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Abstract: We provide sharp boundary regularity estimates for solutions to elliptic equations driven
by an integro-differential operator obtained as the sum of a Laplacian with a nonlocal operator
generalizing a fractional Laplacian. Our approach makes use of weighted Hölder spaces as well
as regularity estimates for the Laplacian in this context and a fixed-point argument. We show the
optimality of the obtained estimates by means of a counterexample that we have striven to keep as
explicit as possible.
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1. Introduction

Let n ∈ N and Ω ⊂ Rn be a bounded open set with Lipschitz boundary. We are interested in the
boundary regularity of equations of the form

p (−∆)u + q Lku + g · Du = f in Ω, (1.1)

https://www.aimspress.com/journal/mine
https://dx.doi.org/10.3934/mine.2026001
www.aimspress.com/mine/article/6732/special-articles


2

where p, q, f : Ω → R, g : Ω → Rn are measurable functions and Lk stands for the integro-differential
nonlocal operator

Lku(x) B p.v.
∫
Rn

(
u(x) − u(x + z)

)
k(z) dz = lim

ε→0+

∫
Rn\Bε

(
u(x) − u(x + z)

)
k(z) dz (1.2)

determined by a measurable kernel k : Rn → R satisfying

k(z) = k(−z) and
κ1

|z|n+2s ≤ k(z) ≤
κ2

|z|n+2s for a.e. z ∈ Rn, (1.3)

for some exponent s ∈ (0, 1) and some constants κ2 ≥ κ1 > 0. The presence of the nonlocal term makes
a (homogeneous) Dirichlet problem associated to (1.1) look like

p (−∆)u + q Lku + g · Du = f in Ω,

u = 0 on ∂Ω,

u = 0 in Rn \Ω.

(1.4)

In fact, the prescription of the values attained by the solution u in Rn \Ω is of the utmost importance to
make sense of the definition of Lku in (1.2), whilst the prescribed values on ∂Ω are immaterial for Lk as
it does not see negligible sets, being an integral operator. Conversely, the boundary conditions on ∂Ω

are somewhat required for the uniqueness of a solution by the term −∆u, which in turn is not affected
by the conditions on Rn \ Ω. A more detailed analysis of these interactions has been carried out by
two of the authors in [1], although here we are only interested in the homogeneous boundary values
as in (1.4). It is however important to underline that the boundary behavior of a solution to (1.4) is
strongly affected by the double nature of the left-hand side of (1.1), i.e., by the presence of both a
Laplacian and a nonlocal operator.

Indeed, the equation in (1.1) falls into the category of mixed local-nonlocal equations, which are
equations driven by an operator obtained by superposing a local differential operator with a nonlocal
integro-differential one. The most canonical example of an operator of this sort is obtained by
considering the kernel k in (1.2) and (1.3) to be given by k(z) = |z|−n−2s, in which case Lk reduces
to (a multiple of) the fractional Laplacian (−∆)s, for which we refer to [2, 4, 11–13]. In this spirit,
one of the simplest examples of mixed local-nonlocal equation, which is also covered by the structure
of (1.4), is given by 

−∆u + (−∆)su = f in Ω,

u = 0 on ∂Ω,

u = 0 in Rn \Ω,

(1.5)

which has lately received a great deal of attention. Without claiming to be exhaustive, we give below a
brief account of the known regularity results on (1.5) which are more closely related to our scopes.

From the broad results by Barles, Chasseigne, and Imbert [6], which are actually operating in a
fully nonlinear setting, it is possible to deduce global C0,α regularity of solutions. Biagi et al. [7] laid
out the foundations of the elliptic theory for (1.5), providing existence and uniqueness of weak and
classical solutions, maximum principles, interior Sobolev regularity, and Lipschitz regularity up to the
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boundary: In some more detail, they showed (see [7, Theorem 1.6]) that the (unique) solution to (1.5)
satisfies the estimate

‖u‖C0,1(Ω) ≤ C‖ f ‖L∞(Ω) if f is smooth enough and Ω is strictly convex.

The same authors in [8, Theorem 2.7] improved the boundary regularity in C1,1 bounded domains,
showing that

if f ∈ L∞(Ω), then there exists β ∈ (0, 1) such that u ∈ C1,β(Ω). (1.6)

Additionally, [8, Theorem B.1] gives that

if s ∈
(
0,

1
2

)
, β ∈ (0, 1 − 2s), and f ∈ Cβ(Ω), then u ∈ C2,β(Ω). (1.7)

Biswas, Modasiya, and Sen [10, Theorem 1.3] generalized (1.6) to a larger context, replacing the
fractional Laplacian (−∆)s with a nonlocal term Lk (handling a class of operators which strictly contains
the one we are considering with (1.2) and (1.3)) and allowing for gradient terms in the equation. In a
series of works, Su et al. [17–19] looked at some semilinear counterpart of (1.5), reaching the following
results in the linear case: By [19, Theorem 1.3] one has

if f ∈ L∞(Ω), then u ∈ C1,β(Ω) for every β ∈ (0,min{1, 2 − 2s}), (1.8)

while, by [19, Theorem 1.6],

if s ∈
(
0,

1
2

)
, β ∈ (0, 1 − 2s], and f ∈ Cβ(Ω), then u ∈ C2,β(Ω). (1.9)

In this way, (1.8) improves (1.6) by quantifying the regularity exponent β and (1.9) improves (1.7) by
including the case β = 1 − 2s.

At a first glance, the above results might sound disappointing, especially in the case s > 1/2 when
they are far from the full Schauder regularity, not even reaching C2 up to the boundary: This might look
inconsistent with the fact that Eqs (1.1) and (1.5) are led by the Laplacian to leading order. Although
this intuition is heuristically correct far from ∂Ω, things start to get more involved at the boundary as an
effect of the nonlocal part, which somehow detects any lack of smoothness of the solutions across the
boundary and consequently reproduces this into the equations. Indeed, solutions cannot be expected to
be better than Lipschitz across the boundary, owing to a Hopf-type behavior.

So, the boundary regularity of solutions to (1.1) and (1.5) is where it is truly possible to witness a
deep interaction between the local and the nonlocal components of the equation, and even some sort
of competition between the two: on the one hand, the Laplacian is pushing for a regularization of the
solutions, while, on the other hand, Ls is preventing them from becoming too regular.

