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Abstract: We present three equivalent definitions of the fractional p-Laplacian (=Agn);, 0 < s < 1,
p > 1, with normalizing constants, on hyperbolic spaces. The explicit values of the constants enable
us to study the convergence of the fractional p-Laplacian to the p-Laplacianas s — 1°.
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1. Introduction

Operators of fractional-order have been extensively studied not only in Euclidean spaces [15], but
also on Riemannian manifolds [1,2,9, 13,19, 20,24], metric measure spaces [8, 10, 18,21,22], discrete
models [11], Lie groups [6, 12,16, 17], and Wiener spaces [6]. In Euclidean spaces, several equivalent
definitions of the fractional Laplacian exist [29] due to the simple structure of the spaces. In contrast
to the case of Euclidean spaces, not all definitions are equivalent in more general spaces. For instance,
one can study a regional type operator [24] or a spectral type operator [31] on Riemannian manifolds.
Moreover, some definitions, such as those relying on the Fourier transform, do not even work on
general Riemannian manifolds and metric measure spaces. Nonetheless, for specific Riemannian
manifolds such as hyperbolic spaces and spheres, several representations of the fractional Laplacian
have been established [2, 13] by means of the rich structure of these spaces.

The aim of this paper is two-fold. First, we extend representation formulas in [2] to the nonlinear
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regime on hyperbolic spaces. Specifically, we define the fractional p-Laplacian (-Ag»);, for n € N,
0 < s < 1,and p > 1 and provide two additional equivalent definitions via the heat semigroup and the
Caffarelli-Silvestre extension. Note that a definition based on the Fourier transform is not available due
to the nonlinearity of the operator. Second, we investigate the pointwise convergence of (—Agn),u(x)
as s — 17. For this purpose, the values of the normalizing constants in these definitions are provided
explicitly.

Let us define the fractional p-Laplacian on hyperbolic spaces as the pointwise integral
representation with singular kernels. Note that hyperbolic geometry is distinguished from Euclidean
geometry only when n > 2.

Definition 1.1. Letn > 2,0 < s < 1, and p > 1. The fractional p-Laplacian on H" is defined by

(= A )y u(x) = 5 p PV [ () = @ (w(x) = wENK, 5 p(d(x, €)) € (1.1)
W

with the kernel K, ; , given by

n—1

-0 z +sp n—1
n=a () e ).

sinh p
when n > 3 is odd and

a i h _ar % +sp — 1
q(n,s,p(p) =C i ( - ) (r_IZKmp (n r)) dr,
p  VrJcoshr —coshp \sinhr o )

when n > 2 is even, where

cn,s, - A n > - n—2+sp
PUareh Al T 2t

22T (2 e
_p N7/2 (=5) c 1 (n 1 (12)

and K, is the modified Bessel function of the second kind.

For the linear case p = 2, the pointwise integral representation with singular kernel is provided
in [2, Theorems 2.4 and 2.5] without constants. The main tool in [2] is the Fourier transform on
hyperbolic spaces, but it is not available in the nonlinear setting. Our definition is motivated by the
nonlinear extension of Bochner’s definition [3], which will be given in Theorem 1.3 below.

The normalizing constant C; in Definition 1.1 is carefully chosen so that the pointwise convergence

lsi}Ill(—AHn);,u(X) = (=Agn)pu(x)

holds (see Theorem 1.5). We emphasize that the normalizing constant plays a crucial role in some
contexts. For instance, it is used in the robust regularity theory (see [7,27]).

The singular kernel p™~*7 of the fractional p-Laplacian on Euclidean space R” is homogeneous of
degree —n — sp. This is a natural consequence of the invariance of the scale of the operator. However,
such homogeneity cannot be expected in the hyperbolic setting because hyperbolic geometry comes
into play. In fact, Proposition 1.2 below exhibits the behavior of the kernel %K, ; .

Here and in what follows, we write A(p) ~ B(p) as p — 0* (resp. p = o0) to mean that there exist
constants ¢, C > 0 and py > 0 such that cB(p) < A(p) < CB(p) for all p € (0, py) (resp. p € (pg, ©0)).
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Proposition 1.2. There exist constants c,C > 0 such that

+sp . n—1 —_ 1
cp_lT(smhp)_ 2 K¥ (n ) < Kosplp) < Cp~ =n (smhp) szp (n p)

2

for all p > 0. In particular,
(](n,s,p(p) ~p -

asp — 0" and

—1-32 _(n—1
7<n,s,p(p) ~p T e (n-1p

as p — oo.

We remark that the well-definedness of (— Agn)u(x) foru € CZ(H”) and x € H" (assuming also that
Vu(x) # 0if p € (1,5 S]) where CQ(H") denotes the space of bounded C>-functions on H", can be
checked by using Proposition 1.2. Indeed, the proof of [28, Lemma 3.6] works on hyperbolic spaces in
the exact same way, once we choose sufficiently small € > 0 so that K, ; ,(d(x, £)) ~ d(x, &)™ 7 in the
ball B.(x) = {£ € H" : d(x,&) < &} with the help of Proposition 1.2. This proves the finiteness of the
integral in (1.1) over B.(x). On the other hand, by using Proposition 1.2 again, we find a large R > 0
50 that %, , ,(d(x, &)) ~ d(x, &)™ 7 e~ "=D4x gutside Bg(x). This proves that the integral in (1.1) over
H" \ Bg(x) is estimated by

max{2p 2 1 ||u||L"°(H’)/ / B 2 e—(n—l)p Sinhn_lpdp dw,

which is finite. The finiteness of the remaining integral over Bg(x)\ B.(x) is obvious since the integrand
is bounded in a bounded region.

As the first main result of this paper, we provide an equivalent representation of the fractional
p-Laplacian on hyperbolic spaces via the heat semigroup. To this end, let {’*#"}, denote the heat
semigroup generated by the Laplacian Ag. on H". That is, for a given function f : H" — R we denote
by e"# [ f](x) the solution w(x, ¢) of the Cauchy problem
ow(x,t) — Agw(x,t) =0, xeH"t>0, (13)
w(x,0) = f(x), x € H". '

Theorem 1.3. Letn e N,0< s < 1,and p > 1. Letu € CZ(H")ander" Ifped,s 2 51, assume in
addition that Vu(x) # 0. The fractional p-Laplacian on H" is defined by

(=Agn)pu(x) = C; /0 e [, (u(x) = u- ))](X) o (1.4)

where
_p Nm/2 25
2y i)l

and @ ,(r) = |r|P~r.
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Note that the formula (1.4) on manifolds including hyperbolic spaces is given in [2, Section 3.1]
for the linear case p = 2, and that it was proposed as the definition of the fractional p-Laplacian on
Riemannian manifolds in [14, Section 8.2].

