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Abstract: We present three equivalent definitions of the fractional p-Laplacian (−∆Hn)s
p, 0 < s < 1,

p > 1, with normalizing constants, on hyperbolic spaces. The explicit values of the constants enable
us to study the convergence of the fractional p-Laplacian to the p-Laplacian as s→ 1−.
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1. Introduction

Operators of fractional-order have been extensively studied not only in Euclidean spaces [15], but
also on Riemannian manifolds [1,2,9,13,19,20,24], metric measure spaces [8,10,18,21,22], discrete
models [11], Lie groups [6, 12, 16, 17], and Wiener spaces [6]. In Euclidean spaces, several equivalent
definitions of the fractional Laplacian exist [29] due to the simple structure of the spaces. In contrast
to the case of Euclidean spaces, not all definitions are equivalent in more general spaces. For instance,
one can study a regional type operator [24] or a spectral type operator [31] on Riemannian manifolds.
Moreover, some definitions, such as those relying on the Fourier transform, do not even work on
general Riemannian manifolds and metric measure spaces. Nonetheless, for specific Riemannian
manifolds such as hyperbolic spaces and spheres, several representations of the fractional Laplacian
have been established [2, 13] by means of the rich structure of these spaces.

The aim of this paper is two-fold. First, we extend representation formulas in [2] to the nonlinear
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regime on hyperbolic spaces. Specifically, we define the fractional p-Laplacian (−∆Hn)s
p for n ∈ N,

0 < s < 1, and p > 1 and provide two additional equivalent definitions via the heat semigroup and the
Caffarelli–Silvestre extension. Note that a definition based on the Fourier transform is not available due
to the nonlinearity of the operator. Second, we investigate the pointwise convergence of (−∆Hn)s

pu(x)
as s → 1−. For this purpose, the values of the normalizing constants in these definitions are provided
explicitly.

Let us define the fractional p-Laplacian on hyperbolic spaces as the pointwise integral
representation with singular kernels. Note that hyperbolic geometry is distinguished from Euclidean
geometry only when n ≥ 2.

Definition 1.1. Let n ≥ 2, 0 < s < 1, and p > 1. The fractional p-Laplacian on Hn is defined by

(−∆Hn)s
pu(x) = cn,s,p P.V.

ˆ
Hn
|u(x) − u(ξ)|p−2(u(x) − u(ξ))Kn,s,p(d(x, ξ)) dξ (1.1)

with the kernel Kn,s,p given by

Kn,s,p(ρ) = C1

(
−∂ρ

sinh ρ

) n−1
2

(
ρ−

1+sp
2 K 1+sp

2

(
n − 1

2
ρ

))
,

when n ≥ 3 is odd and

Kn,s,p(ρ) = C1

ˆ ∞
ρ

sinh r
√
π
√

cosh r − cosh ρ

(
−∂r

sinh r

) n
2
(
r−

1+sp
2 K 1+sp

2

(
n − 1

2
r
))

dr,

when n ≥ 2 is even, where

cn,s,p =
p
2

√
π/2

Γ( p+1
2 )

22sΓ(n+sp
2 )

π
n
2 |Γ(−s)|

, C1 =
1

2
n−2+sp

2 Γ(n+sp
2 )

(
n − 1

2

) 1+sp
2

, (1.2)

and Kν is the modified Bessel function of the second kind.

For the linear case p = 2, the pointwise integral representation with singular kernel is provided
in [2, Theorems 2.4 and 2.5] without constants. The main tool in [2] is the Fourier transform on
hyperbolic spaces, but it is not available in the nonlinear setting. Our definition is motivated by the
nonlinear extension of Bochner’s definition [3], which will be given in Theorem 1.3 below.

The normalizing constant C1 in Definition 1.1 is carefully chosen so that the pointwise convergence

lim
s↗1

(−∆Hn)s
pu(x) = (−∆Hn)pu(x)

holds (see Theorem 1.5). We emphasize that the normalizing constant plays a crucial role in some
contexts. For instance, it is used in the robust regularity theory (see [7, 27]).

The singular kernel ρ−n−sp of the fractional p-Laplacian on Euclidean space Rn is homogeneous of
degree −n − sp. This is a natural consequence of the invariance of the scale of the operator. However,
such homogeneity cannot be expected in the hyperbolic setting because hyperbolic geometry comes
into play. In fact, Proposition 1.2 below exhibits the behavior of the kernel Kn,s,p.

Here and in what follows, we write A(ρ) ∼ B(ρ) as ρ → 0+ (resp. ρ = ∞) to mean that there exist
constants c,C > 0 and ρ0 > 0 such that cB(ρ) ≤ A(ρ) ≤ CB(ρ) for all ρ ∈ (0, ρ0) (resp. ρ ∈ (ρ0,∞)).
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Proposition 1.2. There exist constants c,C > 0 such that

cρ−
1+sp

2 (sinh ρ)−
n−1

2 K n+sp
2

(
n − 1

2
ρ

)
≤ Kn,s,p(ρ) ≤ Cρ−

1+sp
2 (sinh ρ)−

n−1
2 K n+sp

2

(
n − 1

2
ρ

)
for all ρ > 0. In particular,

Kn,s,p(ρ) ∼ ρ−n−sp

as ρ→ 0+ and
Kn,s,p(ρ) ∼ ρ−1− sp

2 e−(n−1)ρ

as ρ→ ∞.

We remark that the well-definedness of (−∆Hn)s
pu(x) for u ∈ C2

b(Hn) and x ∈ Hn (assuming also that
∇u(x) , 0 if p ∈ (1, 2

2−s ]), where C2
b(Hn) denotes the space of bounded C2-functions on Hn, can be

checked by using Proposition 1.2. Indeed, the proof of [28, Lemma 3.6] works on hyperbolic spaces in
the exact same way, once we choose sufficiently small ε > 0 so that Kn,s,p(d(x, ξ)) ∼ d(x, ξ)−n−sp in the
ball Bε(x) = {ξ ∈ Hn : d(x, ξ) < ε} with the help of Proposition 1.2. This proves the finiteness of the
integral in (1.1) over Bε(x). On the other hand, by using Proposition 1.2 again, we find a large R > 0
so that Kn,s,p(d(x, ξ)) ∼ d(x, ξ)−1− sp

2 e−(n−1)d(x,ξ) outside BR(x). This proves that the integral in (1.1) over
Hn \ BR(x) is estimated by

max{2p−2, 1}‖u‖p−1
L∞(Hn)

ˆ
Sn−1

ˆ ∞
R
ρ−1− sp

2 e−(n−1)ρ sinhn−1 ρ dρ dω,

which is finite. The finiteness of the remaining integral over BR(x)\Bε(x) is obvious since the integrand
is bounded in a bounded region.

As the first main result of this paper, we provide an equivalent representation of the fractional
p-Laplacian on hyperbolic spaces via the heat semigroup. To this end, let {et∆Hn }t≥0 denote the heat
semigroup generated by the Laplacian ∆Hn on Hn. That is, for a given function f : Hn → R we denote
by et∆Hn [ f ](x) the solution w(x, t) of the Cauchy problem∂tw(x, t) − ∆Hnw(x, t) = 0, x ∈ Hn, t > 0,

w(x, 0) = f (x), x ∈ Hn.
(1.3)

Theorem 1.3. Let n ∈ N, 0 < s < 1, and p > 1. Let u ∈ C2
b(Hn) and x ∈ Hn. If p ∈ (1, 2

2−s ], assume in
addition that ∇u(x) , 0. The fractional p-Laplacian on Hn is defined by

(−∆Hn)s
pu(x) = C2

ˆ ∞
0

et∆Hn [Φp(u(x) − u(·))](x)
dt

t1+
sp
2
, (1.4)

where

C2 =
p
2

√
π/2

Γ( p+1
2 )

2s(2−p)

|Γ(−s)|

and Φp(r) = |r|p−2r.
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Note that the formula (1.4) on manifolds including hyperbolic spaces is given in [2, Section 3.1]
for the linear case p = 2, and that it was proposed as the definition of the fractional p-Laplacian on
Riemannian manifolds in [14, Section 8.2].

We now turn to another representation of the fractional p-Laplacian on Hn. We recall that the
fractional Laplacian on Rn can be realized as a Dirichlet-to-Neumann map via the Caffarelli–Silvestre
extension [5]. Later, the article [31] relates the heat semigroup to this extension. Moreover, this relation
is extended to the nonlinear framework [14] in Rn. In this paper, we further investigate this relation on
hyperbolic spaces. Let us consider the extension problem∆xU(x, y) +

1 − sp
y

Uy(x, y) + Uyy(x, y) = 0, x ∈ Hn, y > 0,

U(x, 0) = f (x), x ∈ Hn.
(1.5)

We will show in Lemma 4.1 that the function U defined by

U(x, y) =

ˆ
Hn

P(d(x, ξ), y) f (ξ) dξ,

where P is the Poisson kernel given in the same lemma, is a solution of (1.5). We define an extension
operator Es,p by Es,p[ f ] := U. The following theorem is our next main result.

