ρι(x0)| ≤ |
b0

1 − κm0 · x1
−

b0

1 − κm0 · x0
|

≤
−κb0

(1 − κm0 · x1)(1 − κm0 · x0)
‖x1 − x0‖

≤
−κ

1 − κ2

b0

1 − κ2 ‖x1 − x0‖
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≤
C

1 − κ2 ‖x1 − x0‖.

Exchanging the roles of x1 and x0, we have

|ρι(x0) − ρι(x1)| ≤
C

1 − κ2 ‖x0 − x1‖,

hence {ρι(x); ι ≥ 1} is a family of bounded uniformly and equicontinuous functions. Then from
Arezlà-Ascoli Theorem, ρι(x) → ρ(x) uniformly as ι → ∞ for all x ∈ Ω̄. Then from Lemma 4.6 (a),
Γ = {ρ(x)x; x ∈ Ω̄} is a refractor.

Similar as the proof of Theorem 3.4, we also have GΓι :=
ˆ
TΓι (ω)

f (x)tΓι(x)dx → GΓ :=
ˆ
TΓ(ω)

f (x)tΓ(x)dx weakly as ι→ ∞, hence the weak solution of the problem exists. �

5. The inequality for the problem

In this section, we derive inequality involving a Monge-Ampère type operator satisfied by ρ. We
first recall the Jacobian equation given in [11].

Let X = (x, xn) be a point in the sphere S n−1, where x = (x1, . . . , xn−1). Let Γ = {ρ(X)X; X ∈ Ω̄}

be a weak solution of the refractor problem from Ω̄ to Ω̄∗ with emitting illumination intensity f
and prescribed refracted illumination intensity g. Assume that Ω̄ is a subset of upper unit sphere
S n−1

+ = S n−1 ∩ {xn > 0}, then Ω̄ can be identified by its orthogonal projection V = {x =

(x1, . . . , xn−1); (x,
√

1 − |x|2) ∈ Ω̄}. Suppose that ρ is a function of x with x ∈ V. For convenience, we
may assume that ρ ∈ C2(Ω̄).

Let Y be the refracted direction of the ray X by the surface ρ(X)X, then from Snell law (2.3), we
have

Y =
1
κ

(X − Φ(x · ν)ν), (5.1)

where Φ is given by (2.5) and ν is the outward unit normal to the refractor at ρ(X)X.
Define a map T : V → Ω̄∗ : X 7→ Y , then the Jacobian matrix of T is given by

∂1y1 . . . ∂n−1y1 y1

∂1y2 . . . ∂n−1y2 y2
...

. . .
...

...

∂1yn−1 . . . ∂n−1yn−1 yn−1

∂1yn . . . ∂n−1yn yn


.

Then we have
det J =

1
yn

det Dy, (5.2)

where

Dy =


∂1y1 . . . ∂n−1y1

∂1y2 . . . ∂n−1y2
...

. . .
...

∂1yn−1 . . . ∂n−1yn−1

 .
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Let dS Ω̄∗ be the area elements corresponding to Ω̄∗, dSV be the volume element corresponding to
V, then

| det J| =
dS Ω̄∗

dSV
. (5.3)

Similarly, if dS Ω̄ denotes the area elements corresponding to Ω̄, then

dS Ω̄

dSV
=

1√
1 − |x|2

. (5.4)

Suppose that x0 < E, where E is the singular point set of Γ, and m0 = TΓ(x0) = T (x0).
Combing (5.3), (5.4) and Lebesgue differentiation theorem with the following energy condition

ˆ
TΓ(ω)

f (x)tΓ(x)dx ≥
ˆ
ω

g(m)dm,

we obtain the Jacobian equation

| det J| =
dS Ω̄∗

dSV
≤

f (x)tΓ(x)√
1 − |x|2g(T (x))

. (5.5)

Next, we derive the inequality involving a Monge-Ampère type operator satisfied by ρ.

Theorem 5.1. Suppose a refractor Γ is defined by ρ, and ρ is the weak solution to the refractor problem
in negative refractive index material with loss of energy with emitting illumination intensity f ∈ L1(Ω̄)
and prescribed refracted illumination intensity g ∈ L1(Ω̄∗), then we have

| det(D2ρ + C−1B)| ≤
f (x)tΓ(x)|κ|n−2ω

g(T (x))hn−1

(
1 − h−1

(
ρ

1 − |x|2
x − Dρ

)
· Dph

) , (5.6)

where C−1 is given in (5.25), B is given by (5.23), h and ω are defined in (5.14) and (5.15)
correspondingly.