We now turn to another representation of the fractional p-Laplacian on H". We recall that the
fractional Laplacian on R" can be realized as a Dirichlet-to-Neumann map via the Caffarelli-Silvestre
extension [5]. Later, the article [31] relates the heat semigroup to this extension. Moreover, this relation
is extended to the nonlinear framework [14] in R". In this paper, we further investigate this relation on
hyperbolic spaces. Let us consider the extension problem

AU(x,y) +
U(x,0) = f(x), x € H".
We will show in Lemma 4.1 that the function U defined by

Ulx,y) = /H P, 8. f€) 0

where P is the Poisson kernel given in the same lemma, is a solution of (1.5). We define an extension
operator E , by E, ,[ f] := U. The following theorem is our next main result.

Theorem 1.4. Letn e N, 0 < s < 1, and p > 1. Letu € CZ(H”) and x € H". If p € (1, ﬁ], assume
Vu(x) # 0 additionally. Then

1—sp

U,(x,y)+ U, (x,y) =0, xeH"y>0,
Y6, y) + Uyy(x,y) y (15)

Es,p[q)p(u(x) - u())](x, )’)

yr
Cs . N
= S—; il{l(‘)lyl ‘P[)y(ES’p[(Dp(u(x) — M('))])(x, y),

—Agn)? = C;lim
(=Agn),u(x) 3y1\_‘0

where porrs

_p N2 2T

S 2red) =9l

The last result is the pointwise convergence of the fractional p-Laplacian on H" as s — 17. As

one can expect, the fractional p-Laplacian converges to the p-Laplacian as a limit. Recall that the
p-Laplacian on H" is defined by

(=Agn) u(x) = —=div(|Vu(x)P~>Vu(x)).
Theorem 1.5. Letn e N, p > 2, and u € Ci(H”). For x € H" such that Vu(x) # 0,

lsi/rlrll(_AH");M(x) = (=Agn) pu(x).

3

The pointwise convergence of the fractional p-Laplacian on Euclidean spaces is well known [4, 15,
25]. Recall that the proof uses Taylor’s theorem and the following computations:

o Sn—l
/ / K" dpdw = =R,
st JR Sp

R |Sn_1|
/ / K()p"" 'dpdw = ———RPIY, (1.6)
st Jo

pl—s)
R
/ / K(p)pﬁ+p+n—l d,O d(,() —
Snfl 0

n—1
5" REP0-9)
B+ p(l—ys)
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where § > 0 and K(p) = p™"* is the kernel for the fractional p-Laplacian on R". However, in our
framework we need the integrals in (1.6) with the kernel K and the volume element p"~! dp dw replaced
by K., and sinh"™! p dp dw, respectively. These integrals do not seem to be of a form that is easily
computed. Instead, we compute the limits of these integrals as s — 17, which are sufficient to establish
Theorem 1.5. This is still not straightforward, but can be obtained by using the asymptotic behavior of
modified Bessel functions.

The authors would like to thank the anonymous referees for their careful reading of the manuscript
and for providing helpful comments.

The paper is organized as follows. In Section 2 we recall the hyperboloid model and study the
modified Bessel function and its properties. Section 3 is devoted to the proofs of Proposition 1.2 and
Theorem 1.3. In Section 4, we relate the heat semigroup to the extension problem (1.5) and find the
Poisson formula. Using the Poisson formula and the representation of the fractional p-Laplacian, we
prove Theorem 1.4. Finally, we prove the pointwise convergence result, Theorem 1.5, in Section 5. An
auxiliary result can be found in Section 6.

2. Preliminaries

In this section, we recall the basics of the hyperbolic spaces and collect some facts about the
modified Bessel function.

2.1. The hyperbolic space

There are several models for hyperbolic spaces, but let us focus on the hyperboloid model in this
paper. The hyperboloid model is given by

H":{(xo,...,xn)ER"” :x(z)—x%—-~~—xﬁ:1,x0>0}

with the Lorentzian metric —dxj + dx? + - - - + dx2 in R"*'. The Lorentzian metric induces the natural
internal product

[x,&] = x0éo — X161 — -+ — X

on H". Moreover, the distance between two points x and ¢ is given by
d(x,&) = cosh™ ([x, £]).
Using the polar coordinates, H"” can also be realized as
H" = {x = (coshr,sinhrw) e R"™! : r>0,w e S"‘l}.
Then, the metric and the volume element are given by dr?+sinh® r dw? and sinh™™' r dr dw, respectively.

2.2. The modified Bessel function

The modified Bessel functions naturally appear in the study of hyperbolic geometry. In this paper,
they are used to describe the kernel of the fractional p-Laplacian and the Poisson kernel. For this
purpose, we recall the definition and some properties of the modified Bessel functions.
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We call the ordinary differential equation

d’y  dy
= p= — (PP +V)y =0
pde pdp =+ vy

the modified Bessel equation. The solutions are given by

[o0)

I,(p) = Z __ (p)2j+v and K,(p) = EM,

L4 I+ j+ 1) 2 2 sinwvr

and they are called the modified Bessel functions of the first and the second kind, respectively. Since
only K, appears in this work, we focus on the properties of K,. This function has the following integral
representation (see [30, 10.32.10]):

{1\ [ _.»
Kv(p)zi(zp) / e mw T dr. 2.1)
0

The asymptotic behavior of K, is given by

1 -v
K(p) ~ 5T0) (g) as p — 0%, forv > 0, and

- (2.2)
K, (o) ~ fge_p as p — oo.

Moreover, K, satisfies the following recurrence relations:
4 V 4 V
K, =-K,,——-K, and K.,=-K, +-K,. (2.3)
p p

We also recall that K, is increasing with respect to v > 0. For further properties of the modified Bessel
functions, the reader may consult the handbook [30].
In the sequel, functions of the form p™"K,(ap) with v € R and a > 0 will appear frequently. For
notational convenience, we define -
Koa(p) = p™ K, (ap). 2.4)

Then, it follows from (2.3)

~ 3Ky (F(0))) = af (0) F(0)Kys1.a(f(0)) (2.5)

for any differentiable function f : (0, c0) — (0, c0).
3. Nonlinear Bochner’s formula

The main goal of this section is to prove Theorem 1.3. One of the crucial tools in the proof is the
explicit formula for the heat kernel 4 on hyperbolic spaces, which is given in [23] as follows:

S T S
h(t,p) = ] emiw 3.1
)= (4m)1/2(sinhp) ¢« S
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whenn =2m+ 1 > 11is odd, and

h(t, p) =

— r2
3, -em [ =0y e re
r%e 1 dr (3.2)
P

2(2mym+1/2 sinh p y/cosh r — coshp

when n = 2m > 2 is even. Note that the Cauchy problem (1.3) has the unique solution

Wx, ) = /H it dCs, )1 @) 4 (3.3)

provided that f is a bounded continuous function. In other words, the heat semigroup e™#"
by (3.3).
Before proving Theorem 1.3, we provide a series of auxiliary lemmas required for its proof. In the

course of the argument, we also establish Proposition 1.2.