Theorem 1.4. Let n ∈ N, 0 < s < 1, and p > 1. Let u ∈ C2
b(Hn) and x ∈ Hn. If p ∈ (1, 2

2−s ], assume
∇u(x) , 0 additionally. Then

(−∆Hn)s
pu(x) = C3 lim

y↘0

Es,p[Φp(u(x) − u(·))](x, y)
ysp

=
C3

sp
lim
y↘0

y1−sp∂y

(
Es,p[Φp(u(x) − u(·))]

)
(x, y),

where

C3 =
p
2

√
π/2

Γ( p+1
2 )

22sΓ( sp
2 )

|Γ(−s)|
.

The last result is the pointwise convergence of the fractional p-Laplacian on Hn as s → 1−. As
one can expect, the fractional p-Laplacian converges to the p-Laplacian as a limit. Recall that the
p-Laplacian on Hn is defined by

(−∆Hn)pu(x) = −div(|∇u(x)|p−2∇u(x)).

Theorem 1.5. Let n ∈ N, p ≥ 2, and u ∈ C2
b(Hn). For x ∈ Hn such that ∇u(x) , 0,

lim
s↗1

(−∆Hn)s
pu(x) = (−∆Hn)pu(x).

The pointwise convergence of the fractional p-Laplacian on Euclidean spaces is well known [4, 15,
25]. Recall that the proof uses Taylor’s theorem and the following computations:ˆ

Sn−1

ˆ ∞
R

K(ρ)ρn−1 dρ dω =
|Sn−1|

sp
R−sp,

ˆ
Sn−1

ˆ R

0
K(ρ)ρp+n−1 dρ dω =

|Sn−1|

p(1 − s)
Rp(1−s),

ˆ
Sn−1

ˆ R

0
K(ρ)ρβ+p+n−1 dρ dω =

|Sn−1|

β + p(1 − s)
Rβ+p(1−s),

(1.6)
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where β > 0 and K(ρ) = ρ−n−sp is the kernel for the fractional p-Laplacian on Rn. However, in our
framework we need the integrals in (1.6) with the kernel K and the volume element ρn−1 dρ dω replaced
by Kn,s,p and sinhn−1 ρ dρ dω, respectively. These integrals do not seem to be of a form that is easily
computed. Instead, we compute the limits of these integrals as s→ 1−, which are sufficient to establish
Theorem 1.5. This is still not straightforward, but can be obtained by using the asymptotic behavior of
modified Bessel functions.

The authors would like to thank the anonymous referees for their careful reading of the manuscript
and for providing helpful comments.

The paper is organized as follows. In Section 2 we recall the hyperboloid model and study the
modified Bessel function and its properties. Section 3 is devoted to the proofs of Proposition 1.2 and
Theorem 1.3. In Section 4, we relate the heat semigroup to the extension problem (1.5) and find the
Poisson formula. Using the Poisson formula and the representation of the fractional p-Laplacian, we
prove Theorem 1.4. Finally, we prove the pointwise convergence result, Theorem 1.5, in Section 5. An
auxiliary result can be found in Section 6.

2. Preliminaries

In this section, we recall the basics of the hyperbolic spaces and collect some facts about the
modified Bessel function.

2.1. The hyperbolic space

There are several models for hyperbolic spaces, but let us focus on the hyperboloid model in this
paper. The hyperboloid model is given by

Hn =
{
(x0, . . . , xn) ∈ Rn+1 : x2

0 − x2
1 − · · · − x2

n = 1, x0 > 0
}

with the Lorentzian metric −dx2
0 + dx2

1 + · · · + dx2
n in Rn+1. The Lorentzian metric induces the natural

internal product
[x, ξ] = x0ξ0 − x1ξ1 − · · · − xnξn

on Hn. Moreover, the distance between two points x and ξ is given by

d(x, ξ) = cosh−1([x, ξ]).

Using the polar coordinates, Hn can also be realized as

Hn =
{
x = (cosh r, sinh rω) ∈ Rn+1 : r ≥ 0, ω ∈ Sn−1

}
.

Then, the metric and the volume element are given by dr2+sinh2 r dω2 and sinhn−1 r dr dω, respectively.

2.2. The modified Bessel function

The modified Bessel functions naturally appear in the study of hyperbolic geometry. In this paper,
they are used to describe the kernel of the fractional p-Laplacian and the Poisson kernel. For this
purpose, we recall the definition and some properties of the modified Bessel functions.
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We call the ordinary differential equation

ρ2 d2y
dρ2 + ρ

dy
dρ
− (ρ2 + ν2)y = 0

the modified Bessel equation. The solutions are given by

Iν(ρ) =

∞∑
j=0

1
j!Γ(ν + j + 1)

(
ρ

2

)2 j+ν
and Kν(ρ) =

π

2
I−ν(ρ) − Iν(ρ)

sin νπ
,

and they are called the modified Bessel functions of the first and the second kind, respectively. Since
only Kν appears in this work, we focus on the properties of Kν. This function has the following integral
representation (see [30, 10.32.10]):

Kν(ρ) =
1
2

(
1
2
ρ

)ν ˆ ∞
0

e−t− ρ
2

4t t−ν−1 dt. (2.1)

The asymptotic behavior of Kν is given by

Kν(ρ) ∼
1
2

Γ(ν)
(
ρ

2

)−ν
as ρ→ 0+, for ν > 0, and

Kν(ρ) ∼
√

π

2ρ
e−ρ as ρ→ ∞.

(2.2)

Moreover, Kν satisfies the following recurrence relations:

K′ν = −Kν−1 −
ν

ρ
Kν and K′ν = −Kν+1 +

ν

ρ
Kν. (2.3)

We also recall that Kν is increasing with respect to ν > 0. For further properties of the modified Bessel
functions, the reader may consult the handbook [30].

In the sequel, functions of the form ρ−νKν(aρ) with ν ∈ R and a > 0 will appear frequently. For
notational convenience, we define

K̃ν,a(ρ) := ρ−νKν(aρ). (2.4)

Then, it follows from (2.3)

− ∂ρ(K̃ν,a( f (ρ))) = a f ′(ρ) f (ρ)K̃ν+1,a( f (ρ)) (2.5)

for any differentiable function f : (0,∞)→ (0,∞).

3. Nonlinear Bochner’s formula

The main goal of this section is to prove Theorem 1.3. One of the crucial tools in the proof is the
explicit formula for the heat kernel h on hyperbolic spaces, which is given in [23] as follows:

h(t, ρ) =
1

(2π)m

1
(4πt)1/2

(
−∂ρ

sinh ρ

)m

e−m2t− ρ
2

4t (3.1)
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when n = 2m + 1 ≥ 1 is odd, and

h(t, ρ) =
1

2(2π)m+1/2 t−3/2e−
(2m−1)2

4 t

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

re−
r2
4t√

cosh r − cosh ρ
dr (3.2)

when n = 2m ≥ 2 is even. Note that the Cauchy problem (1.3) has the unique solution

w(x, t) =

ˆ
Hn

h(t, d(x, ξ)) f (ξ) dξ, (3.3)

provided that f is a bounded continuous function. In other words, the heat semigroup et∆Hn [ f ] is given
by (3.3).

Before proving Theorem 1.3, we provide a series of auxiliary lemmas required for its proof. In the
course of the argument, we also establish Proposition 1.2.

Lemma 3.1. Let ν > 1/2, a ≥ 1/2, and y ≥ 0. For m ∈ N ∪ {0} define

Fm(r) :=
sinh r√

cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ν,a

( √
r2 + y2

)
,

where K̃ν,a is the function given in (2.4). Then, Fm is integrable on (ρ,∞) and satisfies(
−∂ρ

sinh ρ

)ˆ ∞
ρ

Fm(r) dr =

ˆ ∞
ρ

Fm+1(r) dr (3.4)

for all ρ > 0 and m ∈ N ∪ {0}.

Proof. Note that for any j ≥ 1

−∂r

(
(er + e−r) j−1

(er − e−r) j

)
= j

(er + e−r) j

(er − e−r) j+1 − ( j − 1)
(er + e−r) j−2

(er − e−r) j−1 .

Therefore, all derivatives of 1
sinh r (and r

sinh r ) have the same asymptotic behavior as e−r (and re−r,
respectively) as r → ∞. Hence, Fm(r) ∼ r−ν−1/2e(1/2−m−a)r as r → ∞, which shows that the function Fm

is integrable.
Using the integration by parts, we have

ˆ ∞
ρ

Fm(r) dr =

ˆ ∞
ρ

2∂r

( √
cosh r − cosh ρ

) ( −∂r

sinh r

)m

K̃ν,a

( √
r2 + y2

)
dr

=

ˆ ∞
ρ

2 sinh r
√

cosh r − cosh ρ
(
−∂r

sinh r

)m+1

K̃ν,a

( √
r2 + y2

)
dr.