Proof. In order to prove (5.6), we first need to derive the unit outer normal ν to the surface Γ at ρ(X)X.
Write ν = (ν′, νn), for ∂xk((x, xn)ρ(x)) are tangential to the graph of the refractor Γ for k =

1, 2, . . . , n − 1, then we have
∂xk((x, xn)ρ(x)) · ν = 0

for k = 1, 2, . . . , n − 1. Hence we have

ρ

n−1∑
i=1

δikνi + ∂xkρ

n−1∑
i=1

xiνi =

ρ xk√
1 − |x|2

−
√

1 − |x|2∂xkρ

 (5.7)

for k = 1, 2, . . . , n − 1. Using the tensor product, (5.7) can be written in matrix form

(ρI + Dρ ⊗ x)(ν′)T =

ρ xT√
1 − |x|2

−
√

1 − |x|2(Dρ)T

 νn. (5.8)
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According to Shermann-Morrison formula, we have

(ρI + Dρ ⊗ x)−1 = ρ−1
(
I −

Dρ ⊗ x
ρ + Dρ · x

)
.

Notice that for any row vectors a, b and c, we have (a ⊗ b)cT = (b · c)aT , then we have

(ν′)T = ρ−1
(
I −

Dρ ⊗ x
ρ + Dρ · x

) ρ xT√
1 − |x|2

−
√

1 − |x|2(Dρ)T

 νn

= ρ−1

 ρ√
1 − |x|2

xT −
√

1 − |x|2(Dρ)T −
ρ√

1 − |x|2(ρ + Dρ · x)
(Dρ ⊗ x)xT

+

√
1 − |x|2

ρ + Dρ · x
(Dρ ⊗ x)(Dρ)T

 νn

= ρ−1

 ρ√
1 − |x|2

xT − (
√

1 − |x|2 +
|x|2ρ√

1 − |x|2(ρ + Dρ · x)

−

√
1 − |x|2

ρ + Dρ · x
(x · Dρ))(Dρ)T

 νn

=
1√

1 − |x|2

(
xT −

1
ρ + Dρ · x

(Dρ)T

)
νn.

Hence we have

ν =

 1√
1 − |x|2

(
x −

1
ρ + Dρ · x

Dρ
)
, 1

 νn. (5.9)

From (5.9), we have

X · ν =
1√

1 − |x|2

(
ρ

ρ + Dρ · x

)
νn. (5.10)

Since ν is unit outer normal to Γ at ρ(X)X, then we have X · ν ≥ 0 and |ν′|2 + ν2
n = 1, then from (5.9),

we have (
ρ2 − (x · Dρ)2 + |Dρ|2

(1 − |x|2)(ρ + Dρ · x)2

)
ν2

n = 1. (5.11)

According to (5.11), we obtain

νn = ±|ρ + Dρ · x|

√
1 − |x|2

ρ2 − (x · Dρ)2 + |Dρ|2
. (5.12)

Then from (5.9), we get

ν = ±
|ρ + Dρ · x|
ρ + Dρ · x

 −Dρ + ρ + Dρ · x√
ρ2 − (x · Dρ)2 + |Dρ|2

x,

√
1 − |x|2(ρ + Dρ · x)√
ρ2 − (x · Dρ)2 + |Dρ|2

 . (5.13)

Besides, from (5.13), (5.10) can be written as

X · ν = ±
|ρ + Dρ · x|
ρ + Dρ · x

ρ√
ρ2 − (x · Dρ)2 + |Dρ|2

.
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Now we can derive the inequality involving a Monge-Ampère type operator satisfied by ρ. For
simplicity, we introduce two functions:

h(x, z, p) =

Φ

 z√
z2 + |p|2 − (p · x)2

√
z2 + |p|2 − (p · x)2

(5.14)

and
ω(x, z, p) = 1 − h(x, z, p)(z + p · x), (5.15)

where Φ is defined in (2.5). Then from (5.1), we have

yi =
1
κ

[
ω(x, ρ(x),Dρ(x))xi + h(x, ρ(x),Dρ(x))ρxi

]
, 1 ≤ i ≤ n − 1, (5.16)

and
yn =

1
κ
ω(x, ρ(x),Dρ(x))