Lemma 3.1. Letv > 1/2,a > 1/2, and y > 0. For m € N U {0} define

Fo(r) = sinh r ( -0, )m Ev,a( [2 +y2),

y/coshr —coshp \sinhr

[f11s given

where E‘,ﬂ is the function given in (2.4). Then, F,, is integrable on (p, 00) and satisfies

_a (o) (o)
(Sil’lhpp)/ Fm(r) dr = / Fm+1(r) dr (34)
p P
forall p > 0 and m € N U {0}.
Proof. Note that for any j > 1
PV ICE: e (e +ey - 1)(@’ +e)?
r (er _ e—r)j - J(er _ e—r)j+l J (er _ e—r)j—l :

r

Therefore, all derivatives of ﬁ (and ) have the same asymptotic behavior as ¢™" (and re™,
respectively) as r — oco. Hence, F,,(r) ~ r™"~1/2e1/2=m=4r 35 r — oo, which shows that the function F,,
is integrable.

Using the integration by parts, we have

/OO Fp(r)dr = /oo 20, ( Vcosh r — coshp) ( —0: )m K. ( \/m) dr
P P

sinhr
) —(9 m+1 ~
= 2 sinh h r — cosh a K, \r?+y?*)dr.
/p sinh r y/cosh r — cos ’O(sinhr) : ( r y) r
Thus, the recurrence relation (3.4) follows by applying the Leibniz integral rule. m|

Lemma 3.2. Letv > 1/2, a > 1/2, and m € N U {0}. Then, the function

9. \" _
p+—>( p)Kv,a(p)

sinh p

is positive.

Mathematics in Engineering Volume 8, Issue 1, 70-97.



71

Proof. Using the formula (2.1) and change of variables, we have

— a [T __w? 1 1 _p2 df
Kv,a(p) = 2v+1/0 e at dr = 2(261)" ; me 4 PESYER

Thus, recalling the expression of the heat kernel (3.1) for odd-dimensional case, we obtain

% )'E, o) - / " h(t, p)
sinh p Kva tV+1/2

The conclusion follows from the positivity of the heat kernel 4. O

As a consequence of Lemma 3.2, we obtain the positivity of the kernel K, ; .
Corollary 3.3. Letn € N, 0 < s < 1, and p > 1. The kernel K, 5, is positive.

In the following lemma, we consider a class of functions more general than K, , to allow for a
broader applicability in later results. Note that Proposition 1.2 follows from Lemma 3.4 with v = ”2”’
and a = 5%, together with (2.2).

Lemma 3.4. Letv > 1/2,a>1/2, andy > 0. Let

-9, s
K(p) = ( . ) Kv,a(p),

sinh p

when n > 3 is odd and

n

i
) K, .(r)dr,

K(p) =

® sinh r -0,
sinh r

o \/cosh r —coshp

when n > 2 is even. Then, there exist ¢,C > 0 such that

cp™(sinh p)~T Ko w=1,,(ap) < K(p) < Cp~ *(sinhp) ™% Ko w1, (ap)

forall p > 0.
In order to prove Lemma 3.4, we need the following lemma.

Lemma 3.5. Leta > 0andv > —2—~. Then

sinh™/**! r al(v+ 51
r Kyp(ar) dr ~ \ﬁ—p sinh™**!(p)K,y 24, (ap)
p \/COSh r —coshp " 2 I'(v+ 5) "

as p — 0% up to dimensional constants.
Proof. By the change of variables r = pt, we have

0 1 r~ sinh ™/ r K,,/2+V(ar) sinh ™2 (p1) K, 24, (apt)

p  ~Jcoshr —coshpp™ sinh™*p K,,/2+V(ap) / \/cosh(pt) —coshp sinh™**'p Kipu(ap)
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We define for each p € (0, 1) a function f, by

pt™ sinh™**!(o1) K,,j24,(apt)
\/cosh(pt) —coshp sinh™*! o Kujoiv(ap)”

o) = te(1,00).

Note that

cosh(pt) — cosh P
02

1
E(I —1) and sinh(pf) > (sinhp)t.

Moreover, by [26, Eq (2.17)], we have

Kn/2+v(apt)

<t
Kn/2+v(ap)

Thus, f, is bounded from above by a function

—n—2v+1

N

which is integrable on (0, o). Indeed, by the change of variables > — 1 = 7, we obtain

12 1 (1 n-1 \/EF(H%
1 dr = —d:—B—,+ = f=————— < o,
/ 71 \/‘ A+~ s (2V 2 ) 2Tr+5)
where B is Euler’s Beta Integral (see [30, 5.12.3]).
For fixed t € (1, ), we have

J =

K apt
1, and —22 T 2+ (apl) N

K, 2 (ap)

cosh(pt) — coshp 1 @ -1 sinh(pt)
H ~ - 9

0? 2 sinh p

as p — 0*. Hence, we obtain lim,_, f,(f) = f(f). Therefore, the Lebesgue dominated convergence
theorem concludes the lemma. O

Proof of Lemma 3.4. We prove the odd-dimensional case n = 2m + 1 first. We already provided

a simple way to chase the asymptotic behavior of operator (sm‘;r)m at the former part of proof of

Lemma 3.1. By applying the similar argument one can shows that K(p) ~ p=2"*) as p — 0" and
K(p) ~ p‘%“’e‘(‘“’””O as p — oo. In other words, K(p) ~ p~"(sinh p)™K,,.,(ap) as p — 0" and p — oo
by (2.2). Since K is positive by Lemma 3.2 and continuous in (0, 00), there exist ¢, C > 0 such that

cp”"(sinh p) " K1, (ap) < K(p) < Cp™"(sinh p) ™" K,y (ap)

for all p > 0.
Let us consider the even-dimensional case n = 2m. By using the result for the odd-dimensional
case, we obtain for p sufficiently close to co that
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r

K(p) S C/ € r—%—ve—((l+m)r dl"
p \/sinh =L \/sinh e

2

(t+p)—%—ve—(a+m—l)(t+p) dr

1 /"" 1
<C
vsinhp Jo lsinh {
® 1
I
0 /sinh%

1 2m—1
< Cpive @y

< iy

and

n+2

[oe) _ar 1) ~
K(p) = / 2 sinh 7 y/cosh r — cosh p ( , ) K, (r)dr
sinh r

P
- - +
> C/ e’ \/Sinh r—p \/sinh ur—%—ve—(a+m+1)r dr
p 2 2
[ t
>c Sinhp/ sinh E(t + p)—%—ve—(a+m)(t+p) dr
0

1 2m-1 * . t 1,
> cp 2V TP / sinh 5(1 + 1) 2 e @Ml gy
0

1 —1
> cp 2 Ve @ TP

for some constants ¢, C > 0. In other words, K is comparable to p~(sinh p)_% K =) (ap)as p — oo.
-1

On the other hand, K(p) is comparable to p=2*~=1 or to p~"(sinhp)~ T K w1,,(ap), as p — 0%,
Indeed, by using the result for the odd-dimensional case once again, we infer that K(p) is comparable to

[Se]

sinh™"*! r

o \/cosh r —coshp

-V

r 'K, (ar)dr.