Main results

We show in this paper that the above available boundary regularity results are not far from being
optimal. Our first result is stated as follows.
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Theorem 1.1. Let Ω ⊂ Rn be a bounded open set with boundary of class C2,α, for some α ∈ (0, 1). Let k
be a kernel satisfying (1.3), for some s ∈ (0, 1) and κ2 ≥ κ1 > 0. Let p, q ∈ Cα(Ω) be two non-negative
functions, with p satisfying infΩ p > 0. Let f , g ∈ Cα(Ω).

Then, problem (1.4) has a unique solution u ∈ C2(Ω)∩C0(Rn). Moreover, u has the following global
regularity properties:

• If s ∈ (0, 1
2 ), then u ∈ C2,β(Ω) and it satisfies ‖u‖C2,β(Ω) ≤ C‖ f ‖Cα(Ω), with β = min{α, 1 − 2s}.

• If s = 1
2 , then u ∈ C1,1−ε(Ω) for every ε ∈ (0, 1) and it satisfies ‖u‖C1,1−ε(Ω) ≤ Cε‖ f ‖Cα(Ω).

• If s ∈ ( 1
2 , 1), then u ∈ C1,2−2s(Ω) and it satisfies ‖u‖C1,2−2s(Ω) ≤ C‖ f ‖Cα(Ω).

The constant C depends only on n, s, α, κ1, κ2, Ω, ‖p‖Cα(Ω), infΩ p, ‖q‖Cα(Ω), and ‖g‖Cα(Ω), while Cε also
depends on ε.

The statement of Theorem 1.1 improves the existing literature in that we reach the optimal regularity
for s ∈ (1/2, 1), besides the presence of the coefficients p and q, of the gradient term, and of the
kernel k. Indeed its claim is sharp in the sense that, regardless of how smooth p, q, g, and f are, there
exist solutions which are not smoother than C2,1−2s (if s ∈ (0, 1/2)) or C1,2−2s (if s ∈ (1/2, 1)) up to
the boundary. We show this through the following statement valid for dimension n = 1 and constant
coefficients p, q, g.

Theorem 1.2. Let n = 1 and s ∈ (0, 1). For every k ∈ N, there exist a function fk ∈ Ck
([

0, 1
2

])
and a

solution uk ∈ L∞(R) ∩C0(R) ∩C∞((0, 1)) of−u′′k + (−∆)suk = fk in
(
0,

1
2

)
,

uk = 0 in (−∞, 0],

such that

uk ∈



C2,1−2s

([
0,

1
2

])
\
⋃
ε>0

C2,1−2s+ε

([
0,

1
2

])
if s ∈

(
0,

1
2

)
,

⋂
ε>0

C1,1−ε
([

0,
1
2

])
\C1,1

([
0,

1
2

])
if s =

1
2
,

C1,2−2s

([
0,

1
2

])
\
⋃
ε>0

C1,2−2s+ε

([
0,

1
2

])
if s ∈

(1
2
, 1

)
.

Our analysis relies, especially when s ∈
(

1
2 , 1

)
, on regularity estimates for the classical Poisson

equation in a variant of Hölder spaces, to wit, with weights which are powers of the distance to the
boundary. These spaces are introduced in Section 2 and the associated regularity theory for the Poisson
equation is presented in Section 3. Section 4 derives some maximum principles for (1.1) which are
pivotal for the construction of suitable barriers in the subsequent analysis. Section 5 contains the proof
of Theorem 1.1 split into intermediate statements and claims: among these, we prove also the following
result, valid for s ∈

(
1
2 , 1

)
.

Proposition 1.3. Let Ω ⊂ Rn be a bounded open set with boundary of class C2,α, for some α ∈ (0, 1).
Let k be a kernel satisfying (1.3), for some s ∈

(
1
2 , 1

)
and κ2 ≥ κ1 > 0. Let p, q ∈ Cα(Ω) be two

non-negative functions, with p satisfying infΩ p > 0. Let f , g ∈ Cα(Ω).
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Then, problem (1.4) has a unique solution u ∈ C2(Ω) ∩C0(Rn). Moreover, u satisfies

sup
x∈Ω

(
d2s−1

x

∣∣∣D2u(x)
∣∣∣) + sup

x,y∈Ω
x,y

(
dβ+2s−1

x,y
|D2u(x) − D2u(y)|

|x − y|β

)
≤ C‖ f ‖Cα(Ω)

dx B dist(x, ∂Ω), dx,y B min{dx, dy},

with β B min
{
2 − 2s, α

}
and for some constant C > 0 depending only on n, s, α, κ1, κ2, Ω, ‖p‖Cα(Ω),

infΩ p, ‖q‖Cα(Ω), and ‖g‖Cα(Ω).

The above result is saying that the solution u actually belongs to a specific weighted C2 space,
showing that the second derivatives of u might blow-up like the distance to the boundary raised to 1–
2 s. We can interpret this as a quantitative and more precise information than that given by Theorem 1.1.
A similar phenomenon holds also when s = 1

2 , in which case |D2u| blows up slower than any negative
power.

The paper is concluded with Section 6. It contains the proof of Theorem 1.2, which is based on
somewhat long and delicate computations.

2. Functional framework: weighted Hölder spaces

We collect in this section several tools that will be needed for the proofs of the main results of the
paper. We begin by introducing a few functional spaces that will be needed to handle our solutions and
the corresponding right-hand sides in the case s ∈

[
1
2 , 1

)
.

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Denote by dx = d(x) the distance of a
point x ∈ Ω from the boundary of Ω and write dx,y B min{dx, dy} for every x, y ∈ Ω.

For β ∈ (0, 1), we consider the weighted spaces

C0
−1(Ω) B

{
u ∈ C0(Ω) : ‖u‖C0

−1(Ω) < +∞
}
,

C1
−1(Ω) B

{
u ∈ C0(Ω) : ‖u‖C1

−1(Ω) < +∞
}
,

C2
−1(Ω) B

{
u ∈ C2(Ω) : ‖u‖C2

−1(Ω) < +∞
}
,

C2,β
−1 (Ω) B

{
u ∈ C2,β

loc(Ω) : ‖u‖C2,β
−1 (Ω) < +∞

}
,

respectively endowed with the norms

‖u‖C0
−1(Ω) B sup

x∈Ω

(
d−1

x |u(x)|
)
,

‖u‖C1
−1(Ω) B ‖u‖C0

−1(Ω) + ‖Du‖L∞(Ω),

‖u‖C2
−1(Ω) B ‖u‖C1

−1(Ω) + sup
x∈Ω

(
dx|D2u(x)|

)
,

‖u‖C2,β
−1 (Ω) B ‖u‖C2

−1(Ω) + sup
x,y∈Ω
x,y

(
d1+β

x,y
|D2u(x) − D2u(y)|

|x − y|β

)
.

