We study optimization problems for partially hinged rectangular plates, modeling bridge roadways, in the presence of real and artificial obstacles. Real obstacles represent structural constraints to avoid, while artificial ones are introduced to enhance stability. For the former, aiming to prevent collisions, we set up a worst-case optimization problem in which we minimize the amplitude of oscillations with respect to the density distribution; for the latter, aiming to improve the torsional stability, we minimize, with respect to the obstacles, the maximum of a gap function quantifying the displacement between the long edges of the plate. For both problems, existence results are provided, along with a discussion about qualitative properties of optimal density distributions and obstacles.
Citation: Elvise Berchio, Filomena Feo, Antonio Giuseppe Grimaldi. Some obstacle problems for partially hinged plates and related optimization issues[J]. Mathematics in Engineering, 2026, 8(1): 43-69. doi: 10.3934/mine.2026002
We study optimization problems for partially hinged rectangular plates, modeling bridge roadways, in the presence of real and artificial obstacles. Real obstacles represent structural constraints to avoid, while artificial ones are introduced to enhance stability. For the former, aiming to prevent collisions, we set up a worst-case optimization problem in which we minimize the amplitude of oscillations with respect to the density distribution; for the latter, aiming to improve the torsional stability, we minimize, with respect to the obstacles, the maximum of a gap function quantifying the displacement between the long edges of the plate. For both problems, existence results are provided, along with a discussion about qualitative properties of optimal density distributions and obstacles.
| [1] |
D. R. Adams, S. Lenhart, J. Yong, Optimal control of the obstacle for an elliptic variational inequality, Appl. Math. Optim., 38 (1998), 121–140. https://doi.org/10.1007/s002459900085 doi: 10.1007/s002459900085
|
| [2] | D. R. Adams, V. Hrynkiv, S. Lenhart, Optimal control of a biharmonic obstacle problem, In: A. Laptev, Around the research of Vladimir Maz'ya III, International Mathematical Series, Springer, 13 (2010), 1–24. https://doi.org/10.1007/978-1-4419-1345-6_1 |
| [3] |
G. Aleksanyan, Regularity of the free boundary in the biharmonic obstacle problem, Calc. Var., 58 (2019), 206. https://doi.org/10.1007/s00526-019-1638-5 doi: 10.1007/s00526-019-1638-5
|
| [4] |
P. Antunes, F. Gazzola, Some solutions of minimaxmax problems for the torsional displacements of rectangular plates, ZAMM, 98 (2018), 1974–1991. https://doi.org/10.1002/zamm.201800065 doi: 10.1002/zamm.201800065
|
| [5] |
E. Berchio, D. Buoso, F. Gazzola, On the variation of longitudinal and torsional frequencies in a partially hinged rectangular plate, ESAIM: COCV, 24 (2018), 63–87. https://doi.org/10.1051/cocv/2016076 doi: 10.1051/cocv/2016076
|
| [6] |
E. Berchio, D. Buoso, F. Gazzola, D. Zucco, A minimaxmax problem for improving the torsional stability of rectangular plates, J. Optim. Theory Appl., 177 (2018), 64–92. https://doi.org/10.1007/s10957-018-1261-1 doi: 10.1007/s10957-018-1261-1
|
| [7] |
E. Berchio, A. Falocchi, Maximizing the ratio of eigenvalues of non-homogeneous partially hinged plates, J. Spectr. Theory, 11 (2021), 743–780. https://doi.org/10.4171/JST/355 doi: 10.4171/JST/355
|
| [8] |
E. Berchio, A. Falocchi, A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions, Ann. Mat., 200 (2021), 1651–1681. https://doi.org/10.1007/s10231-020-01054-6 doi: 10.1007/s10231-020-01054-6
|
| [9] | E. Berchio, A. Falocchi, Some remarks about a worst-case problem for the torsional response of a plate, In: M. Garrione, F. Gazzola, Interactions between elasticity and fluid mechanics, EMS press, 2022, 77–90. https://doi.org/10.4171/esiam/3/3 |
| [10] |
E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, Nonlin. Anal., 28 (2016), 91–125. https://doi.org/10.1016/j.nonrwa.2015.09.005 doi: 10.1016/j.nonrwa.2015.09.005
|
| [11] | H. Brezis, G. Stampacchia, Remarks on some fourth order variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2 (1977), 363–371. |
| [12] | L. A. Caffarelli, A. Friedman, The obstacle problem for the biharmonic operator, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (1979), 151–184. |