Thus, the recurrence relation (3.4) follows by applying the Leibniz integral rule. �

Lemma 3.2. Let ν > 1/2, a ≥ 1/2, and m ∈ N ∪ {0}. Then, the function

ρ 7→

(
−∂ρ

sinh ρ

)m

K̃ν,a(ρ)

is positive.
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Proof. Using the formula (2.1) and change of variables, we have

K̃ν,a(ρ) =
aν

2ν+1

ˆ ∞
0

e−t− (aρ)2
4t t−ν−1 dt =

1
2(2a)ν

ˆ ∞
0

1
t1/2 e−a2t− ρ

2
4t

dt
tν+1/2 .

Thus, recalling the expression of the heat kernel (3.1) for odd-dimensional case, we obtain(
−∂ρ

sinh ρ

)m

K̃ν,a(ρ) =

ˆ ∞
0

e(m2−a2)th(t, ρ)
dt

tν+1/2 .

The conclusion follows from the positivity of the heat kernel h. �

As a consequence of Lemma 3.2, we obtain the positivity of the kernel Kn,s,p.

Corollary 3.3. Let n ∈ N, 0 < s < 1, and p > 1. The kernel Kn,s,p is positive.

In the following lemma, we consider a class of functions more general than Kn,s,p to allow for a
broader applicability in later results. Note that Proposition 1.2 follows from Lemma 3.4 with ν =

1+sp
2

and a = n−1
2 , together with (2.2).

Lemma 3.4. Let ν > 1/2, a ≥ 1/2, and y ≥ 0. Let

K(ρ) =

(
−∂ρ

sinh ρ

) n−1
2

K̃ν,a(ρ),

when n ≥ 3 is odd and

K(ρ) =

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

) n
2

K̃ν,a(r)dr,

when n ≥ 2 is even. Then, there exist c,C > 0 such that

cρ−ν(sinh ρ)−
n−1

2 K n−1
2 +ν(aρ) ≤ K(ρ) ≤ Cρ−ν(sinh ρ)−

n−1
2 K n−1

2 +ν(aρ)

for all ρ > 0.

In order to prove Lemma 3.4, we need the following lemma.

Lemma 3.5. Let a > 0 and ν > −n−1
2 . Then

ˆ ∞
ρ

sinh−n/2+1 r√
cosh r − cosh ρ

r−νKn/2+ν(ar) dr ∼
√
π

2
Γ(ν + n−1

2 )
Γ(ν + n

2 )
ρ−ν sinh−n/2+1(ρ)Kn/2+ν(aρ)

as ρ→ 0+ up to dimensional constants.

Proof. By the change of variables r = ρt, we have

ˆ ∞
ρ

1√
cosh r − cosh ρ

r−ν

ρ−ν
sinh−n/2+1 r
sinh−n/2+1 ρ

Kn/2+ν(ar)
Kn/2+ν(aρ)

dr =

ˆ ∞
1

ρt−ν√
cosh(ρt) − cosh ρ

sinh−n/2+1(ρt)
sinh−n/2+1 ρ

Kn/2+ν(aρt)
Kn/2+ν(aρ)

dt.
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We define for each ρ ∈ (0, 1) a function fρ by

fρ(t) =
ρt−ν√

cosh(ρt) − cosh ρ

sinh−n/2+1(ρt)
sinh−n/2+1 ρ

Kn/2+ν(aρt)
Kn/2+ν(aρ)

, t ∈ (1,∞).

Note that

cosh(ρt) − cosh ρ
ρ2 ≥

1
2

(t2 − 1) and sinh(ρt) ≥ (sinh ρ)t.

Moreover, by [26, Eq (2.17)], we have

Kn/2+ν(aρt)
Kn/2+ν(aρ)

≤ t−
n
2−ν.

Thus, fρ is bounded from above by a function

f (t) =
t−n−2ν+1√
(t2 − 1)/2

,

which is integrable on (0,∞). Indeed, by the change of variables t2 − 1 = τ, we obtain

ˆ ∞
1

f (t) dt =
1
√

2

ˆ ∞
0

τ−1/2

(1 + τ)n/2+ν
dτ =

1
√

2
B

(
1
2
, ν +

n − 1
2

)
=

√
π

2
Γ(ν + n−1

2 )
Γ(ν + n

2 )
< ∞,

where B is Euler’s Beta Integral (see [30, 5.12.3]).
For fixed t ∈ (1,∞), we have

cosh(ρt) − cosh ρ
ρ2 →

1
2

(t2 − 1),
sinh(ρt)
sinh ρ

→ t, and
Kn/2+ν(aρt)
Kn/2+ν(aρ)

→ t−n/2−ν

as ρ → 0+. Hence, we obtain limρ→0 fρ(t) = f (t). Therefore, the Lebesgue dominated convergence
theorem concludes the lemma. �

Proof of Lemma 3.4. We prove the odd-dimensional case n = 2m + 1 first. We already provided
a simple way to chase the asymptotic behavior of operator

(
−∂r

sinh r

)m
at the former part of proof of

Lemma 3.1. By applying the similar argument one can shows that K(ρ) ∼ ρ−2(m+ν) as ρ → 0+ and
K(ρ) ∼ ρ−

1
2−νe−(a+m)ρ as ρ → ∞. In other words, K(ρ) ∼ ρ−ν(sinh ρ)−mKm+ν(aρ) as ρ → 0+ and ρ → ∞

by (2.2). Since K is positive by Lemma 3.2 and continuous in (0,∞), there exist c,C > 0 such that

cρ−ν(sinh ρ)−mKm+ν(aρ) ≤ K(ρ) ≤ Cρ−ν(sinh ρ)−mKm+ν(aρ)

for all ρ > 0.
Let us consider the even-dimensional case n = 2m. By using the result for the odd-dimensional

case, we obtain for ρ sufficiently close to∞ that
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K(ρ) ≤ C
ˆ ∞
ρ

er√
sinh r−ρ

2

√
sinh r+ρ

2

r−
1
2−νe−(a+m)r dr

≤ C
1√

sinh ρ

ˆ ∞
0

1√
sinh t

2

(t + ρ)−
1
2−νe−(a+m−1)(t+ρ) dt

≤ Cρ−
1
2−νe−(a+ 2m−1

2 )ρ
ˆ ∞

0

1√
sinh t

2

dt

≤ Cρ−
1
2−νe−(a+ n−1

2 )ρ

and

K(ρ) =

ˆ ∞
ρ

2 sinh r
√

cosh r − cosh ρ
(
−∂r

sinh r

) n+2
2

K̃ν,a(r) dr

≥ c
ˆ ∞
ρ

er

√
sinh

r − ρ
2

√
sinh

r + ρ

2
r−

1
2−νe−(a+m+1)r dr

≥ c
√

sinh ρ
ˆ ∞

0

√
sinh

t
2

(t + ρ)−
1
2−νe−(a+m)(t+ρ) dt

≥ cρ−
1
2−νe−(a+ 2m−1

2 )ρ
ˆ ∞

0

√
sinh

t
2

(1 + t)−
1
2−νe−(a+m)t dt

≥ cρ−
1
2−νe−(a+ n−1

2 )ρ

for some constants c,C > 0. In other words, K is comparable to ρ−ν(sinh ρ)−
n−1

2 K n−1
2 +ν(aρ) as ρ→ ∞.

On the other hand, K(ρ) is comparable to ρ−2ν−(n−1), or to ρ−ν(sinh ρ)−
n−1

2 K n−1
2 +ν(aρ), as ρ → 0+.

Indeed, by using the result for the odd-dimensional case once again, we infer that K(ρ) is comparable to
ˆ ∞
ρ

sinh−m+1 r√
cosh r − cosh ρ

r−νKm+ν(ar) dr.

By Lemma 3.5, it is in turn comparable to

ρ−ν sinh−m+1(ρ)Km+ν(aρ)

near ρ = 0+. Since K is positive and continuous in (0,∞), the desired result follows. �

Let us now prove Theorem 1.3 using the heat kernel and previous lemmas.

Proof of Theorem 1.3. Let ε > 0 and define gε(x, ξ) = Φp(u(x) − u(ξ))χd(x,ξ)>ε. The heat semigroup
associated to gε(x, ·) is given by

et∆Hn [gε(x, ·)](x) =

ˆ
Hn

1
(2π)m

1
(4πt)1/2

((
−∂ρ

sinh ρ

)m

e−m2t− ρ
2

4t

)
gε(x, ξ) dξ,
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when n = 2m + 1 ≥ 3 is odd and

et∆Hn [gε(x, ·)](x) =

ˆ
Hn

t−3/2e−
(2m−1)2

4 t

2(2π)m+1/2

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

re−
r2
4t dr√

cosh r − cosh ρ
gε(x, ξ) dξ,

when n = 2m ≥ 2 is even, where ρ = d(x, ξ). We will prove

cn,s,p

ˆ
d(x,ξ)>ε

Φp(u(x) − u(ξ))Kn,s,p(d(x, ξ)) dξ = C2

ˆ ∞
0

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

(3.5)

in both cases.
Let us first consider the odd-dimensional case. We fix δ > 0 and integrate the heat semigroup with

respect to the singular measure t−1− sp
2 dt over the interval (δ,∞) to obtain

C2

ˆ ∞
δ

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

= C2

ˆ ∞
δ

ˆ
Hn

1
(2π)m

1
(4πt)1/2

((
−∂ρ

sinh ρ

)m

e−m2t− ρ
2

4t

)
gε(x, ξ) dξ

dt

t1+
sp
2
.