We will also need the following spaces, depending on an additional parameter γ ∈ (0, 1):

Cβ
γ(Ω) B

{
f ∈ Cβ

loc(Ω) : ‖ f ‖Cβ
γ(Ω) < +∞

}
,
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C2
−1,γ(Ω) B

{
u ∈ C2(Ω) : ‖u‖C2

−1,γ(Ω) < +∞

}
,

C2,β
−1,γ(Ω) B

{
u ∈ C2,β

loc(Ω) : ‖u‖C2,β
−1,γ(Ω) < +∞

}
,

with

‖ f ‖Cβ
γ(Ω) B sup

x∈Ω

(
dγx | f (x)|

)
+ sup

x,y∈Ω
x,y

(
dβ+γ

x,y
| f (x) − f (y)|
|x − y|β

)
,

‖u‖C2
−1,γ(Ω) B ‖u‖C0

−1(Ω) + ‖Du‖L∞(Ω) + sup
x∈Ω

(
dγx |D

2u(x)|
)
,

‖u‖C2,β
−1,γ(Ω) B ‖u‖C2

−1,γ(Ω) + sup
x,y∈Ω
x,y

(
dβ+γ

x,y
|D2u(x) − D2u(y)|

|x − y|β

)
.

We briefly explain the above notational choices. Spaces denoted with just one subscript contain
functions which behave like the distance to the boundary raised to minus the power represented by said
subscript and whose higher order derivatives (gradients, Hessians, and/or the corresponding Hölder
seminorms) scale in a homogeneous fashion. Conversely, if two subscripts are used, the first one
prescribes the behavior of the function (with its gradient following the homogeneous scaling), while
the second one is attached to the blow-up rate of the Hessian (and, possibly, of its Hölder seminorm).
Moreover, the space Cβ

γ will be typically used for the source term f of an elliptic equation, while the
other spaces for the solution u.

We begin with the following interpolation inequality for functions in the class C2,β
−1 (Ω).

Lemma 2.1. Let β ∈ (0, 1) and Ω ⊂ Rn be a bounded open set. Then,

‖u‖C2
−1(Ω) ≤ C‖u‖

β
2(1+β)

C0
−1(Ω)
‖u‖

2+β
2(1+β)

C2,β
−1 (Ω)

for every u ∈ C2,β
−1 (Ω), (2.1)

for some constant C > 0 depending only on n and β.

Proof. We adapt the argument of [15, Proposition 1.1.2]. First, we claim that

|Du(x)| ≤ C‖u‖
1
2

C0
−1(Ω)
‖u‖

1
2

C2
−1(Ω)

for every x ∈ Ω and u ∈ C2
−1(Ω), (2.2)

for some dimensional constant C > 0. Let x ∈ Ω and assume that u , 0 in Ω and Du(x) , 0, as
otherwise there is nothing to prove. For z ∈ B dx

2
, we have

|Du(x) · z| ≤ |u(x + z) − u(x) − Du(x) · z| + |u(x + z)| + |u(x)|

≤ d−1
x |z|

2 sup
y∈Ω

(
dy|D2u(y)|

)
+ 3dx sup

y∈Ω

(
d−1

y |u(y)|
)
.

Taking z B ` dx
Du(x)
|Du(x)| , we get that

|Du(x)| ≤ 3
{
` ‖u‖C2

−1(Ω) + `−1‖u‖C0
−1(Ω)

}
for every ` ∈

(
0,

1
2

)
.
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Claim (2.2) immediately follows after an optimization in `, that is, by choosing, e.g.,

` B
1
4

√
‖u‖C0

−1(Ω)

‖u‖C2
−1(Ω)

.

Next, we claim that

dx|D2u(x)| ≤ C‖u‖
β

2(1+β)

C0
−1(Ω)
‖u‖

2+β
2(1+β)

C2,β
−1 (Ω)

for every x ∈ Ω and u ∈ C2,β
−1 (Ω), (2.3)

for some constant C > 0 depending only on n and β. The verification of this fact is similar to the
previous one. Indeed, for j ∈ {1, . . . , n} and z = ` dx

DD ju(x)
|DD ju(x)| with ` ∈

(
0, 1

2

)
, we compute

dx|DD ju(x)| = `−1|DD ju(x) · z|

≤ `−1
(∣∣∣D ju(x + z) − D ju(x) − DD ju(x) · z

∣∣∣ + |D ju(x + z)| + |D ju(x)|
)

≤ 2 `−1
{

d−1−β
x,x+z |z|

1+β sup
y,w∈Ω
y,w

(
d1+β

y,w
|D2u(y) − D2u(w)|

|y − w|β

)
+ ‖Du‖L∞(Ω)

}

≤ 22+β

{
`β‖u‖C2,β

−1 (Ω) + `−1‖Du‖L∞(Ω)

}
,

where we have used that dx,x+z ≥ dx − |z| = (1 − `)dx >
1
2dx. Estimate (2.3) follows by taking

` =
1
4

‖Du‖L∞(Ω)

‖u‖C2,β
−1 (Ω)


1

1+β

and applying (2.2).
By combining (2.2) and (2.3), we easily obtain inequality (2.1). The proof is thus complete. �

Next, we show that the gradients of the functions in C2
−1,γ(Ω) are actually Hölder continuous up to

the boundary of Ω.

Lemma 2.2. Let γ ∈ (0, 1), Ω ⊂ Rn be a bounded open set with Lipschitz boundary, and u ∈ C2
−1,γ(Ω).

Then, u ∈ C1,1−γ(Ω) with
‖u‖C1,1−γ(Ω) ≤ C‖u‖C2

−1,γ(Ω),

for some constant C > 0 depending only on n, γ, and Ω.

