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Abstract: This paper studies the far field refraction problem in negative refractive index material
with loss of energy, which is a remaining problem in E. Stachura, Nonlinear Anal. 2017;157:76-103.
The analysis is divided into two cases according to the relative refractive index «, that is, k < —1
and —1 < k < 0. For each case, we use the Minkowski method to establish the existence of the weak
solution when the target measure is either discrete or a finite Radon measure. Eventually, the inequality
involving a Monge-Ampere type operator satisfied by the solution of the problem is derived, which is
useful to understand this complex optical phenomenon.
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1. Introduction

1.1. Background

Negative refraction was first proposed by the Russian scientist Veselago in 1968 [33], referring to
the phenomenon that when a light wave is incident from a material with a positive refractive index to
the interface of a material with a negative refractive index, the refraction of the light wave is opposite to
conventional refraction, with the incident and refracted waves located on the same side of the interface
normal. Negative refractive index materials are artificially structured materials with both permittivity €
and permeability u are negative. In such materials, the electric vector, magnetic vector, and wave vector
of electromagnetic waves form a left-handed system, hence they are also called “left-handed material”.
While traditional materials have positive refractive indices, the unique properties of negative refractive
index materials give them disruptive potential in fields like optics and electromagnetism.

In 2000, Smith et al. [30] artificially synthesized the world’s first medium with negative equivalent
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permittivity and permeability in the microwave range using copper-based composite materials. In 2001,
Shelby et al. [31] made a prism from existing negative refractive index materials, experimentally
confirming negative refraction and showing that light incident on a negative refractive index medium
surface refracts to the same side of the interface normal as the incident light. Since the beginning
of 21st century, negative refractive index materials have been widely used in optical invisibility [3],
perfect lens imaging [28, 29], wireless directional radiation [7] and manufacturing of novel optical
devices such as high-capacity optical discs [24].

In recent years, near field refraction and far field refraction problems have been widely researched
mathematically. Near field refraction problem refers that given two media I and II, and a light source in
medium I, constructing a refracting surface R separating media I and II, such that all ray emitted from
the light source refract through R to a specified point P in medium II. In 2014, Gutiérrez and Huang [9]
studied the single surface near field refraction problem in positive refractive index media without loss
of energy. The existence of weak solutions to the refraction problem was proved by using Minkowski
method and the corresponding partial differential equation was also derived. For related research on
near field refraction problem, see [12, 13, 18-20]. Far field refraction problem refers that given two
media I and II, and a light source in medium I, constructing a refracting surface I" separating media
I and II, such that all ray emitted from the light source refract through I'" to a specified direction m in
medium II. In 2009, Gutiérrez and Huang [8] studied the single surface far field refraction problem in
positive refractive index media without loss of energy. They used the optimal transportation method
to prove the existence of weak solutions of this problem, derived the corresponding partial differential
equation and verified that the equation satisfies the A3 condition in [27]. In 2017, Gutiérrez and
Sabra [14] studied the double surface far field refraction problem in positive refractive index media
without loss of energy. They proved that given a lower surface, there exists an upper surface that
satisfies the Monge-Ampere type equation which can refract parallel light in a given direction. There
are also some other research on far field refraction, see [1,5,10,17].

In 2015, Stachura and Gutiérrez [15] first studied the refraction problem in negative refractive
index media mathematically. They proposed the Snell’s law for negative refractive index material
and extending the near field and far field refraction problems from positive refractive index media to
negative refractive index media. Later in 2016, Stachura and Gutiérrez [16] further generalized their
previous work by investigating double refraction in both near and far fields in negative refractive index
media. In 2017, Stachura [32] conducted a deeper study of the refraction problem in negative refractive
index media. The Minkowski method was used to prove the existence of the weak solution of near
field refraction problem, and the optimal transmission method was used to prove the existence of weak
solution of far field refraction problem and derive the corresponding Monge-Ampere type equation.
However, these studies are based on the assumption of energy conservation. In fact, when the light ray
emitted from medium I strikes the interface between medium I and II, it gives two rays, some of the
ray will be refracted into medium II, while the other ray will be reflected back to medium I. Therefore,
the energy of the incident light ray is not equal to that of the refracted light ray. In 2013, Mawi and
Gutiérrez [11] studied the far field refraction problem with loss of energy in positive refractive index
media, showing the existence of the weak solution of far field refraction problem with loss of energy
and deriving the corresponding Monge-Ampere type equation. In fact, refraction with loss of energy
also occurs in negative refractive index material [4]. Figure 1 shows the refraction problem with loss of
energy in negative refractive index material, indicating that when an incident light ray having direction
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of propagation x € §"! strikes at ', it will split into two rays: a reflected ray in direction € S"~! back
into medium I and a refracted ray in direction m € "' transmitted into medium II.

I

r

II

Figure 1. Sketch of the refraction problem with loss of energy in negative refractive index
material.

1.2. Description of the problem

In this paper, we consider the following problem: Suppose that Q and Q* are two domains in §"~!,
f and g are two integrable functions on Q and Q* respectively, that is, f € L'(Q), g € L'(Q*). Consider
two homogeneous, isotropic media: medium I and medium II, surrounded by Q and Q* respectively
which have different optical densities. Given a direction m € €, we want to construct a surface I
separating media I and II, such that all rays emanate from the origin O, located in medium I, with
directions x €  and intensity f(x), are refracted into medium II, with direction m € Q* and intensity
g(m). Assuming that the refractive index of medium I is n; > 0, the refractive index of medium II is

n, < 0, and set the relative refractive index x = —, so k < 0. Notice that in application, it is natural to
ny

study the refraction problem in S2, see Figure 2. However, in this paper, we directly study the problem
in §"~! with n > 2 for its generality.

X

Figure 2. Statement of the problem in S2.
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1.3. Main results

There are three main methods for studying reflection and refraction problems [26]: The first method
is using variational method to transform the problem into optimal transportation problem, the second
method is using energy conservation conditions to derive the Monge-Ampere type equation which the
reflective or refractive surfaces satisfy, and the third method is Minkowski method. In this paper, we
mainly use Minkowski method to study the far field refraction problem with loss of energy in negative
refractive index medium.

Minkowski method is an iterative approach for solving refraction and reflection problems in
geometric optics. To sovle our problem, we first give some properties of refractor and Fresnel formula.
Then we introduce the definition of the weak solution of the problem. Next, the existence results
when the underlying measure is the finite sum of 6-measures is proved by using approximation by
hyperboloids or ellipsoids depending on whether k < —1 or —1 < k < 0, see Theorems 3.3 and 4.2.
Using these results, we prove the existence of the weak solution for the general finite Radon measure,
see Theorems 3.4 and 4.3.

Generally, refraction and reflection in geometric optics can be described by Monge-Ampere type
equation [21-23,25,34]. Based on the definition of the weak solution of the far field refraction problem
for the case k < —1 and —1 < k < 0, see Definitions 3.4 and 4.4, the inequality involving a Monge-
Ampere type operator which the solution of the problem satisfies, see Theorem 5.1, is also derived
in this paper. To the best of our knowledge, this work presents the first construction of a refractor in
negative refractive index material that accounts for the energy used in internal reflection.

The rest of the content is organized as follows: In Section 2, we give some preliminaries, namely
Snell law and Fresnel formula in negative refractive index material. In Section 3, we study the existence
of the weak solution when k < —1. We first study the existence of weak solutions in discrete situation,
then use approximation by hyperboloids to investigate the existence of weak solutions in general
situation. In Section 4, we use similar way in Section 3 to study the existence of the weak solution
when —1 < « < 0. The inequality involving a Monge-Ampere type operator which the solution of the
problem satisfies is driven in Section 5. Finally, in Section 6, we summarize our work and compare it
with previous research.

2. Preliminaries

In this section, we briefly introduce Snell law in vector form and Fresnel formula in negative
refractive index material.

2.1. Snell law in vector form

Suppose I is a surface in R” that separates two homogeneous and isotropic media I and II, with
refractive indices n; > 0 and n, < 0. A ray of light emitted from O € § "~ in medium I with direction
x € §" ! strikes at I' at the point P, then the refracted ray has the direction m € $"~! in medium II. Let
v be the unit normal to I" at P going towards medium II, 6, be the angel between x and v which called
the angle of incidence and 6, be the angle between m and v which called the angle of refraction. Then
we have the well-known Snell law in scalar form:

ny sin@; = n, sin 6. 2.1
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This law can be written in vector form as:

n(x X v) = ny(m X v). (2.2)
From (2.2), it is easily seen that x,m and v are in the same plane. Since we have set k = @,
n
then (2.2) can be written as
xX—km = Av, 2.3)
where A € R is given by
A=xv+ Nx-v2=(1 -2 =x-v+ V1 —k2(1 = (x-v)?). (2.4)

If we set
D) =1+ k|1 — k21 = 1), (2.5)

then we have 1 = ®(x - v).

Furthermore, we need to determine the physical constraints of Q and Q* to ensure that total internal
reflection cannot occur.

When « < —1, that is, n; < |n,|, in this case, the direction of refracted ray m is close to normal v.

T 1
So when 0, = > the angle of refraction attains its maximum ¢; = arcsin (——) := @. Then from Snell
K

law (2.1), we have

0, + 6, = arcsin(—«sin6,) + 6,.
Since the function A(6) = arcsin(—« sin ) + 6 is increasing on [0, 6], then we have 0 < 6, + 6, = g +0;,
so we have {

x-m=cos(f; +6,) > cos(J—T + 9:) = —.
2 K

When -1 < « < 0, that is, n; > |n,|, in this case, the direction of refracted ray m is away from
. n . . . . T
normal v. So when sinf; = —k = ——2, the angle of refraction attains its maximum 6; = 5 Therefore,
n

1
the sine value of the angle of incident is no larger than —«, that is, 0 < 6; < 6, := arcsin(—«). Then
from Snell law (2.1), we have

1
6, + 6, = arcsin (—— sin 01) + 6.
K

1
Since the function A(6) = arcsin (—— sin 9) + 6 is increasing on [0, 6.], then we have 0 < 6, +6, < 7_2r +6,,
K
so we have x
x-m = cos(6, + 6,) > cos (5 + 06) =K.
From the above analysis, we have the following lemma:

Lemma 2.1. Suppose that the refractive indices of media 1 and 11 are given by ny > 0 and n, < 0, and
n

set k = —.
n

(a) If k < =1, a light ray in medium 1 in the direction x € S"" is refracted by some surface into a
light ray in medium 11 in the direction m € S"" if and only if x - m > —.