(3.6)

Note that this expression is well defined since |et∆Hn [gε(x, ·)](x)| ≤ C‖u‖p−1
L∞ for some constant C > 0.

By applying Fubini’s theorem, we have

C2

ˆ ∞
δ

ˆ
Hn

1
(2π)m

1
(4πt)1/2

((
−∂ρ

sinh ρ

)m

e−m2t− ρ
2

4t

)
gε(x, ξ) dξ

dt

t1+
sp
2

=
C2

(2π)m(4π)1/2

ˆ
Hn

ˆ ∞
δ

((
−∂ρ

sinh ρ

)m

e−m2t− ρ
2

4t t−
3+sp

2

)
dt gε(x, ξ) dξ.

(3.7)

Furthermore, since all partial derivatives of e−m2t− ρ
2

4t t−
3+sp

2 with respect to ρ are integrable over the
interval (δ,∞), the dominated convergence theorem shows that

ˆ
Hn

ˆ ∞
δ

((
−∂ρ

sinh ρ

)m

e−m2t− ρ
2

4t t−
3+sp

2

)
dt gε(x, ξ) dξ

=

ˆ
Hn

(
−∂ρ

sinh ρ

)m (ˆ ∞
δ

e−m2t− ρ
2

4t t−
3+sp

2 dt
)

gε(x, ξ) dξ.
(3.8)

Note that the function e−m2t− ρ
2

4t t−
3+sp

2 is integrable on (0,∞). Indeed, the formula (2.1) and the change
of variables show

ˆ ∞
0

e−m2t− ρ
2

4t t−
3+sp

2 dt = m1+sp
ˆ ∞

0
e−t− (mρ)2

4t t−
3+sp

2 dt = 2(2m)
1+sp

2 K̃ 1+sp
2 ,m(ρ). (3.9)

Thus, (3.5) in the odd-dimensional case follows by combining (3.6)–(3.9) and passing to the limit
δ↘ 0.
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We next consider the even-dimensional case. Similarly to as in the odd-dimensional case, we obtain

C2

ˆ ∞
δ

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

= C2

ˆ ∞
δ

ˆ
Hn

t−3/2e−
(2m−1)2

4 t

2(2π)m+1/2

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

re−
r2
4t√

cosh r − cosh ρ
dr gε(x, ξ) dξ

dt

t1+
sp
2

=
C2

2(2π)m+1/2

ˆ
Hn

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

(ˆ ∞
δ

e−
(2m−1)2

4 t− r2
4t t−

5+sp
2 dt

)
r dr gε(x, ξ) dξ√
cosh r − cosh ρ

.

Moreover, we have from (2.1) and (2.5),ˆ ∞
0

e−
(2m−1)2

4 t− r2
4t t−

5+sp
2 dt = 2(2m − 1)

3+sp
2 K̃ 3+sp

2 , 2m−1
2

(r) = 4(2m − 1)
1+sp

2

(
−∂r

r

)
K̃ 1+sp

2 , 2m−1
2

(r).

Thus, we deduce

C2

ˆ ∞
0

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

= cn,s,pC1

ˆ
Hn

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

(−∂r)K̃ 1+sp
2 , 2m−1

2
(r)

√
π
√

cosh r − cosh ρ
dr gε(x, ξ) dξ

= cn,s,pC1

ˆ
Hn

ˆ ∞
ρ

sinh r
√
π
√

cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 , 2m−1

2
(r) dr gε(x, ξ) dξ,

where we used Lemma 3.1 (m − 1)-times with ν =
1+sp

2 , a = 2m−1
2 , and y = 0 in the last equality. This

proves (3.5) in the even-dimensional case.
On the one hand, the integral in the right-hand side of (3.5) converges to the Cauchy principal value

P.V.
ˆ
Hn

Φp(u(x) − u(ξ))Kn,s,p(d(x, ξ)) dξ

as ε↘ 0. For the left-hand side of (3.5), on the other hand, we need to estimate

A :=
ˆ ∞

0
et∆Hn [Φp(u(x) − u(·))](x)

dt

t1+
sp
2
−

ˆ ∞
0

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2
.

Proceeding as above, we have

|A| .

∣∣∣∣∣∣P.V.
ˆ

d(x,ξ)≤ε
Φp(u(x) − u(ξ))Kn,s,p(d(x, ξ)) dξ

∣∣∣∣∣∣ .
Thus, applying Lemma A.1 to K = Kn,s,pχ{d(x,ξ)≤ε} yields

|A| .
ˆ

d(x,ξ)≤ε
ραKn,s,p(ρ) dy .

ˆ ε

0
ραKn,s,p(ρ) sinhn−1 ρ dρ, (3.10)

where α = 2p−2 when p ∈ ( 2
2−s , 2) and α = p when p ∈ (1, 2

2−s ]∪[2,∞). Recall thatKn,s,p is positive by
Corollary 3.3. Moreover, Lemma 3.4 (or Proposition 1.2) shows that the function ραKn,s,p(ρ) sinhn−1 ρ

is integrable near zero and hence the right-hand side of (3.10) converges to zero as ε ↘ 0. Therefore,
the left-hand side of (3.5) converges to that of (1.1) as ε↘ 0. �
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4. Extension problem

In this section, we prove Theorem 1.4, which provides another representation of the fractional p-
Laplacian on hyperbolic spaces. We first find the Poisson formula and relate the heat semigroup to the
extension problem (1.5).

Lemma 4.1. Let n ≥ 2, s ∈ (0, 1), and p > 1. If f ∈ Cb(Hn), then

Es,p[ f ](x, y) :=
ˆ
Hn

P(d(x, ξ), y) f (ξ) dξ

is a solution of the extension problem (1.5), where P(ρ, y) is the Poisson kernel given by

P(ρ, y) = C4 ysp

(
−∂ρ

sinh ρ

) n−1
2

K̃ 1+sp
2 , n−1

2

( √
ρ2 + y2

)
,

when n ≥ 3 odd and

P(ρ, y) = C4 ysp
ˆ ∞
ρ

sinh r
√
π
√

cosh r − cosh ρ

(
−∂r

sinh r

) n
2

K̃ 1+sp
2 , n−1

2

( √
r2 + y2

)
dr,

when n ≥ 2 even; here, K̃ν,a is the function given in (2.4) and

C4 =
1

2
n−3

2 π
n
2 Γ( sp

2 )

(
n − 1

4

) 1+sp
4

.

Moreover, Es,p[ f ] has an alternative representation

Es,p[ f ](x, y) =
ysp

2spΓ( sp
2 )

ˆ ∞
0

et∆Hn [ f ](x)e−
y2
4t

dt

t1+
sp
2
. (4.1)

Proof. For each x ∈ Hn and y > 0, we define V(x, y) by the function given in the right-hand side
of (4.1). Then, we have

V(x, y) =
ysp

2spΓ( sp
2 )

ˆ ∞
0

ˆ
Hn

h(t, ρ) f (ξ) dξ e−
y2
4t

dt

t1+
sp
2
,

where ρ = d(x, ξ). Recalling the expression (3.1) for the heat kernel h(t, ρ) and using (2.1), we obtain

V(x, y) =
ysp

2spΓ( sp
2 )

ˆ ∞
0

ˆ
Hn

1
(2π)m

1
(4πt)1/2

((
−∂ρ

sinh ρ

)m

e−m2t− ρ
2+y2
4t

)
f (ξ) dξ

dt
t1+sp/2

=

ˆ
Hn

ysp

2spΓ( sp
2 )

1
(2π)m

1
(4π)1/2

(
−∂ρ

sinh ρ

)m (ˆ ∞
0

e−m2t− ρ
2+y2
4t t−

3+sp
2 dt

)
f (ξ) dξ

=

ˆ
Hn

P(d(x, ξ), y) f (ξ) dξ,
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when n = 2m + 1 is odd. If n = 2m is even, then we use (3.2) instead of (3.1) to have

V(x, y) =
ysp

2spΓ( sp
2 )

ˆ ∞
0

ˆ
Hn

t−
5+sp

2 e−
(2m−1)2

4 t

2(2π)m+1/2

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

re−
r2+y2

4t dr√
cosh r − cosh ρ

f (ξ) dξ dt

=
ysp

2spΓ( sp
2 )

ˆ
Hn

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

ˆ ∞
0

t−
5+sp

2 e−
(2m−1)2

4 t

2(2π)m+1/2

re−
r2+y2

4t dt√
cosh r − cosh ρ

dr f (ξ) dξ.