Proof. As
‖u‖C1(Ω) ≤

(
1 + diam(Ω)

)
‖u‖C2

−1,γ(Ω),

we only need to verify that

|Du(x) − Du(y)| ≤ C‖u‖C2
−1,γ(Ω)|x − y|1−γ for all x, y ∈ Ω, (2.4)

for some C > 0 depending only on n, γ, and Ω.
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To this aim, observe that, if |x − y| < dx
2 , then

|Du(x) − Du(y)| ≤ |x − y|
∫ 1

0

∣∣∣D2u(tx + (1 − t)y)
∣∣∣ dt

≤ 2 d−γx |x − y| sup
z∈Bdx/2(x)

(
dγz |D

2u(z)|
)
≤ 2‖u‖C2

−1,γ(Ω)|x − y|1−γ.

Thus, we proved that

|Du(x) − Du(y)| ≤ 2‖u‖C2
−1,γ(Ω)|x − y|1−γ for all x, y ∈ Ω such that |x − y| <

dx

2
. (2.5)

Thanks to this, the interior differentiability of Du, and a simple covering argument, it is not hard to
see that (2.4) will be established if we show that, for every x̄ ∈ ∂Ω there exist a radius Rx̄ > 0 and a
constant C x̄ > 0, both depending at most on n, γ, Ω, and x̄, such that

|Du(x) − Du(y)| ≤ C x̄‖u‖C2
−1,γ(Ω)|x − y|1−γ for all x, y ∈ Ω ∩ BRx̄(x̄) such that |x − y| ≥

dx

2
. (2.6)

Claim (2.6) can be established by arguing as in the proof of [16, Proposition 1.1]. We reproduce
here the details for the convenience of the reader.

Let x̄ ∈ ∂Ω. As ∂Ω is Lipschitz, there exist a radius R > 0 and a Lipschitz diffeomorphism Ψ :
Rn → Rn, with inverse Φ B Ψ−1, such that Ψ(0) = x̄, dΨ(z) ≤ zn ≤ KdΨ(z) for all z ∈ BK2R ∩ R

n
+,

where Rn
+ B R

n−1 × (0,+∞), and

BK4R(x̄) ∩Ω ⊂ Ψ
(
BK5R ∩ R

n
+

)
⊂ BK6R(x̄) ∩Ω,

BK4R(x̄) ∩ ∂Ω ⊂ Ψ
(
BK5R ∩ ∂R

n
+

)
⊂ BK6R(x̄) ∩ ∂Ω,

with K B 1 + ‖DΨ‖L∞(Rn) + ‖DΦ‖L∞(Rn) ≥ 3, see the proof of the forthcoming Theorem 3.4 for the
construction of Ψ. Set v(z) B (Du ◦ Ψ) (z) for z ∈ BK5R ∩ R

n
+. Then, estimate (2.5) yields that

|v(z) − v(w)| ≤ 2K‖u‖C2
−1,γ(Ω)|z − w|1−γ for all z,w ∈ BK2R ∩ R

n
+ such that |z − w| < K−3zn. (2.7)

Let now instead z,w ∈ BKR ∩ R
n
+ be such that |z − w| ≥ K−3zn. Consider the auxiliary points z̄ B

z + |z − w|en and w̄ B w + |z − w|en in BK2R ∩ R
n
+, as well as the sequences {z( j)}, {w( j)} ⊂ BK2R ∩ R

n
+

defined by z( j) B z + |z−w|
(1+K−3) j−1 en and w( j) B w + |z−w|

(1+K−3) j−1 en for j ∈ N. Clearly z(1) = z̄, w(1) = w̄
and z( j) → z, w( j) → w as j → +∞. Moreover, |z( j+1) − z( j)| ≤ K−3z( j+1)

n and |w( j+1) − w( j)| ≤ K−3w( j+1)
n

for every j ∈ N. As a result, we may apply (2.7) to deduce that

|v(z) − v(z̄)| ≤
∑
j∈N

∣∣∣v(z( j+1)) − v(z( j))
∣∣∣ ≤ 2K‖u‖C2

−1,γ(Ω)

∑
j∈N

∣∣∣z( j+1) − z( j)
∣∣∣1−γ

≤ 2K1−3(1−γ)‖u‖C2
−1,γ(Ω)|z − w|1−γ

∑
j∈N

(
1 + K−3)−(1−γ) j

≤ CK,γ‖u‖C2
−1,γ(Ω)|z − w|1−γ,

and, similarly, that |v(w) − v(w̄)| ≤ CK,γ‖u‖C2
−1,γ(Ω)|z − w|1−γ, for some constant CK,γ > 0 depending only

on K and γ.
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Since z̄n, w̄n ≥ |z−w| and |z̄−w̄| = |z−w|, we can also obtain that |v(z̄)−v(w̄)| ≤ CK,γ‖u‖C2
−1,γ(Ω)|z−w|1−γ,

for some possibly larger CK,γ, by dividing the segment joining z̄ and w̄ into at most dK3e + 1 equally
spaced subsegments, applying (2.7) between each two consecutive endpoints, and adding up the result.

All in all, we proved that |v(z) − v(w)| ≤ CK,γ‖u‖C2
−1,γ(Ω)|z − w|1−γ for every z,w ∈ BKR ∩ R

n
+ such

that |z−w| ≥ K−3zn. By going back to u and the variables x, y ∈ Ω, we easily arrive at (2.6) with Rx̄ = R.
The proof of the lemma is thus finished. �

Note that the norm ‖ · ‖C2
−1,γ(Ω) is (strictly) stronger than ‖ · ‖C2

−1(Ω), since the latter allows the Hessian
to blow-up at the boundary at a faster rate. Consequently, the space C2

−1,γ(Ω) is continuously embedded
in C2

−1(Ω). The next lemma shows that, by requiring some Hölder continuity on the second derivatives,
i.e., by considering C2,β

−1,γ(Ω) in place of C2
−1,γ(Ω), the embedding is also compact.

Lemma 2.3. Let β, γ ∈ (0, 1) and Ω ⊂ Rn be a bounded open set with Lipschitz boundary.
Then, C2,β

−1,γ(Ω) is compactly embedded in C2
−1(Ω).