(b) If =1 < k < 0, a light ray in medium 1 in the direction x € S™ ! is refracted by some surface into
a light ray in medium 11 in the direction m € S™ " if and only if x - m > k.
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Remark 2.1. Lemma 2.1 is typically used to solve the refraction problem without loss of energy.
However, since this paper considers the refraction problem with loss of energy, we need to strengthen
the conclusions of Lemma 2.1 appropriately, see the following:

Suppose that the refractive indices of media 1 and 11 surrounded by € and Q" respectively, are given

n
by ny > 0and n, <0, and set k = =y
ni

(a) For the case k < —1, we assume that there exists € > 0, such that

. 1
inf x-m>-+g¢, (2.6)
xeQ,med* K
then from Lemma 2.1 (a), a light ray in medium 1 in the direction x € S"™' can be refracted by some
surface into a light ray in medium 11 in the direction m € S™\.
(b) For the case —1 < k < 0, we assume that there exists € > 0, such that

inf x-m>«k+es, 2.7)
x€Q,meQ*

then from Lemma 2.1 (b), a light ray in medium 1 in the direction x € S"™' can be refracted by some
surface into a light ray in medium 11 in the direction m € S"\.

2.2. Fresnel formula

From the previous analysis, we know that when the incident light ray strikes the surface I', it will
split into refracted light ray and reflected light ray, so the energy of the incident light ray will be
distributed to the refracted light ray and reflected light ray. This subsection briefly gives the energy
distribution of reflected and refracted light ray according to the electromagnetic field theory of light
propagation.

Define E = E(r,7) as electric field vector and B = B(r,7) as magnetic field vector, where
r = r(x,y,z) represents a point in 3-d space and ¢ is the time, then we have the following system
of Maxwell’s equations absent from charges:

uoB
VXE=-—"~—
x c ot’
e E
\Y =———
<B=—5 @8)
V-(eE) =0,
V-uB)=0,

where c is the speed of light in vacuum, u = u(x, y, z) is the magnetic permeability of the medium and
€ = €(x,y, 7) is the electric permittivity of the medium.

Assume that the waves are plane waves, that is, the waves have the same value at all points of any
plane perpendicular to the direction of propagation, then from (2.8), we have:

E=-"(kxB),
EW
c (2.9)
B= - (kxE),
Uw

Mathematics in Engineering Volume 8, Issue 1, 98—139.



104

where c is the speed of light in free space, k = 9s represents the wave vector, w represents the angular
frequency of the electromagnetic wave, v repres‘énts the speed of light ray in the medium and s is a unit
vector.

The flow of the energy in an electromagnetic wave with electric field E = E(r, f) and magnetic field
B = B(r, 1) is given by Poynting vector

S= “ExB. (2.10)
4
Then from (2.9), we have
S= LEx(SkxE)= = [SExsxE. 2.11)
4r Hw 4\ u

We denote quantities referring to the incident wave by the suffix (i), to the refracted wave by (#) and
to the reflected wave by (r). Choose a system of coordinates such that the normal v to the interface I" at
the point of incidence is on the z-axis and the x and y axes are on the plane perpendicular to v. So the
tangent plane to I" at P is the xy-plane and the incident plane is the xz-plane. Then each of the electric
field and magnetic field vectors can be resolved into components parallel denoted by subscript || and
perpendicular denoted by subscript L. Then we obtain:

, gD , r-s®
EV(r,7) = (~Aj cos 6;, A, A sin6;) cos(w(r — ) = E cos(w(t - )
Vi Vi
g ) .g®
E®(r,1) = (-Tcos 6, T,, T} sin §,) cos(w(t — ) = EYY cos(w(t - ),
V2
. g™ .M
E®(r,1) = (R, cos 6,. R, R sin6,) cos((t — ——)) = B cos(w(r — ——)),
Vi
and )
. [€ _ r-s®
BOr,1) = . [—(-A, cosé,, —A), A, sin6;) cos(w(t — )
Hi Vi
. r-s®
= [2BY cos(w(r - ——)),
M Vi
[& , r-sv
BY(r,r) =  [|—=(-A,cos6,—Ay,A, sinf,)cos(w(t — )
o ® "
r-s
= [2BY cos(w(t — ——)),
M2 Va
el . r . S(r)
BO,r) = . [—(-AL_cosb,,—A),A, sinb,)cos(w(t — )
M1 Vi
r- S(r)
= [ZLBY cos(w(t - ——)),
Hi Vi

c ¢ , )
where v, = vy = , A, R and T are the amplitude vectors and s?, s and s are

VEIML e Ve

the directions of propagation of the corresponding fields. The boundary conditions expressing the
continuity of the tangential components of the electric and magnetic fields across the interface [2],
then we have

{kng) +kxE =k xE_, o

kxBY +k xBY’ =k x B
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From (2.11), we obtain

Cos 9,'(14” - R||) = COS 0;T||,
A R Ty
€1 €1 € ’
V 1 V 1 V 12
A R, T
cos 6; - = cos b,
1

1
€1 €
V u V i

1
62.
V 12

(2.13)

Define the wave impedance of the medium as z = \/E , then we obtain the following Fresnel formula
€

from (2.13):

From Snell law (2.3) and the fact that x - v = cos 8;, m - v = cos 6,, (2.14) can be written as

271 cos 8,

B 7o €08 8; + z1 cos 6,
271 cos 6;

T s

1>

1 =
71 €08 6; + 7, cos 6;
Zpc0sb; — zy cos b,

Il II>

"~ z,c0s8 6; + z; cos 6,
Z1 cos 6; — z, cos b;

R =
+ Z1 €08 8; + 7o cos 6, +

271%x - (x — km)

T Is

" (xtam) - (x— xm)
2z1x - (x — km)

L (z1x + 2om) - (x — km) =
_ (2ox—zim) - (x — km)
" (zax + zym) - (x — km)
_ (z1x = zom) - (x — km)
YT (ax+zom) - (x—km)

I >

(2.14)

(2.15)

Using Poynting vector (2.10), the amount of energies of incident, transmitted and reflected waves
leaving a unit area of the boundary per second is given by

Mathematics in Engineering

. . c € i
JO = |Sicos 6 = —  [—[EVPx -,
4 N

c €
JO =18 cos, = — [ [EPPm -,
4 N po

C €
JO = |8 cos b, = o~ LIEXPx .
TN H1
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Then we can define the reflection and transmission coefficients as

LU0 (EPY
rr(x) = 70 |Eg)| ,

2
JO omm-v(IEY

() =75 = |
J e x-v ( [ED|

From Fresnel formula (2.15), we have

2+ kz1 — (21 + kKZ2)X - m 2 Aﬁ
rr(x) = 2. A2
2 = kzy + (2 — k)X -m| Al + A7
5 ) (2.16)
71+ k2 — (20 + KZ1)x - m A7
21— K2y + (22 —KZ)Xx - m Aﬁ+A2L’
and by conservation of energy, we have
tr(x) =1 = re(x). (2.17)

Remark 2.2. Equations (2.16) and (2.17) are called Fresnel’s equation and rr(x) and tr(x) are called
Fresnel coefficients.

Remark 2.3. From Snell law (2.3) and Egs (2.16) and (2.17), rr(x) and tr(x) are functions only
depending on x and v.

3. Far field refraction problem for the case x < —1 with loss of energy

In this section, we study the far field refraction problem for « = UERp” —1. We first give the definition

and some properties of the refractor, then discuss properties of Fres’;]el coeflicients and define the weak
solution of the far field refraction problem for the case k < —1 with loss of energy. Finally, the existence
of weak solution in both discrete and general situations are proved. Recall from (2.6) in Remark 2.1,
we must have

) 1
inf x-m>-+¢
x€Q,me* K

for some € > 0. Hence we have
1 —kx-m> —&x. (3.1

3.1. Refractor and its properties

The definition of refractor in the case k < —1 stems from [32].

Definition 3.1. A parameterized surface T in R" given by I = {p(x)x;p € C(Q)} is a refractor from

Q to QF in the case k < —1, if for any xy € Q, there exists a semi-hyperboloid defined as H(m,b) =
b

—and p(x) > ——

~ 1 —xkm- xg 1—km-x

for all x € Q. Such H(m, b) is called a supporting hyperboloid to T at the point p(xy)xo.

b 1
{o(X)x; p(x) = ————, x € "', x-m > ~}, such that p(xy) =
1—xkm-x K
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The following Figure 3 shows the semi-hyperboloid which refracts all ray emitted from the source
O to a specific direction for the case xk < —1.

N\

ni N

/

Figure 3. Hyperboloid refracting when x < —1, where O and P are focus of hyperboloid.

Now we turn to discuss some properties of the refractor for the case x < —1.

Lemma 3.1. Any refractor is globally Lipschitz continuous on Q, hence the set of singular points (set
of discontinuous points) is a null set.

Proof. Suppose I is a refractor from Q to Q*, parameterized by p(x)x, x € Q. Let x € Q and H(m, b)

_ b
supports I" at p(x)x. Then for any y € Q, we have p(y) > — and p(x) = ——.
’ l—km-y S l—xm-x
Since p € C(Q), then there exists M > 0, such that p(x) < M for all x € Q, thus b < M. Using (3.1),

we have

b b
lp(¥) =PI < 15 - |
—km-x 1l—k«km-y
_ | bkm - (x —y)
A =km-x)(1 —km-y)
< _Dllx — yll
T (e

M
< — b=yl
EK

Exchanging the roles of x and y, then we can get [o(x) — p(y)| < L||x — y|| for some L > 0, hence p is
globally Lipschitz continuous on Q. Then from Rademacher’s theorem [6], we get the singular points
set of p is a null set. |

Remark 3.1. If a refractor I parameterized by p has two distinct supporting semi-hyperboloid at
p(x)x, then p(x)x is a singular point of T.

Lemma 3.2. Suppose I’ = {p(x)x; p € C(Q)} is a refractor from Q to QF, such that inf p(x) = 1, then
xeQ)

there exists a constant C > 0 depending on € and k, such that sup p(x) < C.
xeQ
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Proof. Suppose that there exists x, € Q, such that p(xo) = sup p(x), and let H(my, by) be the supporting

xeQ
b b _
hyperboloid to I" at p(xy)xo. Then we have p(xy) = —0, and p(x) > 0 for all x € Q.
1 — kmg - xp 1 —kmg-x
. by bo =
Since < for all x € Q, so we have
11—« 1—xmgy-x
b b
°_ <inf ¢ <infp(x) = L.
11—k x01l—kmp-x  x0
Hence we have by < 1 — «. Consequently,
b 1- 1-
plxg) = ————— < L <
1—xmy-x9 1—kmg-xo —&K
Then we get sup p(x) < C. |

xeQ)

Next, we define refractor mapping and trace mapping, and discuss some properties of them.