Moreover, using (2.1) we computeˆ ∞
0

e−
(2m−1)2

4 t− r2+y2
4t t−

5+sp
2 dt = 2(2m − 1)

3+sp
2 K̃ 3+sp

2 , 2m−1
2

( √
r2 + y2

)
= 4(2m − 1)

1+sp
2

(
−∂r

r

)
K̃ 1+sp

2 , 2m−1
2

( √
r2 + y2

)
.

Therefore, we obtain

V(x, y) = C4 ysp
ˆ
Hn

(
−∂ρ

sinh ρ

)m−1 ˆ ∞
ρ

(−∂r)K̃ 1+sp
2 , 2m−1

2

( √
r2 + y2

)
√
π
√

cosh r − cosh ρ
dr f (ξ) dξ

=

ˆ
Hn

P(d(x, ξ), y) f (ξ) dξ

in the even-dimensional case as well, where we used Lemma 3.1 in the last equality.
It only remains to prove that V solves the extension problem (1.5). Since the heat semigroup et∆Hn [ f ]

solves (1.3), V satisfies

∆xV =
ysp

2spΓ( sp
2 )

ˆ ∞
0
∂t

(
et∆Hn [ f ](x)

)
e−

y2
4t t−1− sp

2 dt.

Using the integration by parts and the fact that |et∆Hn [ f ](x)| ≤ ‖ f ‖L∞ , we obtain

∆xV =
ysp

2spΓ( sp
2 )

([
et∆Hn [ f ](x)e−

y2
4t t−1− sp

2

]∞
0
−

ˆ ∞
0

et∆Hn [ f ](x)∂t

(
e−

y2
4t t−1− sp

2

)
dt

)
= −

ysp

2spΓ( sp
2 )

ˆ ∞
0

et∆Hn [ f ](x)
(
y2

4
e−

y2
4t t−3− sp

2 −

(
1 +

sp
2

)
e−

y2
4t t−2− sp

2

)
dt.

Since

Vy =
spysp−1

2spΓ( sp
2 )

ˆ ∞
0

et∆Hn [ f ](x)e−
y2
4t t−1− sp

2 dt

−
ysp+1

2sp+1Γ( sp
2 )

ˆ ∞
0

et∆Hn [ f ](x)e−
y2
4t t−2− sp

2 dt

and

Vyy =
sp(sp − 1)ysp−2

2spΓ( sp
2 )

ˆ ∞
0

et∆Hn [ f ](x)e−
y2
4t t−1− sp

2 dt

−
2sp + 1

2sp+1Γ( sp
2 )

ysp
ˆ ∞

0
et∆Hn [ f ](x)e−

y2
4t t−2− sp

2 dt

+
ysp+2

2sp+2Γ( sp
2 )

ˆ ∞
0

et∆Hn [ f ](x)e−
y2
4t t−3− sp

2 dt,
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one can easily compute

∆xV(x, y) +
1 − sp

y
Vy(x, y) + Vyy(x, y) = 0.

Finally, we prove V(x, 0) = f (x). Indeed, since the heat kernel h(t, ρ) satisfies
ˆ
Hn

h(t, d(x, ξ)) dξ = 1,

we obtain
ˆ
Hn

P(d(x, ξ), y) dξ =
ysp

2spΓ( sp
2 )

ˆ ∞
0

(ˆ
Hn

h(t, d(x, ξ)) dξ
)

e−
y2
4t

dt

t1+
sp
2

=
ysp

2spΓ( sp
2 )

ˆ ∞
0

e−
y2
4t

dt

t1+
sp
2

= 1.

Now, fix ε > 0 and find δ > 0 such that | f (ξ) − f (x)| < ε whenever d(x, ξ) < δ. Then

|V(x, y) − f (x)| ≤
ˆ

d(x,ξ)<δ
P(d(x, ξ), y)| f (ξ) − f (x)| dξ + 2‖ f ‖L∞

ˆ
d(x,ξ)<δ

P(d(x, ξ), y) dξ

≤ ε + 2‖ f ‖L∞
ˆ

d(x,ξ)<δ
P(d(x, ξ), y) dξ.

Since P(ρ, y)→ 0 uniformly for ρ ≥ δ as y↘ 0, we obtain

lim sup
y↘0

|V(x, y) − f (x)| ≤ ε.

Since ε > 0 was arbitrary, this shows that V(x, 0) = f (x). This concludes that V solves the extension
problem (1.5). �

Let us now prove Theorem 1.4 by using the Poisson formula in Lemma 4.1.

Proof of Theorem 1.4. Since cn,s,pC1 = C3C4, by Lemma 4.1 it is enough to show∣∣∣∣∣ P.V. ˆ
Hn

Φp(u(x) − u(ξ))K(d(x, ξ)) dξ
∣∣∣∣∣→ 0

as y↘ 0, where

K(ρ) =

(
−∂ρ

sinh ρ

) n−1
2 (

K̃ 1+sp
2 , n−1

2
(ρ) − K̃ 1+sp

2 , n−1
2

( √
ρ2 + y2

))
,

when n is odd and

K(ρ) =

ˆ ∞
ρ

sinh r
√
π
√

cosh r − cosh ρ

(
−∂r

sinh r

) n
2 (

K̃ 1+sp
2 , n−1

2
(r) − K̃ 1+sp

2 , n−1
2

( √
r2 + y2

))
dr,

when n is even.
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We first split the integral as follows:∣∣∣∣∣ˆ
Hn

Φp(u(x) − u(ξ))K(d(x, ξ)) dξ
∣∣∣∣∣

≤

∣∣∣∣∣∣
ˆ

d(x,ξ)≤1
Φp(u(x) − u(ξ))K(d(x, ξ)) dξ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
ˆ

d(x,ξ)>1
Φp(u(x) − u(ξ))K(d(x, ξ)) dξ

∣∣∣∣∣∣
= J1 + J2.

For J1, we apply Lemma A.1 to Kχ{d(x,ξ)≤1} to obtain

J1 .

ˆ
d(x,ξ)≤1

d(x, ξ)α|K(d(x, ξ))| dξ,

where α = 2p − 2 when p ∈ ( 2
2−s , 2) and α = p when p ∈ (1, 2

2−s ] ∪ [2,∞). For J2, we have

J2 . ‖u‖
p−1
L∞(Hn)

ˆ
d(x,ξ)>1

|K(d(x, ξ))| dξ.

Therefore, the dominated convergence theorem concludes that J1 + J2 → 0 as y↘ 0. �

5. Pointwise convergence

This section is devoted to the proof of Theorem 1.5. As mentioned in Section 1, the limits of the
integrals

cn,s,p

ˆ ∞
R
Kn,s,p(ρ) sinhn−1 ρ dρ, cn,s,p

ˆ R

0
ρpKn,s,p(ρ) sinhn−1 ρ dρ, (5.1)

and

cn,s,p

ˆ R

0
ρβ+pKn,s,p sinhn−1 ρ dρ, β > 0, (5.2)

as s→ 1−, play a key role in the proof of Theorem 1.5. Here, we recall that the constant cn,s,p is given
in (1.2).

In the following series of lemmas, we compute limits of the integrals in (5.1) and (5.2).

Lemma 5.1. Let n ≥ 2 and p > 1. For any R > 0,

lim
s↗1

cn,s,p

ˆ ∞
R
Kn,s,p(ρ) sinhn−1 ρ dρ = 0.

Proof. Let us first consider the case n = 2m + 1 with m ≥ 1. Since lims↗1(1 − s)|Γ(−s)| = 1, we have
cn,s,pC1 ≤ C(1 − s) for some C = C(n, p) > 0. By using Corollary 3.3, we have

0 ≤ cn,s,p

ˆ ∞
R
Kn,s,p(ρ) sinhn−1 ρ dρ . (1 − s)

ˆ ∞
R

sinh2m ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,m(ρ) dρ. (5.3)

Thus, it is enough to show that the right-hand side of (5.3) converges to zero as s → 1−. We actually
prove the following stronger statement:

lim
s↗1

(1 − s)
ˆ ∞

R
sinhm+a ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ = 0 for each a > 0. (5.4)
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We use the induction on m. When m = 1, using (2.5) and the fact that Kν is increasing with respect
to ν > 0, we have

ˆ ∞
R

sinh1+a ρ

(
−∂ρ

sinh ρ

)
K̃ 1+sp

2 ,a(ρ) dρ = a
ˆ ∞

R
(sinha ρ)ρ−

1+sp
2 K 3+sp

2
(aρ) dρ

≤ a
ˆ ∞

R
(sinha ρ)ρ−

1+sp
2 K 3+p

2
(aρ) dρ.