Proof. Let {uk}k∈N ⊂ C2,β
−1,γ(Ω) be a bounded sequence, i.e., without loss of generality, such that

‖uk‖C2,β
−1,γ(Ω) ≤ 1 for every k ∈ N. (2.8)

Since, by Lemma 2.2, the space C2
−1,γ(Ω) (and thus the smaller C2,β

−1,γ(Ω)) is continuously embedded
in C1,1−γ(Ω), standard compact embedding theorems for (unweighted) Hölder spaces and a diagonal
argument yield that, up to a subsequence, uk converges in C1(Ω)∩C2

loc(Ω) to a function u ∈ C1,1−γ(Ω)∩
C2,β

loc(Ω) satisfying
‖u‖C2,β

−1,γ(Ω) ≤ 1. (2.9)

As each uk can be continuously extended to a function defined on Ω vanishing on its boundary, so
does u, and we easily deduce that supx∈Ω

(
d−1

x |uk(x) − u(x)|
)
≤ ‖Duk − Du‖L∞(Ω) → 0 as k → +∞. We

are left to prove that
lim

k→+∞
sup
x∈Ω

(
dx|D2uk(x) − D2u(x)|

)
= 0. (2.10)

To see it, let ε > 0 be fixed and observe that, by the local C2 convergence, there exists Nε ∈ N such
that ‖D2uk − D2u‖L∞(Ωδε ) ≤ diam(Ω)−1ε for every k ∈ N with k ≥ Nε, where δε B ε

1
1−γ /2. Here, we

adopted the notation Ωδ B
{
x ∈ Ω : dx > δ

}
, for δ > 0. Consequently,

sup
x∈Ωδε

(
dx|D2uk(x) − D2u(x)|

)
≤ diam(Ω)‖D2uk − D2u‖L∞(Ωδε ) ≤ ε for every k ∈ N with k ≥ Nε.

On the other hand, recalling (2.8) and (2.9), we obtain

sup
x∈Ω\Ωδε

(
dx|D2uk(x) − D2u(x)|

)
≤ δ1−γ

ε

{
sup
x∈Ω

(
dγx |D

2uk(x)|
)

+ sup
x∈Ω

(
dγx |D

2u(x)|
)}
≤ 2δ1−γ

ε = ε,

for every k ∈ N. These two facts immediately lead us to (2.10) and, with it, to the conclusion of the
proof. �
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3. Regularity for the Poisson equation in weighted Hölder spaces

The aim of this section is to study the solvability of the Dirichlet problem for the Laplacian with
zero boundary datum and with a right-hand side that blows up at a strictly slower rate than the inverse
of the distance to the boundary. In particular, we are interested in describing the boundary behavior of
the solution and of its derivatives through the spaces C2,β

−1,γ. Our statement is as follows.

Theorem 3.1. Let β, γ ∈ (0, 1), Ω ⊂ Rn be a bounded open set with boundary of class C2,β, and f ∈
Cβ
γ(Ω). Then, there exists a unique solution u ∈ C2(Ω) ∩C0(Ω) of−∆u = f in Ω,

u = 0 on ∂Ω.
(3.1)

Moreover, u ∈ C2,β
−1,γ(Ω) and it satisfies

‖u‖C2,β
−1,γ(Ω) ≤ C‖ f ‖Cβ

γ(Ω), (3.2)

for some constant C > 0 depending only on n, β, γ, and Ω.

Due to its rather classical flavor, Theorem 3.1 is presumably stated somewhere in the literature and
probably known to the expert reader. However, since we could not find an exact reference, we provide
all the details of its proof—which takes great inspiration from [14, Sections 4 and 6].

To begin with, observe that, when n = 1, the equation −∆u = f is an ODE and the claims of
Theorem 3.1 can be readily established by integration. In the following, we thus restrict to the case n ≥
2. In addition, we assume without loss of generality Ω to actually be a domain, i.e., a connected open
set.

Let Γ be the fundamental solution for the (minus) Laplacian, i.e.,

Γ(z) B


−

1
2π

log |z| if n = 2,

1
n(n − 2)|B1|

1
|z|n−2 if n ≥ 3.

For r > 0, we write Cr B B′r × (−r, r) and C +
r B B′r × (0, r), see Figure 1. We also set Cr(x) B x + Cr

and Dr B B′r × {0}. Given a function f : C +
r → R, we denote with f ◦ its odd reflection with respect to

the horizontal hyperplane, i.e., the function defined at a.e. x = (x′, xn) ∈ Cr by

f ◦(x) B

 f (x′, xn) if xn > 0,
− f (x′,−xn) if xn < 0.

In the following lemma, we explore the regularity properties of the Newtonian potential of f ◦ near
the part of the boundary of C +

2r constituted by the disk Dr. In order to do this, we need some more
notation.

For β, γ ∈ (0, 1), we define the spaces

C̃β
γ(C

+
r ) B

{
f ∈ Cβ

loc(C
+

r ) : ‖ f ‖C̃β
γ(C +

r ) < +∞

}
,
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C̃2,β
−1,γ(C

+
r ) B

{
w ∈ C2,β

loc(C +
r ) : ‖w‖C̃2,β

−1,γ(C +
r ) < +∞

}
,

respectively endowed with the norms

‖ f ‖C̃β
γ(C +

r ) B sup
x∈C +

r

(
xγn | f (x)|

)
+ sup

x,y∈C +
r

x,y

(
min{xn, yn}

β+γ | f (x) − f (y)|
|x − y|β

)
,

‖w‖C̃2,β
−1,γ(C +

r ) B sup
x∈C +

r

(
x−1

n |w(x)|
)

+ ‖Dw‖L∞(C +
r ) + ‖D2w‖C̃β

γ(C +
r ).

xn

Dr

C+
r

Cr

r

−r

0
x′

Figure 1. A depiction of the notations used in Lemma 3.2 and Proposition 3.3.

Note that each function in C̃2,β
−1,γ(C

+
r ) can be uniquely extended to a function in C0,1(C +

r ∪ Dr),
vanishing on Dr. We then have the following result.

Lemma 3.2. Let β, γ ∈ (0, 1) and f ∈ C̃β
γ(C +

2 ). Then, the function

w(x) B
∫

C2

Γ(x − y) f ◦(y) dy for x ∈ C +
2 ∪D2,

satisfies −∆w = f in C +
2 , w = 0 on D2, and it belongs to C̃2,β

−1,γ(C
+

1 ), with

‖w‖C̃2,β
−1,γ(C +

1 ) ≤ C‖ f ‖C̃β
γ(C +

2 ),

for some constant C > 0 depending only on n, β, and γ.