Definition 3.2. Suppose the refractor T = {p(x)x; p € C(Q)} is given, the refractor mapping of T is a
multi-value map defined by

Nr(xo) = {m € Q; H(m, b) supports T at p(xy)xy for some b > 0}. (3.2)
Given m € Q, the trace mapping of T is defined by

Tr(mo) = {x € Q; my € Nr(xo)}. (3.3)

Lemma 3.3. If m € Q*, then Tr(m) is a closed set in Q.

Proof. Let x,, € Tr(m) and x,, — x, we need to prove that xy, € 7T(m).
For x, € 7r(m), then there exists b > 0, such that H(m, b) supports I' at p(x,)x,, thus we have

o(x,) = Fpp— For x, € Q, then from Lemma 3.1, we have p(x,)x, — p(x0)Xo, S0 p(xy) =
—Km - X,
b - b b
—— . Moreover, for x € Q, we have p(x) > —— , then p(x) > —— . So H(m, b)
1 —km- xg 1 —xkm- x, 1 —km- x
supports I" at p(xo)xo, that is, xy € T1(m). |

Lemma 3.4. For any F € Q*, we have

(a) [Tr(F)]° < Tr(F);

(b) The set M = {F C Q*; Tr(F) is Lebesgue measurable} is a o-algebra containing all Borel sets
in Q.
Proof. (a) If x € [Tr(F)]°, then Nr(x) N F = 0, then Nr(x) N F¢ # (. Then by the definition of trace
mapping (3.3), we have x € T(F°).

(b) We first prove that the set M is a o-algebra.

Mathematics in Engineering Volume 8, Issue 1, 98—-139.
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Obviously, we have 71(0) = 0, Tr(Q*) = Q. For F; € M, we have

7}(0 Fy= | ) txe® me N} = O | Jixe Qs me Nr(x)) = OTr(Fi),
i=1 >

o i=1 meF; =1
mel) F; i=1 meF; i

so M is closed under countable union. Also for F € M, using (a), we can get
Tr(FC) = (Tr(F) N [Tr(]) U (Tr(F) N Tr(F)) = [Tr(E)]° U [Tr(F) N Tr(F)].

Since |T1(F¢) N Tr(F)| = 0 and 7(F) is measurable, then 71(F¢) is measurable, hence M is closed
under taking complements.

Next, we prove that the set M contains all Borel sets in Q.

Indeed, choose a closed set K € QF, obviously K is compact. Take x; € 71(K), then there exist

i

m; € Nr(x;) N K. Suppose that H(m;, b;) supports I" at p(x;)x;, then we have p(x;) = Cpp—— and
— Km,; + X;
b; -
p(x) > 1—f0raller. For1 —«m;-x>0and 1 — km; - x; > 0, we have
—Km; - X

p(x)(1 —km;-x) >b; and p(x;)(1 —km; - x;) = b; for all x € Q.
Assume that there exist constants 0 < a; < a,, such that a; < p(x) < a, on Q, then we have
b; < p(x)(1 —km; - x) < ax(1 —km; - x) < ax(1 — k),
and
bi = p(x))(1 — km; - x;) 2 ai (1 — km; - x;) = a1(—«ke).

Thus we have
—ake < b; < ay(1 — ),

so b;s are bounded. Assume that there exist subsequences x; — xy € Q, m; » my € K and b; — by as
i — oo. Then for x € Q and all i, we have
p(x)(1 —km;-x)>b; and p(x;)(1 —km; - x;) = b;.

Taking the limit as i — oo, we have

p(xX)(1 —kmgy-x) > by and p(xp)(1 — kmyg - xo) = by.

Hence H(my, by) supports I' at p(xp)xo and xg € Tr(mp). Consequently, 71(K) is compact, hence M
contains all Borel sets in Q. o

Lemma 3.5. Suppose that H(my, by) is a sequence of semi-hyperboloid, and m; — mg, by — by as
k — oo. Let 7 € H(my, by) with 7 — zo as k — oco. Then zo € H(myg, by), and the normal vi(z;) to the
semi-hyperboloid H(my, by) at z; satisfies vi(zx) — v(20) the normal to the semi-hyperboloid H(my, by)
at the point z.
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Proof. The Cartesian coordinate of the equation of H(my, by) is |z| — kmz = by, then the normal vector
. Z
atzis vi(2) = n — kmy,, so we have
Z

Tk 20
vi(ze) = m — Kmy — m — km = v(zg).
k 0
O

Lemma 3.6. Assume that Ty = {pu(x)x; x € Q}, k > 1 is a sequence of refractors from Q to Q.
Suppose that 0 < a, < pi < ay and px — p uniformly on Q. Then we have

(a) T := {p(x)x; x € Q} is a refractor from Q to Q*;

(b) For any compact set K C QF,

ﬁﬂ@ﬁﬂm;

(c) For any open set G C Q,
7r(G) € im 71 (G) VE,

k—o0

where E is the singular set of T'.

Proof. (a) Obviously we have p € C (Q) and p > 0. Fix xy € Q, then there exist m; € Q* and by > 0,
such that H(my, b;) supports I'y at p(xo)xo, thus

b _
or(x) > and  pi(xg) = ——— forall x € Q.
1 —kmy - x 1 — kmy, - xg
So for all x € Q and k, we have
b b
— %  >q and —F <o,
1 —&kmy - xo 1 —xmy - x

hence
a;(1 — kmy - xp) < by < ar(1 — kmy, - x).

Combing with (3.1), we have
—a1ek < by < a(1 — k)
for all k. Then there exist my € Q* and by > 0, such that m, — mg and b, — b,. Hence we have

b b
p(xo) = lim py(x0) = lim £ - 0
k—00 k—oo | — Kniy - Xo 1- Ky - Xo

and
by bo

l—kmg-x 1—kmy-x

px) = ]}im por(x) = ]}im
for all x € Q, hence H(my, by) supports I at p(x)xo. So I' is a refractor.

(b) Let xg € Ill_m Tr1.(K). Without loss of generality, we assume that xy € 71, (K) for all k > 1, then
there exist my € Nr, () N K and by > 0, such that

bk bk

pr(xp) = ————— and pp(x) 2 ——
1 —kmy - x 1—«my - x
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for all x € Q. We may assume that there exist my € K and by > 0, such that m; — my and b, — by,
then as in proof of (a), H(my, by) supports I" at p(xy)xo, hence xy € T1(mp). Consequently, x € T(K).
(c) Suppose that G C Q* is a open set, then G¢ is a compact set. From (b), we have

k@ Tr.(G°) € Tr(G).
Besides, by Lemma 3.4, we also have
i [T, (G))° € lim [T (G)] U [T7,(G) N T (G)] = lim T, (G°).
From (b), we have
]@[Trk(G)]C € 71(G) = [Tr(G)]° VU [Tr(G) N Tr(GO)]. (3.4)
Taking complements in (3.4), we have

lim 77,(G) 2 Tr(G) N [T1(G) N Tr(G)].

k—o0
Hence
Tr(G) N [lim Trk(G)]" UE C lim7t,(G)UE.
k— o0 k— o0

However, lim 71, (G) C E, hence

k—o0

Tr(G) CTr(G)VE C lim Tr.(G)UE.

k—o0

O
3.2. Properties of Fresnel coefficients
Recall the Fresnel coefficients in (2.16) and (2.17)
Bt kz — (@ +k)x-m| A
rr(x) = 2 2
=Kz + (21 —kp)x-m| Aj+A]
21+ K2 — (22 + kZ1)x - m 2 Ai
21— k2 + (2 —kz)x-m| Af + A%’
ir(x) =1-rr(x).
We first discuss the boundedness of rr(x) and #r(x).
For simplicity, let o = 2 /'Lﬁ > 0 and introduce a function
21 Hi€
0'+/<—(1+/<0')t2 1+K0'—(0'+/<)t2
= , 3.5
40 0'—K+(1—K0')l] 1 —ko + (00— k)t p (3-5)
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A? A2
where @ = e +“ il e +LAi . Then rr(x) = Y(x - m), tr(x) = 1 — y(x - m). From (2.6), we know
1
te|—+¢&,1|. We denote
K
o+k—(1+«ko)t 1+«ko— (0 +x)t
t) = d 1) = .
p() o—k+ (1 —-«ko)t andg() 1 —ko + (o — k)t

20k = 1)

[ T e For k < —1, then k¥* — 1 > 0, so p(f) increases on
0 —K — KO

For p(t), we have p’(t) =

1
- +¢g, 1]. Hence
K

pz(t)max = max {p2 (% + 8) s p2(1)} .
2

-1
g . For £ is small enough, then p*()max =

o+1

We have p*(1) =

1
p? (— + s).
K

For ¢(t), we have ¢'(t) =

N K2 =1 — k(1 + ko)
s P -+ =
1 — k% + k(1 — ko)

20(k* = 1)
[1 - ko + (o= k)]

For k < —1, then k> — 1 > 0, then g(¢) increases on

1
—+eg, 1]. Hence
K

G*(£)max = Max {cf (% + s) : cf(l)} :

2 q2(1+8) _ [O'(Kz—l)—SKZ(O'+1)

(1 = k?) + ex(o — k)

2

-1
z . For & is small enough, then

o+1

We have ¢*(1) =

1
qz(l)max = q2 (; + 8)'
From above analysis, we obtain the following proposition:

Proposition 3.1. Suppose that Q and Q* satisfy (2.6), T is a refractor from Q to QF, then there exists a
constant C, associated with &, such that rr(x) < C, and C,; < 1r(x) < 1.

Next, we discuss the continuity of 7r-(x).

Proposition 3.2. Suppose that T = {p(x)x; x € Q} is refractor from Q to Q* and E is the singular set
of T, then tr(x) is continuous on Q\E.

Proof. To prove fr(x) is continuous on Q\E, we only need to prove rr(x) is continuous on Q\E. From
previous analysis, we can assume that there exist constants C;,C, > 0, such that C; < p(x) < C,.
From (2.16), we know that rr(x) is a function ¢(x) = G(x,v(x)) define on Q\E, and G(x,m) is
continuous on Q x Q.

To prove rr(x) is continuous on Q\E, we only need to prove r-(x) is both upper and lower semi-
continuous on Q\E. We first prove r(x) is upper semi-continuous on Q\E, that is, for any @ € R, the
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set M, = {x € Q\E; ¢(x) < a} is a closed set in Q\E. Then we need to prove that for a sequence
X € M, and x, € Q\E, if x, — xo, then xy € M,,.

We claim that for xi, xo € Q\E, if x; — X, then there exists a subsequence X, such that v(x;,) —
v(xp) as j — oo.