√
1 − |x|2. (5.17)

For 1 ≤ i, j ≤ n − 1, differentiating yi with respect to x j, we have

∂ jyi =
1
κ

ωδi j + xi(ωx j + ωzρx j +

n−1∑
k=1

ωpkρxk x j) +hρxi x j + ρxi(hx j + hzρx j +

n−1∑
k=1

hpkρxk x j)

 . (5.18)

For x,Dρ,Dxω,Dpω,Dzω,Dzω,Dxh and Dph are row vectors, then (5.18) can be written in matrix
form

Dy =
1
κ

[ωI + x ⊗ Dxω + ωzx ⊗ Dρ + Dρ ⊗ Dxh

+ hzDρ ⊗ Dρ + (x ⊗ Dpω)D2ρ + hD2ρ + (Dρ ⊗ Dph)D2ρ].
(5.19)

Let
B(x) = ωI + x ⊗ Dxω + ωzx ⊗ Dρ + Dρ ⊗ Dxh + hzDρ ⊗ Dρ, (5.20)

and
C(x) = x ⊗ Dpω + hI + Dρ ⊗ Dph. (5.21)

Then (5.19) can be written as

Dy =
1
κ

[B(x) + C(x)D2ρ]. (5.22)

From (5.15), we have Dxω = −Dxh− hp, ωz = −hz(z + p · x)− h and Dpω = −Dph(z + p · x)− hx, then
we have

B(x) = [1 − (ρ + Dρ · x)h]I − [(ρ + Dρ · x)x − Dρ] ⊗ Dxh

− x ⊗ [(2h + hz((ρ + Dρ · x)))Dρ] + hzDρ ⊗ Dρ,
(5.23)

and
C(x) = [(−(ρ + Dρ · x)x + Dρ) ⊗ Dph] − h[(x ⊗ x) − I]

= h[(h−1(−(ρ + Dρ · x)x + Dρ) ⊗ Dph) + (((−x) ⊗ x) + I)]
= h(M1 + M2)
= hM2(I + M−1

2 M1),

(5.24)
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where
M1 = −h−1((ρ + Dρ · x)x − Dρ) ⊗ Dph and M2 = ((−x) ⊗ x) + I.

From Shermann-Morrison formula, we have M−1
2 = I + x⊗x

1−|x|2 , and C−1 = 1
h (I + M−1

2 M1)M−1
2 . We may

assume that v = h−1[(ρ + Dρ · x)x − Dρ], then I + M−1
2 M1 = I + (−M−1

2 vT )Dph, then we have

N := (I + M−1
2 M1)−1 = I +

(−M−1
2 vT )Dph

1 − (−M−1
2 vT )T · Dph

,

hence

C−1 =
1
h

N
(
I +

x ⊗ x
1 − |x|2

)
. (5.25)

Now we calculate the matrix N accurately. We have

M−1
2 vT = vT +

1
1 − |x|2

xT xvT

= h−1
[
(ρ + Dρ · x)xT − (Dρ)T +

1
1 − |x|2

(|x|2(ρ + Dρ · x)xT − (Dρ · x)xT )
]

= h−1
[

ρ

1 − |x|2
xT − (Dρ)T

]
.

Hence, we have

N = I +

h−1

(
ρ

1 − |x|2
x − Dρ

)
⊗ Dph

1 − h−1

(
ρ

1 − |x|2
x − Dρ

)
· Dph

, (5.26)

again from Shermann-Morrison formula, we obtain

det N =
1

1 − h−1

(
ρ

1 − |x|2
x − Dρ

)
· Dph

. (5.27)

Combining (5.25) with (5.27), we have

det C =
1

det C−1 = hn−1(1 − |x|2)
[
1 − h−1

(
ρ

1 − |x|2
x − Dρ

)
· Dph

]
. (5.28)

Substituting (5.26) into (5.25), we have

C−1 =
1
h

[
I +

x ⊗ x
1 − |x|2

+
(M−1

2 vT )Dph

1 − (M−1
2 vT )T · Dph

+

(
(M−1

2 vT )Dph

1 − (M−1
2 vT )T · Dph

) (
x ⊗ x

1 − |x|2

)]
=

1
h

[
I +

x ⊗ x
1 − |x|2

+
1

1 − (M−1
2 vT )T · Dph

(M−1
2 vT )