Proof. First of all, it is classical that w ∈ C2,β
loc(C +

2 ) and that it satisfies −∆w = f in C +
2 .

The uniform C1 bounds are rather straightforward. Indeed, for n ≥ 3 and x ∈ C +
1 ∪D1, by changing

variables appropriately we have

|w(x)| ≤ C sup
z∈C +

2

(
zγn | f (z)|

) ∫ 2

−2

(∫
B′2

dy′(
|x′ − y′|2 + (xn − yn)2) n−2

2

)
dyn

|yn|
γ

≤ C‖ f ‖C̃β
γ(C +

2 )

∫ 2

−2

∫ 3
|xn−yn |

0

tn−2

(1 + t)n−2 dt

 |xn − yn|

|yn|
γ

dyn ≤ C‖ f ‖C̃β
γ(C +

2 ),

(3.3)
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for some constant C > 0 depending only on n and γ. After some tedious computations, one similarly
handles the case n = 2 and the estimate for the gradient of w. From this it follows in particular that w
is continuous in the whole C +

1 ∪D1.
The fact that w = 0 on D1 stems from symmetry considerations. From this and the bound for the

gradient, we can also improve (3.3) to the desired weighted L∞ bound.
To estimate the Hessian of w, we take advantage of [14, Lemma 4.2] and write

Di jw(x) = I1(x) + I2(x) + I3(x), (3.4)

for x ∈ C +
1 and i, j ∈ {1, . . . , n}, where

I1(x) B
∫

C2\K
Di jΓ(x − y) f ◦(y) dy,

I2(x) B
∫

K
Di jΓ(x − y)

(
f (y) − f (x)

)
dy,

I3(x) B − f (x)
∫
∂K

DiΓ(x − y)ν j(y) dHn−1(y),

(3.5)

and K ⊂⊂ C +
2 is any open set with Lipschitz boundary containing x. Choosing K = C xn

2
(x), we have

|I1(x)| ≤ C‖ f ‖C̃β
γ(C +

2 )


∫

(−2,2)\
[

xn
2 ,

3xn
2

]
∫

B′2

dy′(
|x′ − y′|2 + (xn − yn)2)n

2

 dyn

|yn|
γ

+

∫ 3xn
2

xn
2

(∫
B′2\B

′
xn
2

(x′)

dy′(
|x′ − y′|2 + (xn − yn)2)n

2

)
dyn

yγn


≤ C‖ f ‖C̃β

γ(C +
2 )


∫ 3

xn
2

∫ 3
`

0

tn−2

(1 + t)n dt

 d`
`|` − xn|

γ
+

∫ xn
2

0

∫ 3
`

xn
2`

tn−2

(1 + t)n dt

 d`
`1+γ


≤ C‖ f ‖C̃β

γ(C +
2 )

x−γn

∫ +∞

1
2

dm
m|m − 1|γ

+ x−1
n

∫ xn
2

0

d`
`γ

 ≤ C‖ f ‖C̃β
γ(C +

2 )x
−γ
n

(3.6)

and

|I2(x)| ≤ C‖ f ‖C̃β
γ(C +

2 )x
−β−γ
n

∫ 3xn
2

xn
2

∫B′xn
2

(x′)

dy′(
|x′ − y′|2 + (xn − yn)2)n−β

2

 dyn

≤ C‖ f ‖C̃β
γ(C +

2 )x
−β−γ
n

∫ xn
2

0

∫ xn
2`

0

tn−2

(1 + t)n−β dt
 d`
`1−β ≤ C‖ f ‖C̃β

γ(C +
2 )x
−γ
n .

It is immediate to verify that the same bound also holds for |I3(x)|. Hence, we conclude that

|D2w(x)| ≤ C‖ f ‖C̃β
γ(C +

2 )x
−γ
n for every x ∈ C +

1 . (3.7)

We now claim that

min{xn, x̃n}
β+γ

∣∣∣D2w(x) − D2w(x̃)
∣∣∣

|x − x̃|β
≤ C‖ f ‖C̃β

γ(C +
2 ) for every x, x̃ ∈ C +

1 such that x , x̃. (3.8)
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Clearly, it is enough to establish (3.8) for x, x̃ ∈ C +
1 with x̃n ≥ xn. Also, in view of (3.7), we may

assume that |x − x̃| ≤ xn
4 . By expressing Di jw(x) and Di jw(x̃) via (3.4) and (3.5) with K = C xn

2
(x) in

both cases, we get that ∣∣∣Di jw(x) − Di jw(x̃)
∣∣∣ ≤ 7∑

i=1

Ji(x, x̃), (3.9)

where

J1(x, x̃) B
∫

C2\C xn
2

(x)

∣∣∣Di jΓ(x − y) − Di jΓ(x̃ − y)
∣∣∣| f ◦(y)| dy,

J2(x, x̃) B
∫

C xn
2

(x)\B|x−x̃|( x+x̃
2 )

∣∣∣Di jΓ(x − y) − Di jΓ(x̃ − y)
∣∣∣∣∣∣ f (y) − f (x)

∣∣∣ dy,

J3(x, x̃) B
∣∣∣ f (x) − f (x̃)

∣∣∣ ∣∣∣∣∣∣∣
∫

C xn
2

(x)\B|x−x̃|( x+x̃
2 )

Di jΓ(x̃ − y) dy

∣∣∣∣∣∣∣ ,
J4(x, x̃) B

∫
B|x−x̃|( x+x̃

2 )

∣∣∣Di jΓ(x − y)
∣∣∣∣∣∣ f (y) − f (x)

∣∣∣ dy,

J5(x, x̃) B
∫

B|x−x̃|( x+x̃
2 )

∣∣∣Di jΓ(x̃ − y)
∣∣∣∣∣∣ f (y) − f (x̃)

∣∣∣ dy,

J6(x, x̃) B | f (x) − f (x̃)|
∫
∂C xn

2
(x)

∣∣∣DiΓ(x − y)
∣∣∣|ν j(y)| dHn−1(y),

J7(x, x̃) B | f (x̃)|
∫
∂C xn

2
(x)

∣∣∣DiΓ(x − y) − DiΓ(x̃ − y)
∣∣∣|ν j(y)| dHn−1(y).