By (2.2), there exists M = M(p) > 1 such that

K 3+p
2

(ρ) ≤
√
π

ρ
e−ρ for ρ > M. (5.5)

The inequalities ρ−
1+sp

2 ≤ max{ρ−
1
2 , ρ−

1+p
2 } and sinh ρ < eρ, together with (5.5), yield

ˆ ∞
R

(sinha ρ)ρ−
1+sp

2 K 3+p
2

(aρ) dρ

≤

ˆ M/a

R
(sinha ρ) max

{
ρ−

1
2 , ρ−

1+p
2

}
K 3+p

2
(aρ) dρ +

√
π

a

ˆ ∞
M/a

ρ−1− sp
2 dρ.

Note that the first integral in the right-hand side of the inequality above is a constant depending on a,
p, and R only. For the second integral, we estimate√

π

a

ˆ ∞
M/a

ρ−1− sp
2 dρ =

2
sp

√
π

a

( a
M

) sp
2
≤

2
sp

√
π

a
max

{( a
M

) p
2
, 1

}
.

Thus, we arrive at

lim
s↗1

(1 − s)
ˆ ∞

R
sinh1+a ρ

(
−∂ρ

sinh ρ

)
K̃ 1+sp

2 ,a(ρ) dρ = 0,

which proves (5.4) for m = 1.
Assume now that (5.4) is true for m and prove it for m + 1. Using integration by parts, we have
ˆ ∞

R
sinhm+1+a ρ

(
−∂ρ

sinh ρ

)m+1

K̃ 1+sp
2 ,a(ρ) dρ

= (m + a)
ˆ ∞

R
sinhm+a−1 ρ cosh ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ −

[
sinhm+a ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ)

]∞
R
.

Note that by Lemma 3.4 and (2.2),

sinhm+a ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) ∼ ρ−

1+sp
2 (sinh ρ)aKm+

1+sp
2

(aρ) ∼ ρ−1−sp/2

as ρ→ ∞. Thus, taking the limit lims↗1(1 − s) yields

lim
s↗1

(1 − s)
ˆ ∞

R
sinhm+1+a ρ

(
−∂ρ

sinh ρ

)m+1

K̃ 1+sp
2 ,a(ρ) dρ

= lim
s↗1

(1 − s)(m + a)
ˆ ∞

R
sinhm+a−1 ρ cosh ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ.
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Therefore, by an inequality
cosh ρ ≤ coth R sinh ρ for ρ ≥ R, (5.6)

Lemma 3.2, and the induction hypothesis, we conclude

lim
s↗1

(1 − s)
ˆ ∞

R
sinhm+1+a ρ

(
−∂ρ

sinh ρ

)m+1

K̃ 1+sp
2 ,a(ρ) dρ

≤ (m + a)(coth R) lim
s↗1

(1 − s)
ˆ ∞

R
sinhm+a ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ = 0.

This finishes the proof of the lemma in the odd-dimensional case.
Let us next consider the even-dimensional cases n = 2m with m ≥ 1. Similarly as in the odd-

dimensional case, since

0 ≤ cn,s,p

ˆ ∞
R
Kn,s,p(ρ) sinhn−1 ρ dρ

. (1 − s)
ˆ ∞

R
sinh2m−1 ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 , 2m−1

2
(r) dr dρ,

the desired result will follow once we prove the following:

lim
s↗1

(1 − s)
ˆ ∞

R
sinh

2m−1
2 +a ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 ,a(r) dr dρ = 0

for each a ≥ 1/2.
(5.7)

If m = 1, then ˆ ∞
R

sinh
1
2 +a ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)
K̃ 1+sp

2 ,a(r) dr dρ

≤ a
ˆ M/a

R
sinh

1
2 +a ρ

ˆ ∞
ρ

1√
cosh r − cosh ρ

r−
1+sp

2 K 3+p
2

(ar) dr dρ

+ a
ˆ ∞

M/a
sinh

1
2 +a ρ

ˆ ∞
ρ

1√
cosh r − cosh ρ

r−
1+sp

2 K 3+p
2

(ar) dr dρ =: J1 + J2.

For J2, we use (5.5) to obtain

J2 ≤
√
πa
ˆ ∞

M/a

sinh
1
2 +a ρ

ρ1+
sp
2 eaρ

ˆ ∞
ρ

1√
cosh r − cosh ρ

dr dρ.

Since ˆ ∞
ρ

1√
cosh r − cosh ρ

dr =
1
√

2

ˆ ∞
ρ

1√
sinh r+ρ

2 sinh r−ρ
2

dr

≤
1√

2 sinh ρ

ˆ ∞
ρ

1√
sinh r−ρ

2

dr

=
1√

2 sinh ρ

ˆ ∞
0

1√
sinh r

2

dr =
Γ(1/4)
Γ(3/4)

√
π

sinh ρ
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and sinha ρ ≤ eaρ, we have

J2 ≤
Γ(1/4)
Γ(3/4)

π
√

a
ˆ ∞

M/a
ρ−1− sp

2 dρ =
Γ(1/4)
Γ(3/4)

π
√

a
sp

( a
M

) sp
2
.

On the other hand, for J1 we observe

J1 ≤ a
ˆ M/a

R
sinh

1
2 +a ρ

ˆ ∞
ρ

max{r−
1+p

2 , r−
1
2 }√

cosh r − cosh ρ
K 3+p

2
(ar) dr dρ.

Since the inner integral is continuous and integrable on [R,M/a], J1 is controlled by some constant
C = C(a, p,R) > 0. Therefore, we conclude lims↗1(1 − s)(J1 + J2) = 0, which proves (5.7) for m = 1.

Finally, let us assume that (5.7) holds for m and prove it for m + 1. By Lemma 3.1, we have
ˆ ∞

R
sinh

2m+1
2 +a ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m+1

K̃ 1+sp
2 ,a(r) dr dρ

=

ˆ ∞
R

sinh
2m+1

2 +a ρ

(
−∂ρ

sinh ρ

) ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 ,a(r) dr dρ.

Using integration by parts, (5.6), and Lemma 3.2 and then taking lims↗1(1 − s) as in the odd-
dimensional case, we deduce

lim
s↗1

(1 − s)
ˆ ∞

R
sinh

2m+1
2 +a ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m+1

K̃ 1+sp
2 ,a(r) dr dρ

≤ C lim
s↗1

(1 − s)
ˆ ∞

R
sinh

2m−1
2 +a ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 ,a(r) dr dρ

for some C = C(m, a,R). Therefore, the statement (5.7) for m + 1 follows by the induction hypothesis.
�

Lemma 5.2. Let n ≥ 2 and p > 1. For any R > 0,

lim
s↗1

cn,s,p

ˆ R

0
ρpKn,s,p(ρ) sinhn−1 ρ dρ =

1

π
n−1

2

Γ( p+n
2 )

Γ( p+1
2 )

. (5.8)

Proof. Let us first consider the odd-dimensional case n = 2m + 1 with m ≥ 1. One can easily check
that (5.8) is equivalent to

lim
s↗1

(1 − s)
ˆ R

0
ρp sinh2m ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,m(ρ) dρ =

2m−1

p

(
2
m

) p+1
2

Γ

(
p + 2m + 1

2

)
(5.9)

by using lims↗1(1 − s)|Γ(−s)| = 1. Actually, we will prove the following statement, which is slightly
stronger than (5.9):

lim
s↗1

(1 − s)
ˆ R

0
ρp sinh2m ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ

=
2m−1

p

(
2
a

) p+1
2

Γ

(
p + 2m + 1

2

)
for each a ≥ 1.

(5.10)
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Let ε ∈ (0, 1), then there exists δ0 ∈ (0, 1) such that

1 − ε ≤
sinh ρ
ρ
≤ 1 + ε (5.11)

for all ρ ∈ (0, δ0). Moreover, using the asymptotic behavior (2.2) of the modified Bessel function, for
each s ∈ [0, 1] we find δs > 0 such that

1 − ε
2

Γ

(
3 + sp

2

) (
ρ

2

)− 3+sp
2
≤ K 3+sp

2
(ρ) ≤

1 + ε

2
Γ

(
3 + sp

2

) (
ρ

2

)− 3+sp
2

(5.12)

for all ρ ∈ (0, δs). Furthermore, since {Kν}ν∈[3/2,(3+p)/2] is equicontinuous, we may assume that δs > 0
has been chosen continuously on s. Let us take δ = δ0 ∧ mins∈[0,1] δs ∧ R, then δ = δ(ε, p,R) > 0,
and (5.11) and (5.12) hold for all ρ ∈ (0, δ).