By Lemma 3.5, it is in turn comparable to

p~" sinh™* ! (p)K,,.,,(ap)
near p = 0*. Since K is positive and continuous in (0, o), the desired result follows. m]
Let us now prove Theorem 1.3 using the heat kernel and previous lemmas.

Proof of Theorem 1.3. Let € > 0 and define g.(x,&) = O, (u(x) — u(€))xaxs>s- The heat semigroup
associated to g.(x, -) is given by

Agn _ / 1 1 _aﬂ " —mzt—/f‘—f
R e et (eviort I ECSLS
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whenn =2m+ 1 > 3 1s odd and

2B g \mL oo re~% dr
e [g5(x, )](x) = / ( —~ ) 8s(x, &) d&,
w 2Q2mym+/2 \sinhp p yJcoshr—coshp

when n = 2m > 2 is even, where p = d(x, £). We will prove

Cns.p /d @, (u(x) — u(§)K,s,p(d(x,8)) dE = C2 /0 e g, (3.5)
(x,6)>e

in both cases.
Let us first consider the odd-dimensional case. We fix 6 > 0 and integrate the heat semigroup with
respect to the singular measure 1~'~7 dr over the interval (6, o) to obtain

C» / e [g.(x, )](x) 7
)

1 1 =0 \" e dr
=C T ) go(x, £) dE —
2/5 w 2m)" (4nt)!/? ((Sinhp) ¢ )g (x, &) dg A+

Note that this expression is well defined since |e"®# [g,(x, )](x)| < Cllull” ~! for some constant C > 0.
By applying Fubini’s theorem, we have

c /°° 1 1 =0y \" e
> |5 Ja @rym ()2 \\ sinh p

—L a _(9/) " i e
CECORE / /5 ((Sinhp) e )dfgs(x £) dé.

3+sp

2
Furthermore, since all partial derivatives of e with respect to p are integrable over the
interval (d, c0), the dominated convergence theorem shows that

LA (i e)m o
w Js sinh p
B smh Jol s

o2 +spo. .
Note that the function e~ 5" is integrable on (0, c0). Indeed, the formula (2.1) and the change
of variables show

(3.6)

(3.7)

(3.8)

o 2 +sp . W ”7
/ e A = P / U 4 = 22m) ' K, (0): (3.9)
0 0

Thus, (3.5) in the odd-dimensional case follows by combining (3.6)—(3.9) and passing to the limit
o\, 0.
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We next consider the even-dimensional case. Similarly to as in the odd-dimensional case, we obtain

C2 /oo tApn
_ (2m 1) m—1 _ﬁ
_c / / 320 ’( -a, ) /°° re %
? n 2Q2mymt1/2 \sinhp p  +Jcoshr —coshp

/ ( _ap )m l/oo(/‘x’e m— 1)2t_£t S-F;'l’dt) rdrgg(X,f)df '
2(27T)m+1/2 g \SInh p o \Js ycoshr — coshp

Moreover, we have from (2.1) and (2.5),

-0,\ =
)Klﬂ'p am-1 (7).
r 2 02

0 _em-p?, ,2 5+s 34sp ~ L4sp
e a dr = 202m = 1) 2 Ky 21 (1) = 42m = 1) 3
0

Thus, we deduce

)
(/‘2 / eZAHn
0

) ( ~ )m_l TR e
= Cp,s, . r ge\X,
P71 Ji \sinhp p  \mfcoshr —coshp

« sinh r -0, \" =
= Cp,s, Cl / / ( . ) K”is L(r) d”ga(X, é:) dé:a
" nJp  ym+Jcoshr — coshp \sinhr 7

where we used Lemma 3.1 (m — 1)-times with v = 122 ¢ = 2’” L and y = 0 in the last equality. This

2 9
proves (3.5) in the even-dimensional case.
On the one hand, the integral in the right-hand side of (3.5) converges to the Cauchy principal value

PV. / B, (u(x) — U)Ky (. £)) d

as £ \ 0. For the left-hand side of (3.5), on the other hand, we need to estimate

A= / e [, (u(x) — u(-))] (x) o7 / e [gu(x, )](X)—w-
0 0

Proceeding as above, we have

Al <

P.V. /d( : ¢)p(u(x) - u(f))q(n,s,p(d(x’ f)) df‘ .
x,&)<e

Thus, applying Lemma A.1 to K = K, s ,X(a(x.6)<e Yields

Al < / P Ko p(p) dy < / P Korsp(p) sinh"™! p dp, (3.10)
d(x,&)<e 0

where @ = 2p—2 when p € (2 ;2)and @ = pwhen p € (1, 5 2 5—1U[2, 00). Recall that K, ,, is positive by
Corollary 3.3. Moreover, Lemma 3.4 (or Proposition 1.2) shows that the function p* %, ,(0) sinh"~ ! Jol
is integrable near zero and hence the right-hand side of (3.10) converges to zero as € ~\, 0. Therefore,
the left-hand side of (3.5) converges to that of (1.1) as € \, 0. O
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4. Extension problem
In this section, we prove Theorem 1.4, which provides another representation of the fractional p-

Laplacian on hyperbolic spaces. We first find the Poisson formula and relate the heat semigroup to the
extension problem (1.5).

Lemmad4.1. Letn>2, s€(0,1), and p > 1. If f € C,(H"), then

Eo,[f1(x,y) i= / P8, 0)f€) o

is a solution of the extension problem (1.5), where P(p,y) is the Poisson kernel given by

_ap )2 Kmp =) (\/p +y)

P(p,y) = c4y”’( i
sinh p

when n > 3 odd and

n

P(p,))) — C4ysp/ sinh r ( —ar )2 EHW’%( Irz +y2) dr,
P

V7 yJcoshr — coshp \sinh 7 2

when n > 2 even, here, Em is the function given in (2.4) and

oo 1 (n—1)'”"
P\ 4

Moreover, E, ,[ f] has an alternative representation

ysp ® tAgn —é dt
ool AR

Proof. For each x € H" and y > 0, we define V(x,y) by the function given in the right-hand side
of (4.1). Then, we have

Esplf1Cx,y) =

4.1)

Vix,y) =

yP °° 2 dt
- h(t, d —,
sorm [, st T

where p = d(x, £). Recalling the expression (3.1) for the heat kernel A(z, p) and using (2.1), we obtain

) 1 ([ =8, \"
Vi) = 2wr(”’) o 2R @) ((smhp) )f (f)dftmp/z
_ y7 1 1 _ap " ® —mzz—/’zzl%’z 3w
-, 2spr<%><2n>m<4n>1/2(sinhp) (/0 ot dt)f ©d
- | Pacomse
Hn
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when n = 2m + 1 is odd. If n = 2m is even, then we use (3.2) instead of (3.1) to have

2 +y2

5+Y1} _@m-D* 1) t _a m 00 _
7 re” 4 dr
Vi) = — / / ( P) £ dedi
2”’ I'(3) g 2(27T)’”+” * \sinhp Jcosh r — coshp

5+rp (2m 1) t

Ray?
re” % dt
= r P) Hn(smhp) / / TP 0%

Moreover, using (2.1) we compute

/ e_(Z)n;l)ZI r2+}2 _7 dt - 2(27’}’1 - 1) K3+fp 2m 1 ( VI"Z + y2)
0
=402m -1 (‘f)z? (Vr2+?).