Indeed, suppose that H(my, by) support I' at p(x;)x;, then we have

by

and - p(x) = 17— —
——

p(x) > T
—Kmy - X

Hence from (3.1), we have
—C1K8 < bk < C2(1 - K).

Then there exist subsequence by, — by and my, — mg as j — co. From Lemma 3.5, the claim holds
true.

Consequently, if x, € M,, then ¢(x;) = G(x;, v(x)) < @. However, from claim, there exists a
subsequence x;,, such that v(x;;) — v(xo) as j — oo. Then for G is continuous, we know that rr(x) is
upper semi-continuous on Q\E.

Using the similar argument, we can prove that r(x) is lower semi-continuous on Q\E. Then rp(x)
is continuous on Q\E. o

Remark 3.2. From Lemma 3.1, the singular points set of p is a null set, then rr(x) is well-defined on
Q a.e., hence rr(x) is measurable in Q.

From above analysis, we can get the following lemma and theorem, which are useful in proving the
existence of the weak solution.

Lemma 3.7. Let 'y and T be refractors with defining functions pi(x) and p(x), the corresponding
fresnel coefficients are t, and t. Suppose that p, — p pointwise in Q and there exist constants C, C, >
0, such that C, < py(x) < C, in Q. Then fory ¢ E, there exists a subsequence i, (y) = t(y) as j — oo,
where E is the union of singular points of refractors I'y and T

Proof. Given y ¢ E and k, there exist b; > 0 and my; € Q*, such that

b _
o) = ——— and pi(z) > £ forallze Q.
1 —kmy -y 1 —kmy -z
by
So we have C; < < (C», then from (3.1), we get
1 —kmy -y

—Cike < by < Cy(1 — k).

So b;s are bounded and away from 0 and oo, then there exist subsequence bkj — b > 0and my; —
m € QF, hence H(m,b) supports I at yo(y), so y € Tr(m). Fory ¢ E, the normal v, (y) to the
semi-hyperboloid H(my, by;) equals to the normal to the refractor I';; at y, and the normal v(y) to the
semi-hyperboloid H(m, D) equals to the normal to the refractor I at y. Since H(my, by;) — H(m, b) as
J — oo, then vy (y) — v(y) fory ¢ E as j — o0. So we have #;,(y) — #(y) as j — oo. m|
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Theorem 3.1. Assume that the hypotheses and notations of Lemma 3.7 hold, and let F € Q* be a
compact set, set Fy = T (F). Then for all y ¢ E, we have

(@) lim yp, ()1(y) = () im xr, (3): (3.6)
(b) lim x r, (M1 (y) = 1(y) lim x £, (). (3.7)
k—o0 k—o0
Proof. See Theorem 5.5 in [11]. |

3.3. Weak solution of the far field refraction problem for the case k < —1 with loss of energy

In this subsection, we define the weak solution of the far field refraction problem for the case x < —1
with loss of energy. We first give the definition of refractor measure originated from [11].

Definition 3.3. Suppose I is a refractor from Q to Q*, f € L'(Q) and inf f > 0. The refractor measure
Q

associated with T and f is defined by a set function on Borel subsets of Q*:

Gr(F) := FOtr(x) dx, (3.8)

Tr(F)
where dx is the surface measure on S"".
Remark 3.3. Gr(F) is a finite Borel measure defined on M, where M is defined in Lemma 3.4 (b).

Now we can define the weak solution of the far field refraction problem for the case k < —1 with
loss of energy.

Definition 3.4. Suppose that u is a Radon measure on the Borel subset of Q* and f € L'(Q), a refractor
I" is a weak solution of the far field refraction problem for the case k < —1 with emitting illumination
intensity f(x) and prescribe refracted illumination intensity u if for any Borel set w C Q, there holds:

Gr(w) = JOr(x)dx = p(w). (3.9)

Tr(w)

Remark 3.4. Since a small portion of energy is used for internal reflection, a little extra energy is
required to ensure that light can be refracted into 07, so we use “>" in (3.9).

From Definition 3.4, we can prove that the weak solution is unique up to a multiplicative constant.

Theorem 3.2. IfT" = {p(x)x; x € Q} is a weak solution of the refraction problem, then for any ¢ > 0,
I’ = {cp(x)x; x € Q) is also a weak solution of the refraction problem.

Proof. It H(m, b) supports I' at p(x)x, then H(m, cb) supports cI" at co(x)x. Then for any w € Q*, we
have Tr(w) = 7 r(w) and f-(x) = t(x), hence cI is also a weak solution. O

The existence of weak solution is discussed in the following two subsections.
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3.4. Existence of the weak solution when u is discrete measure

In this subsection, we assume that y equals finite sum of 6-measures, hence all rays are refracted
into finite directions. Based on this assumption, we establish the existence of the weak solution of the
far field refraction problem for the case k < —1 with loss of energy when u is discrete measure.

Remark 3.5. Suppose that my,my,...,m;, | > 2 are discrete points in Q*, then for b =
(b1, by, -+ ,b) € R, b; > 0, the refractor is defined as
_ b;
I'(b) = {p(x)x; x € Q, p(x) = max ———}. (3.10)

1<i<i 1 — km; - X

Now we show the existence of the weak solution when p equals the linear combination of the -
measures at my, my, ..., m.

Theorem 3.3. Suppose that f € L'(Q) and inf f(x) > 0, m|,mo,...,m;, | > 2 are discrete points in
xeQ)

- - l -
Q" 21,82,...,8 > 0. Let it be the Borel measure defined on Q* by u = . gi0,,,(w), where w € Q" is
i=1

Borel set. Also suppose that

1 -
/Q fedx = ——u(@),

where C, is defined in Proposition 3.1. Then there exist by € R! and refractor T'(by), such that
/ S (O trmy(x)dx = g;
Trvg)omp)

fori=2,...,1, and
/ S (Otrmy) ()dx > g1,
TTbg)imy)
namely the weak solution of the far field refraction problem for the case k < —1 with loss of energy
exists.
Remark 3.6. If | = 1, this problem might be overdetermined. In this case, we have I'(b) equals
H(my, by), hence this predetermines the value of tr(x) and / f(Otr(x)dx, so we must have
Q

/ SO trpy)(x)dx > g;.
TTbg)my)

In order to prove Theorem 3.3, we need some lemmas.
Lemma 3.8. Suppose that f € LY(Q) and inf f(x) >0, my,my,...,my, | >?2 are discrete points in QF,
xeQ

21,82,-..,8 > 0. Suppose that W C R is a set defined by W := {b = (1,b,,...,b); b; > 0 fori =

2,...,1}, and for any b € W, I'(b) satisfies Gryy(m;) = SOty (x)dx < gifori=2,...,1. Then
Ty (m;)
we have: v
(a) W+ 0;
1—
(b) Ifb = (1,bs, ..., b)) €W, then b; < — fori=2,...,1.
—&K
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Proof. (a) If for some i # 1, H(m;, b;) supports I" at p(x)x, then we have

1 1 b; bi
< <plx) = < —,
11—k 1—km;-x 1—km;-x  —ke&

—KE
so b; > I

— K.

We claim that if for some i # 1, there holds b; < ;ﬁ, then 7r,um,) € E, where E is the singular
point set of I'(b).

Indeed, if x € T1,(»,), then there exist b > 0, such that H(m, b) supports I'" at p(xo)xo. Then we have

b; b b
p(x) =max ———, p(x) > — and p(xg) = ———,
I<i<t 1 —km; - x 1—km;-x 1 —xm; - xg
hence
b; b
PR p—— pxg) = ———,
— Km; - Xo 1 —&m; - xo
so we have b; < b. If b; = b, then H(m;, b;) supports I', that is a contradiction, so b; < b. Then for any
- . b
x € Q, we have p(x) > > - , S0 p(x) = max — Consequently, there exist
1—km;-x 1—«m;-x 1 —km;-x

k # i, such that

b b ~
p(xo) = — %  and p(x) > — % forallxe .
1 — kmy, - xo 1 —kmy - x
So xj € E, then we have 71y, C E.

So we have

Grepy(m;) = / Strpy(0)dx < / FOtram(x)dx < g;.
TTm)(m;) E

Take b = (1, b, . ... b)), such that b; < I_Kg for2 <i <1l thenb € W, hence W # 0.

— K
(b) From Remark 3.1, we first claim that if b € W, then g, < Grg,)(m)).
Indeed, for we have

I
Grp)(m;) = Z / S tray(x)dx
i=1 Y T (m;)

1
i=1

= /I FX)trpy(x)dx = /Q JOtre)(x)dx

U Tt (m:)

i=1

2 (1 - Ca)/ f)dx > p(Q")
Q

So we have

I
g1 — Grpy(my) + Z[gi — Grpy(m;)] £ 0.
i
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If b € W, then we have g; < Gr,)(m;).

Let I'(b) = {p(x)x; x € Q}, we claim that there exists p(x()xo, such that p(xy)xy € T'(b) N H(m;, 1)
and p(xo)xo ¢ H(m;, b;) for all i > 2.

Indeed, if not, we have Tt (m;) C E, then

Grpy(my) = / FOtramy(x)dx < / SOty (x)dx =0
Ty (m1) E

for |E| = 0. This is a contradiction with g; > 0, hence

1 b,

p(xo) = > ,
1—kmy-xy 1—xm;- xg
and thus we have
1 —«m; - xo 1 —«k
b,‘ < < .
1 —«my - xg —KE
O
Lemma 3.9. Letb, = (b}, ..., b)) and by = (b), ..., b)) with b — by in R". Suppose that T = I'(by) =
{or(X)x; x € Q}, Ty = T'(by) = {p(x)x; x € Q}, then py — p uniformly on Q.
Proof. For x, € Q, we have
b; .
lo(x0) — pr(x0) = |—1 — pi(x)|  for some i
— Km; - Xo
bi b}
< |1 - |
—Kkm;-xg 1 —km;- xg
_ Ib— b
- —ke
hence p; — p uniformly on Q. i

Lemma 3.10. Let 7 > 0, then Grp)(m;) = / fXtre)(x)dx is continuous on the region R,
T ) (m;)

{(1,by,....0); O<b; <71, i=2,...,1}, forany 1 <i<L

Proof. Suppose that by is a sequence converges to by in R, and let T'(b;) = {pi(x)x; x € Q}, ['(by) =

{po(x)x; x € Q}. Then from Lemma 3.9, p, — p uniformly on Q. Besides, for any x € Q and k > 1,

we have

bt T 1
pr(x) = Rp—— max{—, —1}
—Km; - X —KE —KE&
and
) bt . 1 o1
= ma > > .
Piix 1sis)§1—/<ml~-x 1—«xm-x  1-«
for some i € {1,2,...,1}. Hence there exist 0 < a; < a,, such that a; < pi(x) < a,.

