We provide sharp boundary regularity estimates for solutions to elliptic equations driven by an integro-differential operator obtained as the sum of a Laplacian with a nonlocal operator generalizing a fractional Laplacian. Our approach makes use of weighted Hölder spaces as well as regularity estimates for the Laplacian in this context and a fixed-point argument. We show the optimality of the obtained estimates by means of a counterexample that we have striven to keep as explicit as possible.
Citation: Nicola Abatangelo, Elisa Affili, Matteo Cozzi. Optimal boundary regularity for mixed local and nonlocal equations[J]. Mathematics in Engineering, 2026, 8(1): 1-42. doi: 10.3934/mine.2026001
We provide sharp boundary regularity estimates for solutions to elliptic equations driven by an integro-differential operator obtained as the sum of a Laplacian with a nonlocal operator generalizing a fractional Laplacian. Our approach makes use of weighted Hölder spaces as well as regularity estimates for the Laplacian in this context and a fixed-point argument. We show the optimality of the obtained estimates by means of a counterexample that we have striven to keep as explicit as possible.
| [1] |
N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal., 53 (2021), 3577–3601. https://doi.org/10.1137/20M1342641 doi: 10.1137/20M1342641
|
| [2] | N, Abatangelo, S. Dipierro, E. Valdinoci, A gentle invitation to the fractional world, Vol. 176, Springer, 2025. https://doi.org/10.1007/978-3-032-02952-2 |
| [3] |
N. Abatangelo, X. Ros-Oton, Obstacle problems for integro-differential operators: higher regularity of free boundaries, Adv. Math., 360 (2020), 106931. https://doi.org/10.1016/j.aim.2019.106931 doi: 10.1016/j.aim.2019.106931
|
| [4] | N. Abatangelo, E. Valdinoci, Getting acquainted with the fractional Laplacian, In: S. Dipierro, Contemporary research in elliptic PDEs and related topics, Springer INdAM Series, Springer, 33 (2019), 1–105. https://doi.org/10.1007/978-3-030-18921-1_1 |
| [5] |
C.A. Antonini, M. Cozzi, Global gradient regularity and a Hopf lemma for quasilinear operators of mixed local-nonlocal type, J. Differ. Equations, 425 (2025), 342–382. https://doi.org/10.1016/j.jde.2025.01.030 doi: 10.1016/j.jde.2025.01.030
|
| [6] |
G. Barles, E. Chasseigne, C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc., 13 (2011), 1–26. https://doi.org/10.4171/JEMS/242 doi: 10.4171/JEMS/242
|
| [7] |
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differ. Equations, 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908
|
| [8] |
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math., 150 (2023), 405–448. https://doi.org/10.1007/s11854-023-0272-5 doi: 10.1007/s11854-023-0272-5
|
| [9] |
A. Biswas, M. Modasiya, Mixed local-nonlocal operators: maximum principles, eigenvalue problems and their applications, J. Anal. Math., 156 (2025), 47–81. https://doi.org/10.1007/s11854-025-0375-2 doi: 10.1007/s11854-025-0375-2
|
| [10] |
A. Biswas, M. Modasiya, A. Sen, Boundary regularity of mixed local-nonlocal operators and its application, Ann. Mat., 202 (2023), 679–710. https://doi.org/10.1007/s10231-022-01256-0 doi: 10.1007/s10231-022-01256-0
|
| [11] | C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, Vol. 20, Springer, 2016. https://doi.org/10.1007/978-3-319-28739-3 |
| [12] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
|
| [13] | N. Garofalo, Fractional thoughts, In: New developments in the analysis of nonlocal operators, American Mathematical Soc., 2019. |
| [14] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Vol. 224, Springer-Verlag, Berlin, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
| [15] | A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser Basel, 1995. |
| [16] |
X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275–302. https://doi.org/10.1016/j.matpur.2013.06.003 doi: 10.1016/j.matpur.2013.06.003
|
| [17] |
X. Su, E. Valdinoci, Y. Wei, J. Zhang, Regularity results for solutions of mixed local and nonlocal elliptic equations, Math. Z., 302 (2022), 1855–1878. https://doi.org/10.1007/s00209-022-03132-2 doi: 10.1007/s00209-022-03132-2
|
| [18] |
X. Su, E. Valdinoci, Y. Wei, J. Zhang, Multiple solutions for mixed local and nonlocal elliptic equations, Math. Z., 308 (2024), 40. https://doi.org/10.1007/s00209-024-03599-1 doi: 10.1007/s00209-024-03599-1
|
| [19] |
X. Su, E. Valdinoci, Y. Wei, J. Zhang, On some regularity properties of mixed local and nonlocal elliptic equations, J. Differ. Equations, 416 (2025), 576–613. https://doi.org/10.1016/j.jde.2024.10.003 doi: 10.1016/j.jde.2024.10.003
|