Therefore, we obtain

9, \" = 0K (VP4 )
v = [ (] ’ dr £(¢)dg
! g \Sinh p P v yJcosh r — cosh p

_ / P((x, £ 0f(©) d

in the even-dimensional case as well, where we used Lemma 3.1 in the last equality.

It only remains to prove that V solves the extension problem (1.5). Since the heat semigroup e#" [ f]

solves (1.3), V satisfies

X

2sPr( Yp) / at A [f (.X)) e 41 t 2 dr.

Using the integration by parts and the fact that |e"®# [ f](x)| < ||f]|z~, we obtain

e | i [f](x)e—"fffl”f]w -/ e 1000, (e T
T2y o Jo f

_ tA]H” _ 41 Y2 g pr rzp
_ wr(”’)/ f](x)( T (1+2)e r )dt.

Since
Spysp_l ” tAgn _ﬁ —1-32
YT oer@) J, € = f1(x)e 7 dr
sp+1
25P+1r( 2711 2) / N[ fl)e T ¥ di
and
sp(sp — 1)y*r=2 [*® ) e
o = T M [fl(e 772 dr
2 0
2sp+1 p/oo . _{Tz G
~ iy ' 2% dr
sp+1r(g)y ; e [ fl(x)e
sp+2

tAHn 4’
g ) €U0

Mathematics in Engineering Volume 8, Issue 1, 70-97.



84

one can easily compute

1-=s
AV(xY) + —LV,(x,y) + Viy(x,y) = 0

Finally, we prove V(x,0) = f(x). Indeed, since the heat kernel A(t, p) satisfies

/ h(t,d(x,£))d¢ = 1,
Hn

we obtain

ysp 00 2 dt
/Hn P(d(x,&),y)dé = xpp(&)/ (/n h(t,d(x,£)) dg ) e+ prn
)2 dr

= o ”’) 17

Now, fix € > 0 and find 6 > 0 such that | f(£) — f(x)| < € whenever d(x, £) < 6. Then

Pd(x, &), )If(E) = f)l A& + 2[| fll~ / P(d(x,£),y) d¢

d(x,£)<6

V(x,y) - f()] < /

d(x.£)<6

< &+ 2||fllz / P(d(x,8),y) d¢.
d(x,£)<6

Since P(p,y) — 0 uniformly for p > ¢ as y ™\, 0, we obtain

limsup [V(x,y) — f(x)] < e.
AANY)

Since & > 0 was arbitrary, this shows that V(x,0) = f(x). This concludes that V solves the extension
problem (1.5). O

Let us now prove Theorem 1.4 by using the Poisson formula in Lemma 4.1.

Proof of Theorem 1.4. Since ¢, ,C; = C3C4, by Lemma 4.1 it is enough to show

’P.V./ D, (u(x) — u(&)K(d(x,£)) df’ -0
Hn

asy \, 0, where

K(p):( - ap )Z(Kmpnl(p) K1+rpn1(\/p +y))

sinh p

when 7 is odd and

(9]

K(p) = — ( o ) (Kige 1) = Kz s (V12 +52))

p  VmyJcoshr —coshp \sinhr

when 7 is even.
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We first split the integral as follows:

/H Dp(u(x) — u(§))K(d(x,5)) d§|

<

+

/ ,(u(x) - u(E)K(d(x, £) dé
d(x,&)<1

=J1+ /o

/ @, (u(x) — u@)K(d(x, £) dé
d(x,£)>1

For J;, we apply Lemma A.1 to K)/4(x¢<1 to obtain
ns [ dmeriku e
d(x)<1

where @ = 2p — 2 when p € (ﬁ, 2)and a = p when p € (1, 5=] U [2, o). For J,, we have

o
IS Wlfotey [ iK1
d(x,£)>1
Therefore, the dominated convergence theorem concludes that J; + J, — 0 asy \ O. O
5. Pointwise convergence

This section is devoted to the proof of Theorem 1.5. As mentioned in Section 1, the limits of the
integrals

) R
Cinsip / Konsp(0) sinh"™ pdp, s / P"Kors.p(p) sinh™" pdp, (5.1)
R 0
and

R
Cros.p / PPPK, ., sinh ! pdp, B> 0, (5.2)
0

as s — 17, play a key role in the proof of Theorem 1.5. Here, we recall that the constant ¢, , is given
in (1.2).
In the following series of lemmas, we compute limits of the integrals in (5.1) and (5.2).

Lemma 5.1. Letn > 2 and p > 1. Forany R > 0,

lime,,, / K.s.p(0) sinh" ! pdp = 0.
s/'1 R

Proof. Let us first consider the case n = 2m + 1 with m > 1. Since lim, »(1 — $)[I'(=s)| = 1, we have
Cns,pC1 < C(1 = ) for some C = C(n, p) > 0. By using Corollary 3.3, we have

co (oY) _0 m .
0 < Cusp / Kus.p(0) sinh" ' pdp < (1 = 5) / sinh® p (—p) K, (p)dp. (5.3)
R R sinh p 7
Thus, it is enough to show that the right-hand side of (5.3) converges to zero as s — 17. We actually
prove the following stronger statement:

lim(1 — s)/ sinh"”"p( s ) Ky (0)dpo =0 foreacha > 0. 5.4)
s/1 R sinh p 7 ¢
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We use the induction on m. When m = 1, using (2.5) and the fact that K, is increasing with respect
to v > 0, we have

° -0,
/ sinh!*™ ( )K vy (0)dp = a / (sinh? p)p~ Sk s (ap)dp
R sinh p
<a / (sinh* p)p_T‘ K (ap) dp.
R
By (2.2), there exists M = M(p) > 1 such that
T
K (p) < \/je ? forp> M. (5.5)
Je
The inequalities p~ 5 max{p~ %,p =3 } and sinh p < €”, together with (5.5), yield

/ (sinh” p)p~ =n K3+p(ap) do
R

M/a ] »
< / (sinh” p) max { N } K 3 (ap)dp + \/7 / 177 dp.
R M/a

Note that the first integral in the right-hand side of the inequality above is a constant depending on a,
p, and R only. For the second integral, we estimate