We fix a ≥ 1 and denote by Gs,p,m,a(ρ) the integrand in the left-hand side of (5.10). Then, |Gs,p,m,a(ρ)|
is bounded by the function sup0≤s≤1 |Gs,p,m,a(ρ)|, which is independent of s and bounded on a compact
interval [δ/a,R]. Thus, we have

lim
s↗1

(1 − s)
ˆ R

δ/a
Gs,p,m,a(ρ) dρ = 0,

and hence

lim
s↗1

(1 − s)
ˆ R

0
Gs,p,m,a(ρ) dρ = lim

s↗1
(1 − s)

ˆ δ/a

0
Gs,p,m,a(ρ) dρ.

Let us now prove (5.10) by induction. When m = 1, we first use (2.5) to have

Gs,p,1,a(ρ) = aρp− 1+sp
2 K 3+sp

2
(aρ) sinh ρ.

If ρ < δ/a, then ρ ≤ aρ < δ since a ≥ 1. Thus, we utilize (5.11) and (5.12) to obtain

(1 − ε)2
(
2
a

) 1+sp
2

Γ

(
3 + sp

2

)
ρp(1−s)−1 ≤ Gs,p,1,a(ρ) ≤ (1 + ε)2

(
2
a

) 1+sp
2

Γ

(
3 + sp

2

)
ρp(1−s)−1.

This leads us to the inequalities

lim
s↗1

(1 − s)
ˆ R

0
Gs,p,1,a(ρ) dρ = lim

s↗1
(1 − s)

ˆ δ/a

0
Gs,p,1,a(ρ) dρ

≤ lim
s↗1

(1 − s)(1 + ε)2
(
2
a

) 1+sp
2

Γ

(
3 + sp

2

)ˆ δ/a

0
ρp(1−s)−1 dρ

= (1 + ε)2 1
p

(
2
a

) p+1
2

Γ

(
p + 3

2

)
and

lim
s↗1

(1 − s)
ˆ R

0
Gs,p,1,a(ρ) dρ ≥ (1 − ε)2 1

p

(
2
a

) p+1
2

Γ

(
p + 3

2

)
.

Therefore, the statement (5.10) for m = 1 follows by taking ε→ 0.
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Assume now that (5.10) holds for m ≥ 1. Then, a similar argument shows

lim
s↗1

(1 − s)
ˆ R

0
Gs,p,m+1,a(ρ) dρ

= lim
s↗1

(1 − s)
ˆ δ/a

0
ρp sinh2m+2 ρ

(
−∂ρ

sinh ρ

)m+1

K̃ 1+sp
2 ,a(ρ) dρ

≤ lim
s↗1

(1 − s)(1 + ε)2m+1
ˆ δ/a

0
ρp+2m+1(−∂ρ)

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ,

where nonnegativity of the integrands follows from Lemma 3.2. Using the integration by parts, (5.11),
and the induction hypothesis, we arrive at

lim
s↗1

(1 − s)
ˆ R

0
Gs,p,m+1,a(ρ) dρ

≤ (1 + ε)2m+1(p + 2m + 1) lim
s↗1

(1 − s)
ˆ δ/a

0
ρp+2m

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ

≤
(1 + ε)2m+1

(1 − ε)2m (p + 2m + 1) lim
s↗1

(1 − s)
ˆ δ/a

0
ρp sinh2m ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ

=
(1 + ε)2m+1

(1 − ε)2m (p + 2m + 1)
2m−1

p

(
2
a

) p+1
2

Γ

(
p + 2m + 1

2

)
=

(1 + ε)2m+1

(1 − ε)2m

2m

p

(
2
a

) p+1
2

Γ

(
p + 2m + 3

2

)
.

Similarly, we obtain

lim
s↗1

(1 − s)
ˆ R

0
Gs,p,m+1,a(ρ) dρ ≥

(1 − ε)2m+1

(1 + ε)2m

2m

p

(
2
a

) p+1
2

Γ

(
p + 2m + 3

2

)
,

from which (5.10) for m + 1 follows by taking ε → 0. The statement (5.10) has been proved for all
m ∈ N, finishing the proof of (5.8) for the odd-dimensional case.

Let us next consider the even-dimensional case n = 2m with m ≥ 1. In this case, (5.8) is
equivalent to

lim
s↗1

(1 − s)
ˆ R

0
ρp sinh2m−1 ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 , 2m−1

2
(r) dr dρ

=

√
π

2
2m−1

p

(
2

m − 1/2

) p+1
2

Γ

(
p + 2m

2

)
.

As in the odd-dimensional case, we will prove a stronger statement:

lim
s↗1

(1 − s)
ˆ R

0
ρp sinh2m−1 ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 ,a(r) dr dρ

=

√
π

2
2m−1

p

(
2
a

) p+1
2

Γ

(
p + 2m

2

)
for each a ≥ 1/2.

(5.13)
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Recall that we have taken δ so that (5.11) and (5.12) hold for all ρ ∈ (0, δ). Let us fix a ≥ 1/2. By
Lemma 3.5, for each s ∈ [0, 1] we find δ̃s > 0 such that

(1 − ε)
√
π

2
Γ(2+sp

2 )

Γ(3+sp
2 )

ρ−
1+sp

2 K 3+sp
2

(aρ) ≤
ˆ ∞
ρ

r−
1+sp

2 K 3+sp
2

(ar)√
cosh r − cosh ρ

dr

≤ (1 + ε)
√
π

2
Γ( 2+sp

2 )

Γ( 3+sp
2 )

ρ−
1+sp

2 K 3+sp
2

(aρ)

(5.14)

for all ρ ∈ (0, δ̃s). Moreover, we may assume that δ̃s has been chosen continuously on s since
{Kν}ν∈[3/2,(3+p)/2] is equicontinuous. Let δ̃ = δ ∧ mins∈[0,1] δ̃s, then δ = δ(ε, p,R, a) > 0 and (5.14)
holds for all ρ ∈ (0, δ̃).

We denote by Hs,p,m,a(ρ) the integrand in the left-hand side of (5.13). Then, the same argument as
in the odd-dimensional case shows

lim
s↗1

(1 − s)
ˆ R

0
Hs,p,m,a(ρ) dρ = lim

s↗1
(1 − s)

ˆ δ
2a

0
Hs,p,m,a(ρ) dρ.

We argue by induction again to prove (5.13). If m = 1, then

Hs,p,1,a(ρ) = aρp sinh ρ
ˆ ∞
ρ

1√
cosh r − cosh ρ

r−
1+sp

2 K 3+sp
2

(ar) dr.

Since a ≥ 1/2, we have ρ < δ and aρ < δ for ρ < δ
2a . Thus, by (5.11), (5.12), and (5.14), we obtain

(1 − ε)3

√
π

2

(
2
a

) 1+sp
2

Γ

(
2 + sp

2

)
ρp(1−s)−1 ≤ Hs,p,1,a(ρ)

≤ (1 + ε)3

√
π

2

(
2
a

) 1+sp
2

Γ

(
2 + sp

2

)
ρp(1−s)−1.

Therefore, we have

(1 − ε)3

√
π

2
1
p

(
2
a

) p+1
2

Γ

(
p + 3

2

)
≤ lim

s↗1
(1 − s)

ˆ R

0
Hs,p,1,a(ρ) dρ

≤ (1 + ε)3

√
π

2
1
p

(
2
a

) p+1
2

Γ

(
p + 3

2

)
,

from which we deduce (5.13) for m = 1 by taking ε→ 0.
Suppose that (5.13) is true for m ≥ 1. Then, by (5.11), Lemmas 3.1 and 3.2, we have

lim
s↗1

(1 − s)
ˆ R

0
Hs,p,m+1,a(ρ) dρ

= lim
s↗1

(1 − s)
ˆ δ

2a

0
ρp sinh2m+1 ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m+1

K̃ 1+sp
2 ,a(r) dr dρ

≤ lim
s↗1

(1 − s)(1 + ε)2m
ˆ δ

2a

0
ρp+2m(−∂ρ)

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 ,a(r) dr dρ.
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Using the integration by parts, (5.11), and the induction hypothesis, we arrive at

lim
s↗1

(1 − s)
ˆ R

0
Hs,p,m+1,a(ρ) dρ

= (1 + ε)2m(p + 2m)

× lim
s↗1

(1 − s)
ˆ δ

2a

0
ρp+2m−1

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 ,a(r) dr dρ

≤
(1 + ε)2m

(1 − ε)2m−1 (p + 2m) lim
s↗1

(1 − s)
ˆ δ

2a

0
Hs,p,m,a(ρ) dρ

=
(1 + ε)2m

(1 − ε)2m−1

√
π

2
2m

p

(
2
a

) p+1
2

Γ

(
p + 2m + 2

2

)
.