(
Dph +

x · Dph
1 − |x|2

x
)]

=
1
h

[
I +

x ⊗ x
1 − |x|2
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+
1

1 − (M−1
2 vT )T · Dph

(
h−1

(
ρ

1 − |x|2
xT − (Dρ)T

) (
Dph +

x · Dph
1 − |x|2

x
))]

,

where we have used the fact that for the row vectors a, b, c, d, (a ⊗ b)(c ⊗ d) = (b · c)(a ⊗ d). Denoting
that

A =
1

1 − (M−1
2 vT )T · Dph

(
h−1

(
ρ

1 − |x|2
xT − (Dρ)T

) (
Dph +

x · Dph
1 − |x|2

x
))
,

then from

(M−1
2 vT )T · Dph = h−1

[
ρ

1 − |x|2
(x · Dph) − Dρ · Dph

]
,

we have

A =
1

h −
[

ρ

1 − |x|2
(x · Dph) − Dρ · Dph

] (
ρ

1 − |x|2
x − Dρ

)
⊗

(
Dph +

x · Dph
1 − |x|2

x
)
,

so (5.25) can be written as

C−1 =
1
h

[
I +

x ⊗ x
1 − |x|2

+ A
]
.

From (5.22), we have

Dy =
1
κ

C(C−1B + D2ρ),

hence
det Dy =

1
κn−1 det C det(C−1B + D2ρ). (5.29)

Combining (5.2), (5.5), (5.17) and (5.25), we have

|
1
κn−1 det C det(C−1B + D2ρ)| =

f (x)tΓ(x)ω
κg(T (x))

,

then from (5.28), we finally obtain

| det(D2ρ + C−1B)| ≤
f (x)tΓ(x)|κ|n−2ω

g(T (x))hn−1

(
1 − h−1

(
ρ

1 − |x|2
x − Dρ

)
· Dph

) .
�

6. Conclusions

In this paper, we studied the far field refractor problem with loss of energy in negative refractive
index material. We first recalled the Snell law in vector form and derived the Fresnel formula in
negative refractive index material. Then we proved the existence of the weak solution of the refraction
problem with loss of energy in both the cases κ < −1 and −1 < κ < 0. Finally, the inequality involving
a Monge-Ampère type operator satisfied by ρ is derived. The conclusion of the existence of weak
solutions is similar to that in [11]. However, since κ is negative in this paper, the process of the proof is
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different. Especially, for κ < 0, when proving the boundedness of some parameters, we use a different
method from that in [11] for the scaling of inequalities. For the inequality involving a Monge-Ampère
type operator satisfied by ρ, the form of the Eq (5.6) is similar to the inequality (8.15) of the positive
refractive index in [11], while the formula of ω is different. Besides, for κ < 0, we need to take the
absolute value of κ in (5.6). If we do not take the absolute value of κ, then the right side of (5.6)
becomes negative and the Monge-Ampère type operator in (5.6) is not elliptic, hence it is meaningless.
Meanwhile, if we do not consider the loss of energy, then the energy condition is

ˆ
TΓ(ω)

f (x)dx =

ˆ
ω

g(m)dm,

hence the Monge-Ampère type equation satisfied by ρ can be written as

| det(D2ρ + C−1B)| =
f (x)|κ|n−2ω

g(T (x))hn−1

(
1 − h−1

(
ρ

1 − |x|2
x − Dρ

)
· Dph

) .
In fact, the inequality (5.6) we have derived is universal. If we do not consider the loss of energy in
negative refractive index material, we only need to take tΓ(x) = 1 in (5.6) and change the unequal sign
to the equal sign, and if we consider the refraction problem in positive refractive index material with
loss of energy, we only need to change the formula of ω and remove the absolute value of κ.

This paper used Minkowski method to solve the far field refractor problem with loss of energy
in negative refractive index material, which is a remaining problem in [32]. Minkowski method is
effective in solving the refractor problem with loss of energy. However, can the optimal transportation
method be used to solve the refractor problem with loss of energy is still an open problem. Besides,
in order to prove the existence of the weak solution of the far field refraction problem in negative
refractive index material with loss of energy, we take ε > 0 to strengthen Lemma 2.1 to Remark 2.1.
However, can we take ε = 0 in Remark 2.1 is still an open problem as well.
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