T [T e 2 [nfaNt 2 [« a\:
- p zdp=— —(—) < — /—max (—) 1.
a Jua sp Na\M sp N a M

° -0,
: _ . 1+a l+€p —
£1;111(1 s) /R sinh ( e hp) Ko (p)dp =0,

which proves (5.4) form = 1.
Assume now that (5.4) is true for m and prove it for m + 1. Using integration by parts, we have

%) _6 m+1 ~
/ sinh™1% p (—’) K (p)dp
R sinh p 2

Thus, we arrive at

a m . m . o
= (m+a) / sinh™“ ! pcoshp| —==| Kiuw (0)dp —|sinh™“p|—2-| Kiuw (0)| -
sinh p z 4 sinh p 2T e

Note that by Lemma 3.4 and (2.2),

sinh™" p ( —=— "R (p) ~ p~ 7 (sinh p)'K 10y (ap) ~ p~' =2
sinhp] =~ 74 m+ 52

as p — oo. Thus, taking the limit lim, »;(1 — s) yields

_a m+1 ~
hm(l —5) / sinh™*!*¢ p( P ) Krw (p)dp
sinh p :

a m .
= hm(l — 5)(m + a) / sinh™*~ lpcoshp( h” ) Kiw (p) dp.
P :
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Therefore, by an inequality
coshp < cothRsinhp forp >R, (5.6)

Lemma 3.2, and the induction hypothesis, we conclude

I -9 m+1 ~
. _ s p.m+l+a P s
El}lll(l ) /R sinh P ( sinh p) KITP ap)dp

[eS] _a m .
< (m + a)(cothR) lim(1 — s)/ sinh”™ p (—p) Kus (p)dp =0.
/1 R sinh p 2

This finishes the proof of the lemma in the odd-dimensional case.
Let us next consider the even-dimensional cases n = 2m with m > 1. Similarly as in the odd-
dimensional case, since

0<cr, / Kep(0) sinh™ p dp
R

s =S} . h _6r m _
S (1 - s)/ Sinhzm_lp/ S ( - ) Ki:sp 21 (r)drdp,
R 0 \/coshr —coshp sinh r 22

the desired result will follow once we prove the following:

o sinh r ( -0,

lim(1 — inh 2 *a Kiw ()drdp =0
Sl}Ill( s)/R sin P sinhr) lTﬂ(r) rdap

o \/cosh r —coshp (5.7)

foreacha > 1/2.

If m = 1, then

« i « inh -0,
/ sinh3* / o ( ) Kisy (1) drdp
R p \/cosh r — cosh p sinhr
M/a L+sp
< a/ sinh?*“ / r~ 2 Ksy(ar)drdp
\/cosh r— coshp :

+ a/ sinh2* / 1%Kﬂ(ar) drdp =: J; + /5.
M/a \/coshr — coshp 2

For J,, we use (5.5) to obtain

J2<\/E/

smh2+“ /
Pt T e \/cosh r—coshp

drdp.

Since

« 1
/ dr = / dr
p \/cosh r —coshp \/_ r+p r=p

smh sinh 5

dr

1 / *©
dr = .
2sinhp Jo sinh é I'(3/4) \ sinhp
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and sinh” p < e*, we have

LA iz o T/ aaa\:
<tam™ Ve YT TG (M)

On the other hand, for J; we observe

Mja | « max{r‘# r2}
Ji<a / sinh§+“p - K.y (ar) drdp.
R \/cosh r —coshp

Since the inner integral is continuous and integrable on [R, M/a], J; is controlled by some constant
C = C(a, p,R) > 0. Therefore, we conclude lim, ~(1 — s)(J; + J2) = 0, which proves (5.7) form = 1.
Finally, let us assume that (5.7) holds for m and prove it for m + 1. By Lemma 3.1, we have

oy * sinh r —0, \"" =
sinnh 2 Y - Kisp a(r) drdp
R o \/cosh r —coshp sinh r 7

0 m+1 _a 0 i h _6}" " -
:/ sinh ™ +“,0( —7 ) e ( . ) Ky (r)drdp.
R sinhp/ /, \/cosh r —coshp \sinhr 2

Using integration by parts, (5.6), and Lemma 3.2 and then taking lim ~ (1 — s) as in the odd-
dimensional case, we deduce

+1+a

m+1 _
) Ku%’a(r) drdp

” inh —d,
hm(l —5) / sinh 2 Sl ( 0

p  4Jcoshr —coshp sinhr

o sinh r ( -0,

Kiw (r)drd
sinhr) IT’“(F) rep

< Clim(1 - S)/
s/ R p  yJcoshr — coshp

for some C = C(m, a, R). Therefore, the statement (5.7) for m + 1 follows by the induction hypothesis.
O

Lemma 5.2. Letn > 2 and p > 1. For any R > 0,
1 (5
n 1 (p+1)

Proof. Let us first consider the odd-dimensional case n = 2m + 1 with m > 1. One can easily check
that (5.8) is equivalent to

k -0, \" = P ) 2 1
lim(1 — s)/ o’ sinh? p| —2| Kiw (0)do="—[= r ptamt+ 1 (5.9)
s/1 0 sinh p z " p \m 2

by using lim; »(1 — s)|I'(=s)| = 1. Actually, we will prove the following statement, which is slightly
stronger than (5.9):

R
lim / T () sinh™ pdp = (5.8)
S 0

-5 \" _
hm(l—s)/ P 51nh2mp( P ) K (p)dp
sinh p 7

(5.10)
_ 2 ! (2) lﬂ(p+2m+1

- ) foreacha > 1.
p 2

a
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Let € € (0, 1), then there exists 6y € (0, 1) such that

sinh p
0

l-e<

<l+e¢ (5.11)

for all p € (0, 6p). Moreover, using the asymptotic behavior (2.2) of the modified Bessel function, for
each s € [0, 1] we find §; > O such that

3+sp

l-e_[3+sp p‘%% l+e_(3+sp (p)‘z
— < +5p S - .
2 F( 2 )(2) < Kip0)< = r( 2 )\2 (5.12)

for all p € (0,0;,). Furthermore, since {K,},¢[3/2,3+p)/2) 18 €quicontinuous, we may assume that 6, > 0
has been chosen continuously on s. Let us take 6 = dp A mingo,1;0; A R, then 6 = 6(e, p,R) > 0,
and (5.11) and (5.12) hold for all p € (0, 9).

We fix a > 1 and denote by G, ,, ,,..(0) the integrand in the left-hand side of (5.10). Then, |G, n..(0)|
is bounded by the function sup_ ., |G ,m..(p)|, which is independent of s and bounded on a compact
interval [6/a, R]. Thus, we have

R
hm(l - S) Gs,p,m,u(/)) dp = 07
S/l 6/a
and hence
R d/a
hm(l - S)/ Gs,p,m,a(p) dp = 111’1’1(1 - S)/ Gs,p,m,a(p) dp
s,/'1 0 s,/ 0

Let us now prove (5.10) by induction. When m = 1, we first use (2.5) to have

Gsp1.a(p) = ap” K 32w (ap) sinhp.