We now estimate each of these terms. Observe that, as |x − x̃| ≤ xn
4 , for every y ∈ C2 \ C xn

2
(x) we have∣∣∣D2Γ(x − y) − D2Γ(x̃ − y)

∣∣∣ ≤ C|x − x̃|
∫ 1

0

dt
|tx + (1 − t)x̃ − y|n+1 ≤ C

|x − x̃|
|x − y|n+1 . (3.10)

Thus, computing as in (3.6), we easily obtain that

J1(x, x̃) ≤ C‖ f ‖C̃β
γ(C +

2 )|x − x̃|
∫

C2\C xn
2

(x)

dy
|x − y|n+1|yn|

γ
≤ C‖ f ‖C̃β

γ(C +
2 )x
−1−γ
n |x − x̃|. (3.11)

A calculation similar to (3.10) yields∣∣∣D2Γ(x − y) − D2Γ(x̃ − y)
∣∣∣ ≤ C

|x − x̃|∣∣∣y − x+x̃
2

∣∣∣n+1 for every y ∈ C xn
2

(x) \ B|x−x̃|

( x + x̃
2

)
.

From this and the fact that∣∣∣ f (y) − f (x)
∣∣∣ ≤ C‖ f ‖C̃β

γ(C +
2 )x
−β−γ
n

∣∣∣∣∣y − x + x̃
2

∣∣∣∣∣β for every y ∈ C xn
2

(x) \ B|x−x̃|

( x + x̃
2

)
,

changing variables we get

J2(x, x̃) ≤ C‖ f ‖C̃β
γ(C +

2 )x
−β−γ
n |x − x̃|

∫
Rn\B|x−x̃|

dz
|z|n+1−β ≤ C‖ f ‖C̃β

γ(C +
2 )x
−β−γ
n |x − x̃|β. (3.12)
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To estimate J3, we employ the divergence theorem to write∫
C xn

2
(x)\B|x−x̃|( x+x̃

2 )
Di jΓ(x̃ − y) dy = −

∫
∂C xn

2
(x)

DiΓ(x̃ − y)ν j(y) dHn−1(y)

+

∫
∂B|x−x̃|( x+x̃

2 )
DiΓ(x̃ − y)ν j(y) dHn−1(y).

Since both surface integrals are bounded uniformly with respect to x and x̃, we infer that

J3(x, x̃) ≤ C‖ f ‖C̃β
γ(C +

2 )x
−β−γ
n |x − x̃|β. (3.13)

The terms J4 and J5 can be dealt with at once. Using that

B|x−x̃|

( x + x̃
2

)
⊂ B2|x−x̃|(x) ∩ B2|x−x̃|(x̃),

we estimate

J4(x, x̃) + J5(x, x̃) ≤ C‖ f ‖C̃β
γ(C +

2 )x
−β−γ
n

∫
B2|x−x̃|

dz
|z|n−β

≤ C‖ f ‖C̃β
γ(C +

2 )x
−β−γ
n |x − x̃|β. (3.14)

The analogous estimate for J6 follows by noticing that the surface integral which defines it is bounded,
while that for J7 is a simple consequence of the bound∣∣∣DΓ(x − y) − DΓ(x̃ − y)

∣∣∣ ≤ C
|x − x̃|

xn
n

for every y ∈ ∂C xn
2

(x).

From these observations, (3.9) and (3.11)–(3.14), we conclude that claim (3.8) holds true. The proof
of the lemma is thus complete. �

From this, we may easily infer the regularity of the solution of (3.1) near flat portions of the
boundary.

Proposition 3.3. Let β, γ ∈ (0, 1), r ∈ (0, 1], and f ∈ C̃β
γ(C +

2r). Let u ∈ C2(C +
2r) ∩ C0(C +

2r ∪ D2r) be a
bounded solution of −∆u = f in C +

2r satisfying u = 0 on D2r. Then, u ∈ C̃2,β
−1,γ(C

+
r ) and

‖u‖C̃2,β
−1,γ(C +

r ) ≤ C
(
rγ−2‖u‖L∞(C +

2r) + ‖ f ‖C̃β
γ(C +

2r)

)
, (3.15)

for some constant C > 0 depending only on n, β, and γ.

Proof. First of all, by scaling we can reduce ourselves to the case r = 1. Indeed, assuming the validity
of the proposition for r = 1, we define ur(x) B u(rx), fr(x) B r2 f (rx) for x ∈ C +

2 ∪D2, notice that they
satisfy −∆ur = fr in C +

2 , ur = 0 on D2, and infer therefore that

‖ur‖C̃2,β
−1,γ(C +

1 ) ≤ C
(
‖ur‖L∞(C +

2 ) + ‖ fr‖C̃β
γ(C +

2 )

)
.

Rephrasing this inequality back to u and f , we obtain

r

sup
x∈C +

r

(
x−1

n |u(x)|
)

+ ‖Du‖L∞(C +
r )

 + r2−γ‖D2u‖C̃β
γ(C +

r ) ≤ C
(
‖u‖L∞(C +

2r) + r2−γ‖ f ‖C̃β
γ(C +

2r)

)
,
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which gives (3.15) since r ≤ 1.
Let w be the function introduced in Lemma 3.2 and write v B u−w. Clearly, v is of class C2 in C +

2 ,
continuous up to D2, and harmonic in C +

2 . As v vanishes on D2, we can consider its odd reflection
across D2 which is harmonic in the whole C2. By standard interior estimates for harmonic functions,
we deduce that v is smooth and satisfies ‖Dv‖C2(C +

1 ) ≤ C‖v‖L∞(C +
2 ) for some dimensional constant C > 0.

The estimate in (3.15) immediately follows from this and Lemma 3.2. �

By straightening the boundary, we may deduce from the previous result an a priori estimate
in C2,β

−1,γ(Ω) for solutions of (3.1). The precise statement is as follows.

Theorem 3.4. Let β, γ ∈ (0, 1), Ω ⊂ Rn be a bounded domain with boundary of class C2,β, and f ∈
Cβ
γ(Ω). Let u ∈ C2,β

−1,γ(Ω) be a solution of −∆u = f in Ω. Then,

‖u‖C2,β
−1,γ(Ω) ≤ C

(
‖u‖L∞(Ω) + ‖ f ‖Cβ

γ(Ω)

)
, (3.16)

for some constant C > 0 depending only on n, β, γ, and Ω.