Suppose that G € Q* is a neighborhood of m1;, such that m ;¢ Gforall j#i. If xo € Trp,y(G) and
xo ¢ E, then there exists a unique m € G and b > 0, such that

b _
or(xp) = and pp(x) > —— forall x € Q.
1—km-x

1—xm- xg
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From the definition of I'(b;) in Lemma 3.9, we have m = m; for some j = 1,2,...,/, hence we have
m = mj, then Trpy(G) € Trp,(m;) U E. For |E| = 0, from Lemma 3.6, we have

/ FOtrpy(0)dx < / SO tra)(x)dx
Ty (G)

lim TF(bk)(mi)UE

k—co

< / f(x)tr(bo)(x)dx + / f(X)tr(bO)(X)dX (31 1)
lim T, (m;) E

k—o0

= / X tim Ty (mp) S (X)) (X)dx.
k—oo

Q

Obviously, we have
/\/him Tr(bk)(m,')(x) = h_nl/\/Tr(bk)(mi)(x)' (312)

k—eo k—o0

Applying Theorem 3.1, (3.12) and Fatou lemma to (3.11), we have

/ f(X)tr(bo)(X)dX < / liLn)(Tr(bk)(mi)(x)tl"(bk)f(x)dx
TTby)(G)

Q k—oo
< h_m B XTF(bk)(mi)(‘x)tr(bk)f('x)dx (3.13)
k— o0
= lim fra f (X)dx.

k— o0 TF(hk)(mi)

Besides, we also have L
/\/kllim Tl"(bk)(mi)(x) = ;L%XTr(bk)(mi)(x)' (314)

From inverse Fatou lemma, Lemma 3.6, Theorem 3.1 and (3.14), we have

lim frv f(X)dx < / ,}i_m)('rnhk)(mi)(x)fr(bk)f (x)dx
Q k—eo

k—o0 Ty (mi)

= / X T T () COS (o) (X)d x
Q kow T

(3.15)
-/ OO (O

kggo TT(by) (mi)

< / SO tr @) (x)dx.
TTby)(G)

Combining (3.13) with (3.15), we get Gr)(m;) is continuous on the region R;. O
Based on the above lemmas, now we prove the existence of the weak solution.

Proof of Theorem 3.3. Fixed b = (1,b,, ..., by), consider the set W = {b; = (1,bs, ..., b);
b; < b;,i =2,...,1}, then from Lemma 3.8 and Lemma 3.10, W is a compact set. Define a mapping
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Let b* = arg max d(b), for the compactness of W, then we know d is a continuous mapping hence b*

bew

exists.

Taking by = b*, we first prove that / SXOtrpy(x)dx = gifori=2,...,1.

Tr(bg) (mi)
Indeed, if not, we may assume that / fOtrpy(x)dx < g,. Taking & > 1 and let b, =
TTbg) (m2)
(1,€D3, ..., D). If xo € Trw,(mi) \ E, where ;5; is the singular point set of b, then we have
p(xo) = — 1 and p(x) > — 1 forallxeQ,
1 — km; - xg 1 —km;-x

hence Xp € Tr(b*)(mi), then Tr(bz)(m,‘) \ E; - Tr(b*)(mi). So we have

/ JOtrpydx = / fOtrpHdx < / SO trep-dx.
Tr(b;)(m,-) ' Tr(bz)(m,') Tr(b*)(m,-)

Let & — 1, then from Lemma 3.10, we have Gr,, < g, hence b; € W, this is a contradiction with
;: e
d(bg) < d(by).

Now we prove that / SO trpy)(x)dx > g.

T (b (m1)

Indeed, from Lemma 3.8, we have / F(X)trm,)(x)dx > g. If the equality holds, then we have

TT(bg) (1)

1
/Q F@trmydx =) g < (1-C) /Q f(x)dx,
i=1

hence

/ S = Cs = trap)(0)]dx > 0.
Q

From (2.17), we have frg)(x) > 1 — C,. But for inf f(x) > 0, then we must have fry,,(x) = 1 — C, for
xeQ

a.e. x € Q. From (3.9), for x € Trme(m)\E, we have y(x - my) = Cg, then [T, (m1)\E| > 0.

We claim that the set D = {x - m;; x € T, (m)} 1s infinite.

Indeed, if not, then there exist ¢y, ...,c,, suchthat D = ¢y,...,c,. Let Dj = {x € Trpy); x-m; = cj},
then D = |J D;. But D; contains in "' intersected with the plane {x; x - m; = ¢;}, hence its spherical

j=1
measure is 0, then [T, (m1)\E| = 0. This is a contradiction, hence D = {x - m;; x € T, (1)} 18

infinite. Besides, from Proposition 3.1, we know that the set {#; ¥(¢) = c} is a finite set for any constant

¢, then we cannot have ¥ = C, on D. So we must have / SO trpy)(x)dx > g1. O
T (b (m1)

3.5. Existence of the weak solution when u is a finite Radon measure

In this subsection, we assume that u is a finite Radon measure, and the existence of the weak solution
of the far field refraction problem for the case x < —1 with loss of energy in this situation is established
by using discrete measures to approximate.
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Theorem 3.4. Suppose that f is integrable on Q and inf f(x) > 0. Let u be a Radon measure on Q*
xeQ

and

1 .
/Q FOdx 2 (@), (3.16)

where C, is defined in Proposition 3.1. Then there exists a refractor I, such that for any Borel subset
w C QF, we have
pw) < SOt (x)dx,
Tr(w)
that is, there exists a weak solution of the refraction problem for the case k < —1 with emitting
illumination intensity f and prescribed refracted intensity .

Proof. Let ¢ be an integer, ¢ > 2. Segmenting Q* into finite disjoint subsets w}, w),...,w;, such that
1 ) I,

diam(w!) < " fori=1,2,...,1,. Take m; € ) and consider the measure y, := g]l H(W))O defined on

Q*

We claim that y, — u weakly as ¢t — oo.
Indeed, take 1 € C(Q*), then we have

ll
/ hdu, — / hd,u:Z / h(')d i — / hdu
Q* Q* =1 Q* Q*
ZL lL ll
=3 [ wompaa= Y, [ eda =Y, [ mt) - o
i=1 Y i=1 Yo i=1 7o

- 1
For h € C(") and diam(w!) < —, hence / hdu, — / hdu as ¢t — oo. Consequently, i, — p weakly
L O* O
ast — oo,

From (3.16), we have ,(Q*) = u(Q*) < (1 - C,) / f(x)dx, then from Theorem 3.3, there exists a
Q

refractor I', = {p,(x)x; p,(x) = max —— }, such that y,(w) = St (x)dx. Normalized I',,
I<i<t, 1 — km - x 71, (@)
such that inf p,(x) = 1, then from Lemma 3.2, there exists a constant C > 0, such that sup p,(x) < C for
xeQ xeQ

all ¢t > 1.
Besides, if xo, x; € Q and H(my, by) supports I, at p,(xo)xo, then for x; € Q, we have

bo by

lo.(x0) = pu(x1)] < | -
1—kmg-xy 1—kmg-x;

Kbo

[lxcg — 1]

(I = kmg - x)(1 — kmg - x1)
bo
—K82

C
llxg — x| < @on - xq]|.

Exchanging the roles of xj and x;, we have

lo.(x1) = pu(x0)| < llx1 = xoll,

—xe?

Mathematics in Engineering Volume 8, Issue 1, 98—-139.



121

hence {p,(x); ¢ > 1} is a family of bounded uniformly and equicontinuous functions. Then from
Arezla-Ascoli Theorem, p,(x) — p(x) uniformly as ¢ — oo for all x € Q. Then from Lemma 3.6 (a),
I' = {p(x)x; x € Q} is a refractor.

Let Gr(w) = SOt (x)dx and Gr(w) = S()tr(x)dx. In order to prove the existence

T Tr()
of the weak solution, we still need to prove that Gy, — Gr weakly as ¢ — oo.

Indeed, on the one hand, for any compact set K C Q*, from inverse Fatou lemma, we have

lim Gr,(K) = lim F)tr, (x)dx
L—0 L— 0 TI‘L(K)

= / lim y 71, (.S (O, (x)d x
Q L—00

< Jrr(x)dx = Gr(K).
Tr(K)

On the other hand, for any open set F C Q*, from Fatou lemma, we have

Gr(F) = JOrr(x)dx
Tr(F)

< / Lim i ) f(X)tr(x)dx

Q>0

<lm [ x7, @ f(Oir(x)dx = lim Gr,(F).

1—o0 JQ >0

Consequently, we have G, — Gr weakly as ¢ — oo, hence we have proved the existence of the weak
solution. m|

4. Far field refraction problem for the case —1 < x < 0 with loss of energy

In this section, we use the similar way as Section 3 to study the far field refraction problem for the
case —1 < « < 0 with loss of energy. Recall from (2.7) in Remark 2.1, we mast have

inf x-m>«k+¢
xeQ,meQ*

in this case.

4.1. Refractor and its properties

The definition of refractor in the case —1 < k < 0 also stems from [32].
Definition 4.1. A parameterized surface T in R" given by T = {p(x)x; p € C(Q)} is a refractor
from Q to QF in the case =1 < k < 0, if for any xy € Q, there exists a semi-ellipsoid defined as

b -
E(m,b) = {p(x)x; p(x) = T om < x € ™ x-m > k), such that p(xp) = 1 —m-x and
_ . - * A0

b _
p(x) < l—for all x € Q. Such E(m, b) is called a supporting ellipsoid to T at the point p(xy)x.
—Km - X
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The following Figure 4 shows the semi-ellipsoid which refracts all ray emitted from the source O
to a specific direction for the case —1 < k < 0.

n Ny

Figure 4. Ellipsoid refracting when —1 < x < 0, where O and P are focus of ellipsoid.

The following lemmas are similar as Lemmas 3.1 and 3.2.

Lemma 4.1. Any refractor is globally Lipschitz continuous on Q, hence the set of singular points is a

null set.

Lemma 4.2. Suppose T’ = {p(x)x; p € C(Q)} is a refractor from Q to QF, such that inf p(x) = 1, then
xeQ

there exists a constant C > 0 depending on k, such that sup p(x) < C.
xeQ

Proof. Suppose that there exists xo € Q, such that p(xy) = inf p(x), and let E(my, by) be the supporting
xeQ)

b
ellipsoid to I' at p(xp)xo. Then we have 1 = p(xy) = 0 , and p(x) < — 0  Hence we
1 —«myg - xo 1—xkmg-x
have by = 1 — kmyg - xy < 1 — k. Consequently,
by 1-« 1
< < < )
pl0) < 1—kmy-x~ 1—-k*" 1+«
Then we get sup p(x) < C. |

xeQ)

Remark 4.1. Compared with Lemma 3.2, in this case, the constant C only depends on «.