If p < d/a, then p < ap < 6 since a > 1. Thus, we utilize (5.11) and (5.12) to obtain

1+sp l+sp
2\ 2 _(3+ , 2\ 7 _(3+
(1 _ 8)2 = r sp pp(l—s)—l < Gspla(p) < (1 + 8)2 = r sp pp(l—s)—l‘
a 2 R a 2
This leads us to the inequalities
R o/a
lim(1=3) [ Gupa)dp =1lim(1 =) [ Guprutordo
S/ll 0 S/l 0
2\ (3 o/
2 a
<lim(1 - s5)(1+ (=] T[22 / pP1=9-1
s/1 a 2 0

=<1+g>21(%)2r(1’+3)
pl\a 2

R 1(2\F
lim(1 —s)/ G p1a(p)dp > (1 —8)2—(—) r(
/1 0 pl\a

Therefore, the statement (5.10) for m = 1 follows by taking € — 0.

and

p+3
|
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Assume now that (5.10) holds for m > 1. Then, a similar argument shows
R
hm(l - S)/ Gs,p,m+l,a(p) dP
s,/ 0

d/a m+1
: s 1a2m+2 _ap 7%
= lim(1 — ) Pf sinh™"™ p| —— Ko (p)dp
s/ 0 sinh p 2

o/a -0 m
Slim(l—S)(1+8)2'””/ PP (=0 )( . ) Kiw (0)dp,
s/ 0 sinh p 24

where nonnegativity of the integrands follows from Lemma 3.2. Using the integration by parts, (5.11),
and the induction hypothesis, we arrive at

R
lim(1 — ) / G pme1.a(p) dp

d/a _a m
< +&)*™ ' (p+2m+ 1)hm(1 — ) / prrm (—p) Ko (0)dp

1 + g)2m+! 6/a -0 \" _
ﬁ( +2m+1)hm(1—s)/ p?sinh® p| —2-| Kiw (p)dp
(1 —egpm sinh p z 4
p+l
e + g)¥m! 2m=L (2N T (p+2m+1
_w(p+2m+l)—a r\——F—
p+l
_(1+8)2’”+12’” 2 Tl" p+2m+3
 (1-&) pla 2 '

Similarly, we obtain

R 2m+1 Aym ]
) (1-¢) 2Mm (2 2 p+2m+3
Iim(1 — Gspmap)do > ————| - rn————|,
sl/'l( s)/o spm1.a(P) (I+&> p (a) ( 2

from which (5.10) for m + 1 follows by taking € — 0. The statement (5.10) has been proved for all
m € N, finishing the proof of (5.8) for the odd-dimensional case.

Let us next consider the even-dimensional case n = 2m with m > 1. In this case, (5.8) is
equivalent to

sinhr) Kige s () drdp

R .
h 4,
lim(1 — s) / oP sinh?"! p il (
s/'1 0

p  4Jcoshr —coshp

_\[2"“ 2 \F L (p2m
2 p \m-12 2 )

As in the odd-dimensional case, we will prove a stronger statement:

) E#,a(") drdp

R .
h 8,
lim(1 - 5) / 0P sinh?"! p il (

p  +Jcoshr —coshp \sinhr

+1
n2m 1 (2 2
= \/7 (—) F(p+ m) foreacha > 1/2.
2 p \a 2
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Recall that we have taken ¢ so that (5.11) and (5.12) hold for all p € (0,0). Letus fix a > 1/2. By

Lemma 3.5, for each s € [0, 1] we find 8, > 0 such that

(2+VP) 1+3p ) r_H%K_gJ,%(ar)
( - ) K3+sp (ap) < dl’

F(3””) p  +Jcoshr — coshp
(2+Sp) 1+3p
< (1 + 8) \/71“( 3+Sp) K%sp (ap)

(5.14)

for all p € (0,5,). Moreover, we may assume that 5, has been chosen continuously on s since
{K, }ve[3/2,3+p)/2) 18 equicontinuous. Let 5 =0A mineo 1 s, then 6 = (e, p,R,a) > 0 and (5.14)

holds for all p € (0, 9).

We denote by H; (o) the integrand in the left-hand side of (5.13). Then, the same argument as

in the odd-dimensional case shows

hm(l - S)/ Hspma(p) dp - hm(l - S)/ Hspma(p) dp

We argue by induction again to prove (5.13). If m = 1, then

Hs,p,l,a(p) = app Sil’lhp

o] 1 B
r
/p \/cosh r —coshp

Since a > 1/2, we have p < ¢ and ap < ¢ for p < %. Thus, by (5.11), (5.12), and (5.14), we obtain

1+s5,

7(2\ 7 [(2+s N
(1_3)3\£ (Z) r( 2 p)ﬂ”“ 9" < Hypa(p)
1+sp

<+ 8) \/7( ) 2 (2 + Sp)pp(l—s)—l.

(1_8)3\/§%(§)2r(p;3)<hm(l—s)/ Hq,1.4(0)dp
<(l+¢)} \/7 ( ) (p+3)’

from which we deduce (5.13) for m = 1 by taking € — 0.
Suppose that (5.13) is true for m > 1. Then, by (5.11), Lemmas 3.1 and 3.2, we have

Therefore, we have

R
hm(l - S)/ Hs,p,m+l,a(p) dP
S/Il 0

% 0 . h —(9 m+1 _
— lim(1 — ) / P sinh?™*! / S ( % ) Kiw (P drdp
/1 0 p +Jcoshr —coshp sinh r 27

% ® sinh r -0
< lim(1 = $)(1 + &)*" prIm(_ g / L
sl}rll( s)(1+¢&) ; P (=0,) L Jeos (Smhr

) Kis (r)drdp.
hr —coshp :
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Using the integration by parts, (5.11), and the induction hypothesis, we arrive at

R
lim(1 - s) / Hy et a0) dp
S/ll 0

= (1 +&)*"(p +2m)

x lim(1 - s) / " pprnt sinh 7 ( 0 ) Kiey (r)drdp
! 0 p  4Jcoshr—coshp \sinhr 2
)
(1+e)*" ) %
< — —
= (1= gpnl (p +2m) El;r}(l 5) ; H; pma(p)dp

C (L+e™ \/Ezm 2 "T“r D2m+2
S (A-e1\2pla 2 '

The inequality

R 2 =
‘ (1_8)m \/;2’" 2\ 2 p+2m+2
lim(1 — Hypmira(P)dp > ———=\[5=—|>| T
yl/nll( S)/O pam+1.a(P) dp (1+¢&?m1\2 p \a 2

can be obtained in the same way. Thus, we conclude that (5.13) for m + 1 holds by taking € — 0. This
finishes the proof for the even-dimensional case. m|