| [13] | L. A. Caffarelli, A. Friedman, A. Torelli, The free boundary for a fourth order variational inequality, Illinois J. Math., 25 (1981), 402–422. |
| [14] | L.A. Caffarelli, A. Friedman, A. Torelli, The two-obstacle problem for the biharmonic operator, Pacific J. Math., 103 (1982), 325–335. |
| [15] |
S. Chanillo, C.E. Kenig, Weak uniqueness and partial regularity for the composite membrane problem, J. Eur. Math. Soc., 10 (2008), 705–737. https://doi.org/10.4171/JEMS/127 doi: 10.4171/JEMS/127
|
| [16] |
S. J. Cox, J. R. McLaughlin, Extremal eigenvalue problems for composite membranes, I, Appl. Math. Optim., 22 (1990), 153–167. https://doi.org/10.1007/BF01447325 doi: 10.1007/BF01447325
|
| [17] |
S. J. Cox, J. R. McLaughlin, Extremal eigenvalue problems for composite membranes, Ⅱ, Appl. Math. Optim., 22 (1990), 169–187. https://doi.org/10.1007/BF01447326 doi: 10.1007/BF01447326
|
| [18] |
F. Colasuonno, E. Vecchi, Symmetry and rigidity for the hinged composite plate problem, J. Differ. Equations, 266 (2019), 4901–4924. https://doi.org/10.1016/j.jde.2018.10.011 doi: 10.1016/j.jde.2018.10.011
|
| [19] |
D. Danielli, A. H. Ali, A survey on obstacle-type problems for fourth order elliptic operators, Matematica Contemporanea, 52 (2022), 87–118. https://doi.org/10.21711/231766362022/rmc526 doi: 10.21711/231766362022/rmc526
|
| [20] |
D. Danielli, A. H. Ali, A two phase boundary obstacle-type problem for the bi-Laplacian, Nonlinear Anal., 214 (2022), 112583. https://doi.org/10.1016/j.na.2021.112583 doi: 10.1016/j.na.2021.112583
|
| [21] |
D. Di Donato, D. Mugnai, On a highly nonlinear self-obstacle optimal control problem, Appl. Math. Optim., 72 (2015), 261–290. https://doi.org/10.1007/s00245-014-9279-8 doi: 10.1007/s00245-014-9279-8
|
| [22] |
S. Dipierro, A. Karakhanyan, E. Valdinoci, A free boundary problem driven by the biharmonic operator, Pure Appl. Anal., 2 (2020), 875–942. https://doi.org/10.2140/paa.2020.2.875 doi: 10.2140/paa.2020.2.875
|
| [23] |
A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Cont. Dyn. Syst., 35 (2015), 5879–5908. https://doi.org/10.3934/dcds.2015.35.5879 doi: 10.3934/dcds.2015.35.5879
|
| [24] |
J. Frehse, Zum differenzierberkeitsproblem bei variationsungleichungen höherer ordnung, Abh. Math. Semin. Univ. Hambg., 36 (1971), 140–149. https://doi.org/10.1007/BF02995917 doi: 10.1007/BF02995917
|
| [25] |
J. Frehse, On the regularity of the solution of the biharmonic variational inequality, Manuscripta Math., 9 (1973), 91–103. https://doi.org/10.1007/BF01320669 doi: 10.1007/BF01320669
|
| [26] | F. Gazzola, Mathematical models for suspension bridges, Nonlinear Structural Instability, Vol. 15, Springer, 2015. https://doi.org/10.1007/978-3-319-15434-3 |
| [27] | F. Gazzola, H. C. Grunau, G. Sweers, Polyharmonic boundary value problems, Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Springer, 2020. https://doi.org/10.1007/978-3-642-12245-3 |
| [28] |
R. Ghanem, I. Nouri, Optimal control of high-order elliptic obstacle problem, Appl. Math. Optim., 76 (2017), 465–500. https://doi.org/10.1007/s00245-016-9358-0 doi: 10.1007/s00245-016-9358-0
|
| [29] |
H. C. Grunau, M. Müller, A biharmonic analogue of the Alt-Caffarelli problem, Math. Ann., 390 (2024), 5259–5297. https://doi.org/10.1007/s00208-024-02883-z doi: 10.1007/s00208-024-02883-z
|
| [30] | J. Lovíšek, Duality in the obstacle and unilateral problem for the biharmonic operator, Apl. Mat., 26 (1981), 291–303. |
| [31] |
M. Novaga, S. Okabe, The two-obstacle problem for the parabolic biharmonic equation, Nonlinear Anal., 136 (2016), 215–233. https://doi.org/10.1016/j.na.2016.02.004 doi: 10.1016/j.na.2016.02.004
|
| [32] | B. Schild, A regularity result for polyharmonic variational inequalities with thin obstacles, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (1984), 87–122. |
| [33] | B. Schild, On the coincidence set in biharmonic variational inequalities with thin obstacles, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (1986), 559–616. |
| [34] |
E. Vecchi, Symmetry and rigidity results for composite membranes and plates, Bruno Pini Math. Anal. Semin., 11 (2020), 157–174. https://doi.org/10.6092/issn.2240-2829/10587 doi: 10.6092/issn.2240-2829/10587
|