Remark 4.2. If a refractor I parameterized by p has two distinct supporting semi-ellipsoid at p(x)x,
then p(x)x is a singular point of T..

We can also define refractor mapping and trace mapping for the case —1 < k < 0 and discuss some
properties of them.

Definition 4.2. Suppose that the refractor T’ = {p(x)x; x € Q} is given, the refractor mapping of T is a
multi-value map defined by

Nr(xo) = {m € Q*; E(m,b) supports T at p(xy)xy for some b > 0}. “.1)
Given m € Q, the trace mapping of T is defined by
Tr(mo) = {x € Q& my € Nr(xo)}. (4.2)
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The proofs of the following properties are analogous to those in Section 3.1.
Lemma 4.3. If m € Q, then Tr(m) is a closed set in Q.

Lemma 4.4. For any F € Q*, we have

(a) [Tr(F)I° € Tr(F);

(b) The set M = {F C Q*; Tr(F) is Lebesgue measurable} is a o-algebra containing all Borel sets
in Q*.
Lemma 4.5. Suppose that E(my, by) is a sequence of semi-ellipsoid, and m; — mg, by — by as k — oo.
Let z; € E(my, by) with 7, — 79 as k — oo. Then zo € E(myg, by), and the normal vi(z;) to the semi-
ellipsoid E(my, by) at z; satisfies vi(zx) — v(20) the normal to the semi-ellipsoid E(my, by) at the point
20-

Lemma 4.6. Assume that Ty = {pp(x)x; x € Q}, k > 1 is a sequence of refractors from Q to Q.
Suppose that 0 < a; < px < ay and p; — p uniformly on Q. Then we have

(a) T := {p(x)x; x € Q} is a refractor from Q to Q*;

(b) For any compact set K C Q,

lim 77, (K) € Tr(K);

(c) For any open set G C ),
71(G) € lim 71, (G) VE,

k—o0

where E is the singular set of T.

4.2. Properties of Fresnel coefficients

Recall again the Fresnel coefficients in (2.16) and (2.17),

2 2
2+ Kz — (21 + kZ)x - m A
re(x) =

22— k2 + (21 —K2)x-m| Af+ A7
2

71+ k2o — (2o + KZ1))Xx - m Ai

21—k + (22— Kkz)x-m| AR+ AT

trr(x) =1-rr(x).

We can also discuss the boundedness of rr(x) and #-(x).

Proposition 4.1. Suppose that Q and Q satisfy (2.7), T is a refractor from Q to QF, then there exists a
constant C, associated with g, such that rr(x) < C, and C, < rr(x) < 1.

Proof. Similar to the discussion in section 3.2, we introduce a function

2

1+ ko — (0 + k)t s 4.3)

1 —ko + (00— k)t

(1) =

o+k—(+«ko)t 2
o—k+ (1 —«ko)t
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A2 A2
é) H2€1 I 1
h === [—,a= dg= . Th = -m), t =1- - m).
where o - ‘/#162 a Aﬁ"'Ai and 3 Aﬁ"‘Ai en rr(x) = Y(x - m), tr(x) W(x - m)
From (2.7), we know t € [« + &, 1]. We denote
o+k—(1+«ko)t 1+ ko — (0 + k)t
p{) o—k+ (1 —-«ko)t andq() 1—ko+ (0 —x)t

20> = 1)

[ T a ek For —1 < k < 0, then k> — 1 < 0, so p(¢) decreases
0O —K — KO

For p(t), we have p'(t) =
on [k + &, 1]. Hence
P Omax = max{p’(k + &), p*(1)}.

We have

2 2

o(1 —«k*) —&(1 + ko)
o(1 = k2 +e(1 — ko)

o—1
o+1

pr(1) =

,ﬁu+w:[

For ¢ is small enough, then p?(f)ma = p*(k + &).
200k = 1)
[1—ko + (00— K)t]*

For ¢(t), we have ¢'(t) = For —1 < k < 0, then k* — 1 < 0, then g(¢) decreases

on [« + &, 1]. Hence
G (Dmax = max{q*(k + &), (1)}
2

1 -« —s(c+
K~ £ +K) . For & is small enough, then ¢*(t)max =

2
We have ¢2(1) = [—Z—l] Pk +8) = [

+1 1 -k2+&(oc—«)
g*(k + &).
From above analysis, we can get there exists a constant C, associated with &, such that rp(x) < C,,
and for tr(x) = 1 — rr(x), then C, < fr(x) < 1. O

We can also get the continuity of #r(x).

Proposition 4.2. Suppose that T = {p(x)x; x € Q} is refractor from Q to Q* and E is the singular set
of T, then tr(x) is continuous on Q\E.

The following lemma and theorem are similar as those in Section 3.2, which are useful in proving
the existence of the weak solution.

Lemma 4.7. Let I'y and T be refractors with defining functions py(x) and p(x), the corresponding
fresnel coefficients are t; and t. Suppose that p, — p pointwise in Q and there exist constants C, C, >
0, such that C; < pu(x) < C, in Q. Then fory ¢ E, there exists subsequence i,(y) = t(y) as j — oo,
where E is the union of singular points of refractors I'y and I

Theorem 4.1. Assume the hypotheses and notations of Lemma 4.7 hold, and let F C Q* be a compact
set, set Iy = Tr,(F). Then for all y ¢ E, we have

(a) im yr, ()(y) = 1) lim xr,(); (4.4)
(b) lim xr, ()1(y) = 1(y) im x 7, (7). (4.5)
k—o0 k—oc0
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4.3. Weak solution of the far field refraction problem for the case —1 < k < 0 with loss of energy

In this subsection, we will give the definition of refractor measure and the weak solution of the
far field refraction problem for the case —1 < k < 0 with loss of energy. The definition of refractor
measure is same as Definition 3.3.

Definition 4.3. Suppose T is a refractor from Q to Q*, f € L'(Q) and inf f > 0. The refractor measure
Q
associated with T and f is defined by a set function on Borel subsets of Q*:

Gr(F) := FOrr(x)dx, (4.6)
Tr(F)

where dx is the surface measure on S"!.

Based on the definition of refractor measure, we can define the weak solution of the far field
refraction problem for the case —1 < « < 0 with loss of energy.

Definition 4.4. Suppose that u is a Radon measure on the Borel subset of Q* and f € L'(Q), a
refractor I is a weak solution of the far field refraction problem for the case —1 < k < 0 with emitting
illumination intensity f(x) and prescribe refracted illumination intensity u if for any Borel set w C Q,
there holds:

Gr(w) = JOr(x)dx = p(w). 4.7)

Tr(w)

Remark 4.3. Similar to Remark 3.4, in order to ensure that light can be refracted into Q*, we use “>"
in (4.7).

Remark 4.4. From Definition 4.4, we can get that if I is a weak solution of the refraction problem,
then for any ¢ > 0, cI is also a weak solution of the refraction problem, namely the weak solution is
unique up to a multiplicative constant.

The existence of the weak solution is discussed in the following two subsections.

4.4. Existence of the weak solution when y is discrete measure

In this subsection, we assume that y equals finite sum of 6-measures, hence all rays are refracted
into finite directions. Based on this assumption, we establish the existence of the weak solution of the
far field refraction problem for the case —1 < « < 0 with loss of energy when y is discrete measure.

Remark 4.5. Suppose that m;,m,,...,m;, | > 2 are discrete points in Q*, then for b =
(b1,by, -+ ,by)) € R, b; > 0, the refractor is defined as

I'(b) = {p(x)x; x € Q, p(x) = min L}. 4.8)

1<i<t 1 — km; - x

Now we show the existence of the weak solution when u equals the linear combination of the ¢-
measures at m, myp, ..., m;.
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Theorem 4.2. Suppose that f € L'(Q) and inf f(x) > 0, m\,ma,...,m;, | > 2 are discrete points in
xeQ)

- [ -
Q% 81,82,...,8 > 0. Let i be the Borel measure defined on Q* by u = »’ gi0,,,(w), where w € Q" is
i=1

Borel set. Also suppose that

1 _
dx > Q),
/Qf(x) X2 T @)

where C, is defined in Proposition 4.1. Then there exist by € R! and refractor T'(by), such that
/ S (X)trpy)(X)dx = g;
Trvg)omp)

fori=2,...,1, and
/ SO trmy(0)dx > g1,
TT(bg)om))

namely the weak solution of the far field refraction problem for the case —1 < k < 0 with loss of energy
exists.

Remark 4.6. Similar to Remark 3.6, in order to avoid this problem being overdetermined, we must
have

/ SOtrpy(x)dx > g;.
TTbg)imy)

To prove Theorem 4.2, we also need the following lemmas which are similar as Lemmas 3.8-3.10.

Lemma 4.8. Suppose that f € LY(Q) and inf f(x) >0, my,m,,...,my, | >?2 are discrete points in QF,
xeQ
21,82,-..,8 > 0. Suppose that W C R is a set defined by W := (b = (1,b,,...,b); b; > 0 fori =

2,...,1}, and for any b € W, I'(b) satisfies Grpy(m;) = SOty (x)dx < gifori=2,...,1. Then
Ty (m:)
we have: v

(a) W+ 0;
(b) Ifb=(1,b,y,...,b)) € W, thenb; > 1+« fori=2,...,1.

Proof. (a) If for some i # 1, E(m;, b;) supports I at p(x)x, then we have

1

sob; < .
1+«

1
We claim that if for some i # 1, there holds b; > T2 e then 71, n) € E, where E is the singular
K

point set of I'(b).
Indeed, if x € T, (x,), then there exists b > 0, such that E(m, b) supports I" at p(xy)xo. Then we have

b
and  p(xo) =

b;
p(x) =min ———,  p(x) > 1 —_—,
—Km; - X 1 —«m; - xo

I1<i<t 1 — km; - x
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hence
———— = p(x) £ ————,
1 —«km; - xp 1 —«km; - xg
so we have b < b;. If b = b;, then E(m;, b;) supports I', that is a contradiction, so b < b;. Then for any
= b b; : b; .
x € Q, we have p(x) < < , S0 p(x) = min ! . Consequently, there exist
1—km;-x 1—km;-x L 1 —kmj- x

k # i, such that

b b _
p(xo) = — % and p(x) < — % forallxeQ.
1 —kmy - xo 1—kmy - x
So xy € E, then we have T, € E.

So we have

GF(b)(mi) = / f (x)lr(b)(x)dx < / f (X)fr(b)(x)dx < &i-
T (m;) E

Take b = (1, b,, ..., b)), such that b; > for2 <i </ thenb € W, hence W # (.