Lemma 5.3. Letn>2and p > 1. Forany R > 0 and 8 > 0,

R
1i/n} Cros.p / " PK, 5. (o) sinh" ! pdp = 0. (5.15)
N 0

Proof. We proceed as in the previous lemma to prove (5.15). When n = 2m + 1 with m > 1, we show

: : B i 12 _aﬂ "
lim(1 —s) [ p"#sinh™ p|—2] Kus (0)dp=0 foreacha> 1
s/1 0 sinh p 2

by induction. Indeed, for € € (0, 1) let 6 > O be the constant given in the proof of Lemma 5.2. Then,
by using (5.11) and (5.12) we prove

R
lim(1 - s)/ 0°Gsp14(p) dp
s/1 0

1+sp

2 2 3 + d/a '
<lim(1 - s)(1 + &) (—) r( SP) / =1 g,
s/ a 0

2
1+sp
2\ 7 1 p(1-s5)+p
lim(1 - )1+ e[ 2)  r[2E5P (Q) -0
s/ a 2 p(l—=s)+pB\a

for the case m = 1, where Gy, ., is the function defined in the proof of Lemma 5.2. Moreover, one
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can follow the steps in the proof of Lemma 5.2 to obtain

(1 _ 8)2m+1

R
<lim(1 - ) / PG, pme1a(p) dp
s,/1 0

< (1 +8)2m+1
(1 - e

R
(p+ B+ 2m+ Dlim(1 - 5) / G ymalo) dp
N O

R
(p+B+2m+1) li;rll(l -5) / PG pma(p) dp,
s 0

which proves the induction step.
The even-dimensional case n = 2m with m > 1 can also be verified by proving

® sinh r -0,
sinh r

R m
lim(1 - s) / PP sinh® ! p ) Ky (1) drdo =0
s/ 0 5

o \/cosh r —coshp

for each a > 1/2. This can be proved by the induction as in the previous lemma, so we omit the

proof. O

Let us provide the proof of Theorem 1.5 by using the pointwise representation (1.1) and Taylor’s
theorem, and gathering pieces of limits in the preceding lemmas.

Proof of Theorem 1.5. Let u € C;(H") and let x € H" be such that Vu(x) # 0. Let R > 0, then by
Lemma 5.1 we first have

Cn,s,p / O, (u(x) = u(€)Ks,p(d(x, €)) d€| < Cpsp / K.s.p(p) sinh"' pdp — 0
d(x&)>R R

as s — 17. Thus, by the pointwise representation (1.1) of the fractional p-Laplacian, we obtain

lim(=Ag)yu(x) = lim .., P.V. / , (u(x) — U)K p(d(x, £)) dE. (5.16)

d(x,&)<R

Let v = exp;' € be a tangent vector in 7,H" and denote by 7.& the point exp (—v) € H". Since
(](n,s,p(d(x’ ‘f)) = (](n,s,p(d(xa Txf))7 we write

/ @, (u(x) — u(&) K5 p(d(x, £)) dE
d(x,&)<R

1
=5 / lu(x) = u@)P?Qux) — u(€) — w(T,E) K p(d(x, £)) dé
d(x,&)<R
1
t5 /d (Iu(x) — u(TEP? = |u(x) - u(f)l”) (u(x) = w(TENT, s p(d(x, £)) d€
(x.&)<R
= Ji+ /.

By Taylor’s theorem, we have
u(x) = u(€) = =(Vu(x),v) + OVP),  u(x) = u(T:&) = (Vu(x), v) + O(vP),
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and
2u(x) — u(€) — u(T-£) = ~(D*u(x)v,v) + O(v).

If we write w = v/|v|, then
u(x) = u@)P? = WP 2KVulx), w)l’ + O’ ™).
Thus, we obtain
Ju(x) = w(@)|P>u(x) — w(é) = u(T:£)) = =P KVu(x), )" D*u(x)w, w) + O(v|"*).

Therefore, we deduce

1 R
Jl = —E / / pp|<VM(_x)’ w)lp_2<D2M(X)(,U, (,L)>(]<n7s’p(p) Sinhn_l P d(i) dp
0 Sn—l

| (5.17)
*3 / O®d(x, &)P Ky p(d(x, ) dE.
d(x.£)<R
For J,, since
(T>&) — u(0)P > — |u(x) — u@P~?
= (p — 2" (Vu(x), w){Vu(x), o)’ D*u(x)w, w) + O(vI"),
we have
(1(T2) = w2 = lu(x) — W@ ) (w(x) - u(T.£))
= —(p = DVPPKVu(x), o) D*u(x)w, w) + O(|"*).
Thus, we obtain
p-2 [*
Jy = ———— / / PP IVu(x), )P D*u(x)w, w), 5., (p) sinh" ™" p dw dp
2 0 Sn—]
1 (5.18)
+3 / O®d(x, &)P K p(d(x, £)) dE.
d(x,£)<R
Combining (5.16)—(5.18), and using Lemmas 5.2 and 5.3, we arrive at
. s _ p— 11 (P_"’”) p-2 2
El;ﬁl(_AH" )pit(x) = —— 7 (D) Jo K(Vu(x), o)’ (D" u(x)w, w) dw.
The argument as in the proof of [4, Theorem 2.8] shows
/ 1 KVu(x), o) D*u(x)w, w) dw = ¥, (D),
S
when Vu(x) # 0, where
) / lwnl’ 2w} dw = 77 [(%) (5.19)
T Jon ST gy |
See [25, Lemma 2.1] for the computation of (5.19). This finishes the proof. O
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6. Conclusions

This paper presents three equivalent definitions of the fractional p-Laplacian (=Ag»),, 0 <'s < 1,
p > 1, with normalizing constants, on hyperbolic spaces. The explicit values of the normalizing
constants are provided, which enable us to study the convergence of the fractional p-Laplacian to the
p-Laplacian on hyperbolic spaces as s — 1.
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Appendix

Auxiliary result

In this section, we recall an auxiliary result from [14] that helps proving Definition 1.1 in Section 3.

LemmaA.l. Letp>1,r>0,uc Ci(H”), and x e H". If p € (1, 2%], assume Vu(x) # 0 additionally.

N

IfK : H" — R is rotationally symmetric with respect to x, that is, K(&) = K(d(x, £)) for all ¢ € H", and
Jin K(ONEI" dE < oo, then

‘P-V-/ O, (u(x) — u(€))K(d(x,£)) dg| < C/ d(x, £)*|K(d(x, ) d&
d(x,&)<r d(x,&)<r

for some constant C = C(n, p, ||ullc2@n)) > 0, where « = 2p —2 when p € (%, 2) and a = p otherwise.

The cases p € [2,0), p € (l,z%x], and p € (2%S,2) are proved in [14, Lemmas A.1-A.3],

respectively, for the case of Euclidean spaces. We omit the proof of Lemma A.1 because the same
proofs work in our framework.
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