The inequality

lim
s↗1

(1 − s)
ˆ R

0
Hs,p,m+1,a(ρ) dρ ≥

(1 − ε)2m

(1 + ε)2m−1

√
π

2
2m

p

(
2
a

) p+1
2

Γ

(
p + 2m + 2

2

)
can be obtained in the same way. Thus, we conclude that (5.13) for m + 1 holds by taking ε→ 0. This
finishes the proof for the even-dimensional case. �

Lemma 5.3. Let n ≥ 2 and p > 1. For any R > 0 and β > 0,

lim
s↗1

cn,s,p

ˆ R

0
ρp+βKn,s,p(ρ) sinhn−1 ρ dρ = 0. (5.15)

Proof. We proceed as in the previous lemma to prove (5.15). When n = 2m + 1 with m ≥ 1, we show

lim
s↗1

(1 − s)
ˆ R

0
ρp+β sinh2m ρ

(
−∂ρ

sinh ρ

)m

K̃ 1+sp
2 ,a(ρ) dρ = 0 for each a ≥ 1

by induction. Indeed, for ε ∈ (0, 1) let δ > 0 be the constant given in the proof of Lemma 5.2. Then,
by using (5.11) and (5.12) we prove

lim
s↗1

(1 − s)
ˆ R

0
ρβGs,p,1,a(ρ) dρ

≤ lim
s↗

(1 − s)(1 + ε)2
(
2
a

) 1+sp
2

Γ

(
3 + sp

2

) ˆ δ/a

0
ρp(1−s)+β−1 dρ

= lim
s↗

(1 − s)(1 + ε)2
(
2
a

) 1+sp
2

Γ

(
3 + sp

2

)
1

p(1 − s) + β

(
δ

a

)p(1−s)+β

= 0

for the case m = 1, where Gs,p,m,a is the function defined in the proof of Lemma 5.2. Moreover, one
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can follow the steps in the proof of Lemma 5.2 to obtain

(1 − ε)2m+1

(1 + ε)2m (p + β + 2m + 1) lim
s↗1

(1 − s)
ˆ R

0
ρβGs,p,m,a(ρ) dρ

≤ lim
s↗1

(1 − s)
ˆ R

0
ρβGs,p,m+1,a(ρ) dρ

≤
(1 + ε)2m+1

(1 − ε)2m (p + β + 2m + 1) lim
s↗1

(1 − s)
ˆ R

0
ρβGs,p,m,a(ρ) dρ,

which proves the induction step.
The even-dimensional case n = 2m with m ≥ 1 can also be verified by proving

lim
s↗1

(1 − s)
ˆ R

0
ρp+β sinh2m−1 ρ

ˆ ∞
ρ

sinh r√
cosh r − cosh ρ

(
−∂r

sinh r

)m

K̃ 1+sp
2 ,a(r) dr dρ = 0

for each a ≥ 1/2. This can be proved by the induction as in the previous lemma, so we omit the
proof. �

Let us provide the proof of Theorem 1.5 by using the pointwise representation (1.1) and Taylor’s
theorem, and gathering pieces of limits in the preceding lemmas.

Proof of Theorem 1.5. Let u ∈ C2
b(Hn) and let x ∈ Hn be such that ∇u(x) , 0. Let R > 0, then by

Lemma 5.1 we first have∣∣∣∣∣∣cn,s,p

ˆ
d(x,ξ)≥R

Φp(u(x) − u(ξ))Kn,s,p(d(x, ξ)) dξ

∣∣∣∣∣∣ . cn,s,p

ˆ ∞
R
Kn,s,p(ρ) sinhn−1 ρ dρ→ 0

as s→ 1−. Thus, by the pointwise representation (1.1) of the fractional p-Laplacian, we obtain

lim
s↗1

(−∆Hn)s
pu(x) = lim

s↗1
cn,s,pP.V.

ˆ
d(x,ξ)<R

Φp(u(x) − u(ξ))Kn,s,p(d(x, ξ)) dξ. (5.16)

Let v = exp−1
x ξ be a tangent vector in TxH

n and denote by Txξ the point expx(−v) ∈ Hn. Since
Kn,s,p(d(x, ξ)) = Kn,s,p(d(x,Txξ)), we write

ˆ
d(x,ξ)<R

Φp(u(x) − u(ξ))Kn,s,p(d(x, ξ)) dξ

=
1
2

ˆ
d(x,ξ)<R

|u(x) − u(ξ)|p−2(2u(x) − u(ξ) − u(Txξ))Kn,s,p(d(x, ξ)) dξ

+
1
2

ˆ
d(x,ξ)<R

(
|u(x) − u(Txξ)|p−2 − |u(x) − u(ξ)|p−2

)
(u(x) − u(Txξ))Kn,s,p(d(x, ξ)) dξ

=: J1 + J2.

By Taylor’s theorem, we have

u(x) − u(ξ) = −〈∇u(x), v〉 + O(|v|2), u(x) − u(Txξ) = 〈∇u(x), v〉 + O(|v|2),
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and
2u(x) − u(ξ) − u(Txξ) = −〈D2u(x)v, v〉 + O(|v|3).

If we write ω = v/|v|, then

|u(x) − u(ξ)|p−2 = |v|p−2|〈∇u(x), ω〉|p−2 + O(|v|p−1).

Thus, we obtain

|u(x) − u(ξ)|p−2(2u(x) − u(ξ) − u(Txξ)) = −|v|p|〈∇u(x), ω〉|p−2〈D2u(x)ω,ω〉 + O(|v|p+1).

Therefore, we deduce

J1 = −
1
2

ˆ R

0

ˆ
Sn−1

ρp|〈∇u(x), ω〉|p−2〈D2u(x)ω,ω〉Kn,s,p(ρ) sinhn−1 ρ dω dρ

+
1
2

ˆ
d(x,ξ)<R

O(d(x, ξ)p+1)Kn,s,p(d(x, ξ)) dξ.
(5.17)

For J2, since

|u(Txξ) − u(x)|p−2 − |u(x) − u(ξ)|p−2

= (p − 2)|v|p−1〈∇u(x), ω〉|〈∇u(x), ω〉|p−4〈D2u(x)ω,ω〉 + O(|v|p),

we have (
|u(Txξ) − u(x)|p−2 − |u(x) − u(ξ)|p−2

)
(u(x) − u(Txξ))

= −(p − 2)|v|p|〈∇u(x), ω〉|p−2〈D2u(x)ω,ω〉 + O(|v|p+1).

Thus, we obtain

J2 = −
p − 2

2

ˆ R

0

ˆ
Sn−1

ρp|〈∇u(x), ω〉|p−2〈D2u(x)ω,ω〉Kn,s,p(ρ) sinhn−1 ρ dω dρ

+
1
2

ˆ
d(x,ξ)<R

O(d(x, ξ)p+1)Kn,s,p(d(x, ξ)) dξ.
(5.18)

Combining (5.16)–(5.18), and using Lemmas 5.2 and 5.3, we arrive at

lim
s↗1

(−∆Hn)s
pu(x) = −

p − 1
2

1

π
n−1

2

Γ( p+n
2 )

Γ( p+1
2 )

ˆ
Sn−1
|〈∇u(x), ω〉|p−2〈D2u(x)ω,ω〉 dω.

The argument as in the proof of [4, Theorem 2.8] shows
ˆ
Sn−1
|〈∇u(x), ω〉|p−2〈D2u(x)ω,ω〉 dω = γp(∆Hn)p,

when ∇u(x) , 0, where

γp =

ˆ
Sn−1
|ωn|

p−2ω2
1 dω = π

n−1
2

Γ( p−1
2 )

Γ( p+n
2 )

. (5.19)

See [25, Lemma 2.1] for the computation of (5.19). This finishes the proof. �
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6. Conclusions

This paper presents three equivalent definitions of the fractional p-Laplacian (−∆Hn)s
p, 0 < s < 1,

p > 1, with normalizing constants, on hyperbolic spaces. The explicit values of the normalizing
constants are provided, which enable us to study the convergence of the fractional p-Laplacian to the
p-Laplacian on hyperbolic spaces as s→ 1−.
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Appendix

Auxiliary result

In this section, we recall an auxiliary result from [14] that helps proving Definition 1.1 in Section 3.

Lemma A.1. Let p > 1, r > 0, u ∈ C2
b(Hn), and x ∈ Hn. If p ∈ (1, 2

2−s ], assume ∇u(x) , 0 additionally.
If K : Hn → R is rotationally symmetric with respect to x, that is, K(ξ) = K(d(x, ξ)) for all ξ ∈ Hn, and´
Hn K(ξ)|ξ|α dξ < ∞, then∣∣∣∣∣∣P.V.

ˆ
d(x,ξ)<r

Φp(u(x) − u(ξ))K(d(x, ξ)) dξ

∣∣∣∣∣∣ ≤ C
ˆ

d(x,ξ)<r
d(x, ξ)α|K(d(x, ξ))| dξ

for some constant C = C(n, p, ‖u‖C2(Hn)) > 0, where α = 2p− 2 when p ∈ ( 2
2−s , 2) and α = p otherwise.

The cases p ∈ [2,∞), p ∈ (1, 2
2−s ], and p ∈ ( 2

2−s , 2) are proved in [14, Lemmas A.1–A.3],
respectively, for the case of Euclidean spaces. We omit the proof of Lemma A.1 because the same
proofs work in our framework.
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