+ K
(b) From Remark 4.2, we first claim that if b € W, then g, < Grp,)(m)).
Indeed, for we have

i
Gro)(m;) = Z SO trwy(x)dx
i=1

)
i=1 T ) (m;)

= / FXO)trpy(x)dx = / JF)trpy(x)dx
Q

U Trw)(m;)

i=1

> (1-C,) / Fdx > p(@)
Q

So we have
/
g1 — Gray(my) + Z[gi = Grpy(m;)] < 0.
i

If b € W, then we have g; < Grg,)(m;).

Let I'(b) = {p(x)x; x € Q}, we claim that there exists p(xo)xo, such that p(x)xo € I'(b) N E(m,, 1)
and p(xo)xo ¢ E(m;, b;) for all i > 2.

Indeed, if not, we have Trw)(m;) C E, then

Grapy(my) = / Ftrey(x)dx < / SOty (x)dx =0
Trp)(my) E

for |E| = 0. This is a contradiction with g; > 0, hence

bi
p(xo) = < ,
1—xkm;-xog 1—«m;-xo
and thus we have
1 —km,; - xy
bij> ———>1+«k.
1 —«m; - xg

O
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Lemma 4.9. Letb, = (%, ..., bf) andby = (1Y, ..., b?) with b, — bg in R.. Suppose that T = I'(b;) =
{or(0)x; x € Q}, Ty =T(by) = {p(x)x; x € Q}, then py — p uniformly on Q.

Proof. For x, € Q, we have

bi

lox(x0) — p(xo)| = |pk(x0) — l—l for some i
— Km; - Xo
bi bi
<| -
1 —km;-xog 1—xm;- x

_ b = b]

I e

hence p; — p uniformly on Q. i

Lemma 4.10. Let v > 0, then Grgy(m;) = / f(XOtrey(x)dx is continuous on the region R, =
Ty (m;)
{(1,by,...,0); b;>1,i=2,...,1}, forany 1 <i <L

Proof. Suppose that by is a sequence converges to by in R;, and let ['(by) = {p;(x)x; x € Q}, ['(by) =
{po(x)x; x € Q}. Then from Lemma 4.9, p, — p uniformly on Q. Besides, for any x € Q and k > 1,

we have }

; T T
Pe(x) = 1—Kml--xZ 1—/<ml~xZ 1-«
and
. b} 1 1
pk(x):?slgll—Kmi-xS 1—Kml-xS 1 —«?
for some i € {1,2,...,1}. Hence there exist 0 < a; < a,, such that a; < pi(x) < a,.

Suppose that G € Q* is a neighborhood of m;, such that m ;¢ Gforall j #i. If xo € Trp,(G) and
xo ¢ E, then there exist a unique m € G and b > 0, such that

b -
or(xp) = and pp(x) < — forall x € Q.
1—xm-x

1—xm- xg
From the definition of I'(b;) in Lemma 4.9, we have m = m; for some j = 1,2,...,/, hence we have
m = mj, then Trpy(G) € Trw,(m;) U E. For |E| = 0, from Lemma 4.6, we have

/ SO trmy(X)dx < / SO trm)(x)dx
Tty (G)

lim Tl"(bk)(mi)UE
k—o0

S/ f(X)tr(bO)(X)dX'l‘/f(X)tr(bO)(X)dx (49)
Bim Ty (0m7) E

ke

= [Xlim TF(bk)(mi)f(x)tr(bo)(-x)d-x-

Q koo

Obviously, we have
X lim Tr(bk)(mi)(x) = h_m)(Tr(bk)(mi)(x)‘ (4' 10)
k—o0

k—o0
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Applying Theorem 4.1, (4.10) and Fatou Lemma to (4.9), we have

/ SO trmy(x)dx < / Bm y,  om) (e, f (X)dx
Trmy)(G)

Q k—oo
<M [ X, om0 (D frm f(X)dx (4.11)
k—o0 J Q
= lim fr(py f(X)dx.

k— o0 Tl"(hk)(mi)

Besides, we also have

X@Tnbk)(mi)(x) = ,}L%XTF(bk)(mz')(x)' 4.12)

From inverse Fatou lemma, Lemma 4.6, Theorem 4.1 and (4.12), we have

lim frv f(0)dx < / ,}i_m)(’fnbk)(mn(x)fr(bk)f (x)dx
Q k—eo

k—o0 Tty (mi)

= / X T T () COS (e ng) (X)d x
Q kow T

(4.13)
= / S trpy (X)dx

kgglo Tr(by) (mi)

< / JOtr @) (x)dx.
TTby)(G)

Combining (4.11) with (4.13), we get Gr)(m;) 1s continuous on the region R;. O

Based on the above lemmas, we can prove the existence of the weak solution when u is discrete
measure.

Proof of Theorem 4.2. Fixed b = (1,b,,...,b,), consider the set W = {b; = (1,b,...,b); b < b;, i =
2,...,1}, from Lemma 4.8 and Lemma 4.10, W is a compact set. Define a mapping

Let b* = arg min d(b), for the compactness of W, then we know d is a continuous mapping hence b*

beW

exists.

Taking by = b*, we first prove that / SOtrpy(x)dx = gifori=2,...,1.

T (bg) (mi)
Indeed, if not, we may assume that / SOtrmy(x)dx < g,. Taking & > 1 and let by =
TT(bg)(M2)
(L&D, ...,b)). If xo € T T(be) (1) \ E%, where 35; is the singular point set of b, then we have
px))=—— and p(x)< —-—forall xe Q,
1 —xm; - xo 1—«m;-x
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hence xy € Ty (m;), then T r(bg)(m,-) \ E; C Trep+(m;). So we have

/ f(x)lr(b;)dx = / f(x)tr(b*)dx < / f(x)tr(b*)dx.
Tr(b;;)(mi) Tl"(b;)(mi) T (m;)

Let & — 1, then from Lemma 4.10, we have Gr,. < &, hence bg*f € W, this is a contradiction with
&
d(by) > d(by).

The proof of / S (X trp)(x)dx > g is same as which in Theorem 3.3. O

TT(by) (m1)

4.5. Existence of the weak solution when u is a finite Radon measure

In this subsection, we discuss the existence of the weak solution of the far field refraction problem
for the case —1 < k < 0 with loss of energy when y is a finite Radon measure. We use the similar
method as Section 3.5 to prove the following theorem.

Theorem 4.3. Suppose that f is integrable on Q and inf f(x) > 0. Let u be a Radon measure on Q*
xeQ

/ FCodx >

where C, is defined in Proposition 4.1. Then there exists a refractor I, such that for any Borel subset
w C QF, we have

and

,U(Q )s (4.14)

pu(w) < fOtr(x)dx,

Tr(w)
that is, there exists a weak solution of the refraction problem for the case —1 < k < 0 with emitting
illumination intensity f and prescribed refracted intensity p.

Proof. Let ¢ be an integer, ¢ > 2. Segmenting Q* into finite disjoint subsets w}, w),...,w;, such that
1 ) I,
diam(w!) < " fori=1,2,...,1,. Take m; € ) and consider the measure y, := 12‘1 ,u(a)i.)(Sm; defined on

Q*. From the proof of Theorem 3.4, we know that , — u weakly as ¢ — oo.

From (4.14), we have 1,(Q*) = u(Q*) < (1 - C,) / f(x)dx, then from Theorem 4.2, there exists a

o)
b; .
refractor I', = {p,(x)x; p,(x) = min —} such that y,(w) < St (x)dx. Normalized I',,
1<i<], 1 — Km - X Tt (W)
such that mf pl(x) = 1, then from Lemma 4 2, there exists a constant C > 0, such that sup p,(x) < C for

xeQ
all e > 1.

Besides, if xo, x; € Q and E(my, by) supports I', at p,(xo)xo, then for x; € Q, we have

bo by

lo.(x1) = pu(x0)| < | -
I—KWIO'Xl 1—KmO'X0

—Kbo

(1 =kmgy - x)(1 — kmy - xo)”x1 = ol

—K

S -
1—k21-k2

[lxc1 = xoll
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<

1 K2||x1 = xoll.

Exchanging the roles of x; and xj, we have

lo.(x0) — p.(x1)| < llxxo — x:1l,

1—«2
hence {p,(x); ¢ > 1} is a family of bounded uniformly and equicontinuous functions. Then from
Arezla-Ascoli Theorem, p,(x) — p(x) uniformly as ¢ — oo for all x € Q. Then from Lemma 4.6 (a),
I = {p(x)x; x € Q} is a refractor.

Similar as the proof of Theorem 3.4, we also have Gr, := SO (x)dx — Gr :=
T1,(w)

f(0)tr(x)dx weakly as ¢ — oo, hence the weak solution of the problem exists. O
Tr(w)

5. The inequality for the problem

In this section, we derive inequality involving a Monge-Ampere type operator satisfied by p. We
first recall the Jacobian equation given in [11].

Let X = (x, x,) be a point in the sphere S"~!, where x = (x1,...,x,_1). Let = {p(X)X; X € Q)
be a weak solution of the refractor problem from Q to Q* with emitting illumination intensity f
and prescribed refracted illumination intensity g. Assume that Q is a subset of upper unit sphere
§1 = §"1 n{x, > 0}, then Q can be identified by its orthogonal projection V = {x =
(X1, ..y Xm1); (6, A1 —|x2) € Q). Suppose that p is a function of x with x € V. For convenience, we
may assume that p € C>(Q).

Let Y be the refracted direction of the ray X by the surface p(X)X, then from Snell law (2.3), we
have

Y = %(X - O(x-v)y), 5.1

where O is given by (2.5) and v is the outward unit normal to the refractor at p(X)X.
Defineamap T : V — Q* : X Y, then the Jacobian matrix of T is given by

81y1 e an_lyl Y1
Oy .. Opiyr M
31)’;1—1 .o an—]yn—l Vn-1
51)’;1 .o 0n—1yn Yn
Then we have !
detJ = — det Dy, (5.2)
where
Oyt ... Oni
alyz ce 6n_1y2
Dy = . , )
alyn—l ce an—lyn—l
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Let dS . be the area elements corresponding to Q*, dS+ be the volume element corresponding to
“V, then

detJ| = . 53
|det J| dS (5.3)
Similarly, if dS 5 denotes the area elements corresponding to Q, then
ds a 1
£ - (5.4)

dsS«y v/1—|x|2'

Suppose that xo ¢ E, where E is the singular point set of I, and my = Tr(xg) = T(xo).
Combing (5.3), (5.4) and Lebesgue differentiation theorem with the following energy condition

FOr()dx > / o(mydm,
Tr(w) w
we obtain the Jacobian equation

ds g < S (x)

|detJ| = < .
dS«y 1 - [x]2g(T(x))

(5.5)

Next, we derive the inequality involving a Monge-Ampere type operator satisfied by p.

Theorem 5.1. Suppose a refractor I is defined by p, and p is the weak solution to the refractor problem
in negative refractive index material with loss of energy with emitting illumination intensity f € L'(Q)
and prescribed refracted illumination intensity g € L'(Q*), then we have

SO w

g(T(x))h! (1 - h! ( X — Dp) . Dph)

|det(D*p + C™'B)| < (5.6)

1 =[x
where C~! is given in (5.25), B is given by (5.23), h and w are defined in (5.14) and (5.15)

correspondingly.

Proof. In order to prove (5.6), we first need to derive the unit outer normal v to the surface I at p(X)X.
Write v = (v/,v,), for 0, ((x, x,)p(x)) are tangential to the graph of the refractor I' for £k =
1,2,...,n—1, then we have

9y ((x, x)p(x)) - v =0

fork=1,2,...,n— 1. Hence we have

n—1 n—1
Xk
P ) OuvitOuyp ) Xivi= (P— — V1 —|x?0, P) (5.7)
Z] ' Z VI=IxP k

fork =1,2,...,n— 1. Using the tensor product, (5.7) can be written in matrix form
T
(ol + Dp® x)(V') = [p\/llelz - 41- |x|2(Dp)TJ Vo (5.8)
—|x
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According to Shermann-Morrison formula, we have

Dp®
(ol + Dp®x)" =p~! (1— L)

p+Dp-x)
Notice that for any row vectors a, b and ¢, we have (a ® b)c” = (b - ¢)a’, then we have
Dp ® x Xl
(I ) p — V1 = xP(Dp)" | va
pP+Dp-x) /1 -|x2
o,
=p ( — V1 —|x(Dp)" - (Dp ® x)x"

1- |)c|2 1 —|x*(0 + Dp - x)
- |x]?

= Do Prex(Dp) )

p+D
_1 1Y% T |x|2
= — X (V1= xP+
(\/ — |xf? V1 =|x2(o + Dp - x)
2
" DI | (x - Dp))(Dp) )
1 T 1 T)
= |xX'—-—— (D ;
m( prDp 2 )

Hence we have

1 1
V:[m(x_p+Dp-xDp)’l]V"' 5.9

From (5.9), we have

Xoy= | ( P )v,,. (5.10)

J1—|x2\p+Dp-x

Since v is unit outer normal to I' at p(X)X, then we have X - v > 0 and [V/|> + v,21 = 1, then from (5.9),

we have ) ) )
—(x-D D
p” — (x- Dp)” + |Dpl V2= 5.11)
(1 = x)(p + Dp - x)*
According to (5.11), we obtain
1—|xP?
. = x|o + Dp - . 5.12
% lo + Dp - x| \/pz_(x_Dp)erlelz (5.12)
Then from (5.9), we get
+|,o+Dp-)c|[ -Dp+p+Dp-x V1 = |x*(o + Dp - x) (5.13)
v==4= X, . .
p+Dp-x\ \jp2—(x-DpP+DpP ~p>— (x- Dp)>+|Dpl?

Besides, from (5.13), (5.10) can be written as

lo + Dp - x| 0
* .
p+Dp-x Vp? = (x - Dp)* + |Dp?

Yy =
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Now we can derive the inequality involving a Monge-Ampere type operator satisfied by p. For
simplicity, we introduce two functions:

Z
2+ o = (p - x)2
h(x,z,p) = \/ Ll (5.14)
V2 +pP = (p- x)?
and
w(x,z,p) =1 - h(x,z,p)z+ p- x), (5.15)
where @ is defined in (2.5). Then from (5.1), we have
1 .
i = =[x p(x), Do) + h(x,p(x). Dp(ep, ] 1 <i<n—1, (5.16)
and |
Yn = ;w(x,p(X),Dp(X)) 1 —|x2. (5.17)
For 1 <1, j < n -1, differentiating y; with respect to x;, we have
1 n—1 n—1
6jyl = ; wdlj + xi(wx‘,' + wsz/' + Z wpkpxkx,) +hpx,~x/' +pxi(hx.f + thxj + Z hpkpkaj) . (518)
k=1 k=1

For x, Dp, D w, D,w, D.w, D.w,D:h and D,h are row vectors, then (5.18) can be written in matrix
form

1
Dy=—-[wl+x®D.w+ w,x®Dp+ Dp®D,h
K

(5.19)
+h,Dp ® Dp + (x® D,w)D*p + hD*p + (Dp ® D,h)D*p].
Let
B(x)=wl+x®Dyw+ w,x® Dp+ Dp® D,h+ h,Dp® Dp, (5.20)
and
C(x) = x® D,w + hI + Dp ® D ,h. (5.21)
Then (5.19) can be written as
1
Dy = —[B(x) + C(x)D*p]. (5.22)
K

From (5.15), we have D.w = —D.h— hp, w, = —h,(z+ p-x)—hand D,w = —=D,h(z + p - x) — hx, then

we have
B(x)=[1-(o+ Dp-x)h]l —[(0+ Dp - x)x — Dp] ® D,h

(5.23)
= x® [(2h + h,((0 + Dp - x)))Dpl + h.Dp ® Dp,
and
C(x) =[(=(o+Dp-x)x+ Dp)® D,h] — h[(x® x) — 1]
= h[(h_l(—(p + Dp - x)x + Dp) ® D,h) + (((—x) @ x) + 1)] (5.24)

= h(M, + M>)
= hM(I + M;' M),
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where

M, =-h"'(p+Dp-x)x—Dp)®D,h and M, = ((-x)®x) + 1.

From Shermann-Morrison formula, we have M;! = I + 225 and C™' = 1(I + M;'M,)M;"'. We may

-2 ~h

assume that v = h™'[(p + Dp - x)x — Dp], then I + M;'M, = I + (-M;"v")D,h, then we have

(~M;V)D,h

N:=(U+M'M)"' =1+ :
I+ M M) 1 = (-M;"VI)T - D,h

hence

1 xX®x
C'=-N[I+ —=]|. 5.25
h ( - IXIZ) 2
Now we calculate the matrix N accurately. We have

1 T T
-

Mz_lvT =y’ + ba%

=h' (o + Dp-x)x" —(Dp)" +

(|x*(o + Dp - x)x" = (Dp - x)x")

1= |xP?

=K [1 —pIXIZXT - (Dp)T] .

Hence, we have

g P _
h (l—lxlzx Dp)®Dph

N=1I+ , (5.26)
P
1-hnt —Dp|-D,h
(1 — ") ’
again from Shermann-Morrison formula, we obtain
1
detN = . (5.27)
P
1-ht! —Dp|-D,h
(1 — 1 p) ’
Combining (5.25) with (5.27), we have
detc:;zh"-l(l—w) - —2_x—Dp|-D,h (5.28)
det C-! 1 —|x? P '

Substituting (5.26) into (5.25), we have

L[, x@x  OGNODA (MDD (xex
A 1=xP 1= -Dyh \1 = (M;'W)T - D,hJ\1 = |x?
1] X® X 1 7 x-Dyh
=—|I+ + M D,h +
Rl 1=l 1MW D P )( TR
2 p
1. x®x
= |1+ —=
AR
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1 -1 P r_ T - Dph ))]
+1—(M2‘1vT)T-Dph (h (1—|x|2x (Dp) )(D h 1—|x|2x

where we have used the fact that for the row vectors a, b, ¢, d, (a ® b)(c® d) = (b - ¢)(a ® d). Denoting

that | D,
- P T T
= h! - (D D, ht
[= (V) - D, e e
then from
M;"' Db =h! [1 x Iz(x D,h) - Dp - Dph],
we have
1 D,h
A= p x—=Dp|®|D,h + al —x
1 —|x]? 1 —|x]?
1_| |2(x D,h) — Dp - D,h
so (5.25) can be written as
1 X®x
o oI+ =+ 4.
C h[ + = xP +
From (5.22), we have
1
Dy = —~C(C™'B + D?p),
K
hence {
det Dy = — det C det(C™'B + D*p). (5.29)
K"~
Combining (5.2), (5.5), (5.17) and (5.25), we have
1 - J(Oir(xX)w
— detCdet(C™'B + D’p)| = ————,
ey det CAeCB+ DpI = 2 7oy
then from (5.28), we finally obtain
t n-2
|det(D%0 + C™'B)| < fOr ™ w .
g(T(x))h"! (1 —h! (1 x |2x Dp) Dph)

6. Conclusions

In this paper, we studied the far field refractor problem with loss of energy in negative refractive
index material. We first recalled the Snell law in vector form and derived the Fresnel formula in
negative refractive index material. Then we proved the existence of the weak solution of the refraction
problem with loss of energy in both the cases k < —1 and —1 < k < 0. Finally, the inequality involving
a Monge-Ampere type operator satisfied by p is derived. The conclusion of the existence of weak
solutions is similar to that in [11]. However, since « is negative in this paper, the process of the proof is
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different. Especially, for « < 0, when proving the boundedness of some parameters, we use a different
method from that in [11] for the scaling of inequalities. For the inequality involving a Monge-Ampere
type operator satisfied by p, the form of the Eq (5.6) is similar to the inequality (8.15) of the positive
refractive index in [11], while the formula of w is different. Besides, for k < 0, we need to take the
absolute value of « in (5.6). If we do not take the absolute value of «, then the right side of (5.6)
becomes negative and the Monge-Ampere type operator in (5.6) is not elliptic, hence it is meaningless.
Meanwhile, if we do not consider the loss of energy, then the energy condition is

Fx)dx = / g(m)dm,
Tr(w) w

hence the Monge-Ampere type equation satisfied by p can be written as
FOW"w

|det(D*p + C™'B)| =
g(T(x)h"! (1 —h! (

-~ Dp) . Dph)

In fact, the inequality (5.6) we have derived is universal. If we do not consider the loss of energy in
negative refractive index material, we only need to take #-(x) = 1 in (5.6) and change the unequal sign
to the equal sign, and if we consider the refraction problem in positive refractive index material with
loss of energy, we only need to change the formula of w and remove the absolute value of «.

This paper used Minkowski method to solve the far field refractor problem with loss of energy
in negative refractive index material, which is a remaining problem in [32]. Minkowski method is
effective in solving the refractor problem with loss of energy. However, can the optimal transportation
method be used to solve the refractor problem with loss of energy is still an open problem. Besides,
in order to prove the existence of the weak solution of the far field refraction problem in negative
refractive index material with loss of energy, we take € > 0 to strengthen Lemma 2.1 to Remark 2.1.
However, can we take € = 0 in Remark 2.1 is still an open problem as well.
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