Proof. Given δ > 0, consider the set

Ωδ B {x ∈ Ω : dx > δ} . (3.17)

By standard interior estimates, it is clear that u ∈ C2,β(Ωδ) for every δ > 0 with

‖u‖C2,β(Ωδ) ≤ Cδ

(
‖u‖L∞(Ω) + ‖ f ‖Cβ

γ(Ω)

)
, (3.18)

for some constant Cδ > 0 depending only on n, β, γ, and δ.
We now address the boundary regularity of u. We claim that, for every x̄ ∈ ∂Ω, there exist a

radius %x̄ > 0 and a constant C x̄ > 0, depending only on n, β, γ, ∂Ω, and x̄, such that

‖u‖C̃2,β
−1,γ(Ω;B2%x̄ (x̄)) ≤

1
16
‖u‖C2,β

−1,γ(Ω) + C x̄

(
‖u‖L∞(Ω) + ‖ f ‖Cβ

γ(Ω)

)
, (3.19)

where, for x̄ ∈ ∂Ω and r > 0,

‖u‖C̃2,β
−1,γ(Ω;Br(x̄)) B sup

x∈Ω∩Br(x̄)

(
d−1

x |u(x)|
)

+ ‖Du‖L∞(Ω∩Br(x̄))

+ sup
x∈Ω∩Br(x̄)

(
dγx |D

2u(x)|
)

+ sup
x,y∈Ω∩Br(x̄)

x,y

(
dβ+γ

x,y
|D2u(x) − D2u(y)|

|x − y|β

)
.

Note that here dx still indicates the distance of x from the entirety of the boundary of Ω.
As ∂Ω is of class C2,β, for every x̄ ∈ ∂Ω there exists a radius R = Rx̄ ∈ (0, 1) such that, up

to a rotation, it holds Ω ∩ CR(x̄) =
{
(x′, xn) ∈ CR(x̄) : xn > h(x′)

}
, for some function h ∈ C2,β(Rn−1)

satisfying h(x̄′) = x̄n, D′h(x̄′) = 0′, and ‖h‖C2,β(Rn−1) ≤ K, where, from here on, K denotes a general
constant larger than 1, depending at most on n, β, γ, ∂Ω, and x̄. Without loss of generality, we may
also suppose h to have compact support.

In order to prove (3.19) we straighten the boundary around the point x̄, which, after a translation,
we assume to be the origin. Consider the mapping Ψ : Rn → Rn defined by Ψ(z) B

(
z′, zn + h(z′)

)
Mathematics in Engineering Volume 8, Issue 1, 1–42.
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for every z = (z′, zn) ∈ Rn. It is easy to see that Ψ is a C2,β-diffeomorphism of Rn onto itself such
that Ψ

(
Rn−1 × (0,+∞)

)
=

{
(x′, xn) ∈ Rn : xn > h(x′)

}
and Φ(x) B Ψ−1(x) =

(
x′, xn − h(x′)

)
for every x ∈

Rn. Also note that
1 ≤ ‖DΨ‖C1,β(Rn) ≤ K, 1 ≤ ‖DΦ‖C1,β(Rn) ≤ K,
1
K
|z − w| ≤ |Ψ(z) − Ψ(w)| ≤ K|z − w| for all z,w ∈ Rn,

dΨ(z) ≤ zn ≤ KdΨ(z) for all z ∈ C +
2r,

(3.20)

for every r ≤ K−1R.
Observe now that Ψ

(
C4r0

)
⊂ CR, with r0 B

R
8

(
1 + ‖D′h‖L∞(Rn−1)

)−1
. Thus, the function v B u ◦ Ψ

belongs to C2(C +
2r) ∩C0(C +

2r ∪D2r) and solves−∆v = g in C +
2r,

v = 0 on D2r,

for every r ∈ (0, r0], and where g B −Tr
(
AD2v

)
− b · Dv + f ◦ Ψ, with

A(z) B

 0n−1 D′h(z′)

D′h(z′)T
∣∣∣D′h(z′)

∣∣∣2
 and b(z) B

(
0′,∆′h(z′)

)T
.

Hence, we may apply Proposition 3.3 and obtain the estimate

‖v‖C̃2,β
−1,γ(C +

r ) ≤ K
(
rγ−2‖v‖L∞(C +

2r) + ‖g‖C̃β
γ(C +

2r)

)
≤ K

(
rγ−2‖u‖L∞(Ω) +

∥∥∥Tr
(
AD2v

)∥∥∥
C̃β
γ(C +

2r)
+ ‖b · Dv‖C̃β

γ(C +
2r) + ‖ f ◦ Ψ‖C̃β

γ(C +
2r)

)
.

(3.21)

Note that A and b satisfy ‖A‖L∞(C +
2r) ≤ Kr and ‖DA‖L∞(C +

2r) + ‖b‖Cβ(C +
2r) ≤ K. Consequently, after some

computations we find that, if r is sufficiently small,∥∥∥Tr
(
AD2v

)∥∥∥
C̃β
γ(C +

2r)
≤ Kr‖u‖C2,β

−1,γ(Ω),

‖b · Dv‖C̃β
γ(C +

2r) ≤ Krγ‖u‖C2,β
−1,γ(Ω),

‖ f ◦ Ψ‖C̃β
γ(C +

2r) ≤ K‖ f ‖Cβ
γ(Ω),

where we also took advantage of (3.20). Thanks to these bounds, (3.21) yields

‖v‖C̃2,β
−1,γ(C +

r ) ≤ K
(
rγ‖u‖C2,β

−1,γ(Ω) + rγ−2‖u‖L∞(Ω) + ‖ f ‖Cβ
γ(Ω)

)
.

Letting % B κ0r with κ0 B
(
2‖DΦ‖L∞(Rn)

)−1, we clearly have that B% ⊂ Ψ(Cr). Thanks to this and (3.20),
it is not hard to see that ‖u‖C̃2,β

−1,γ(Ω;B%) ≤ K‖v‖C̃2,β
−1,γ(C +

r ). Accordingly, we conclude that

‖u‖C̃2,β
−1,γ(Ω;B%) ≤ K

(
rγ‖u‖C2,β

−1,γ(Ω) + rγ−2‖u‖L∞(Ω) + ‖ f ‖Cβ
γ(Ω)

)
,
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and claim (3.19) follows by taking r (and therefore %) suitably small.
Now that (3.19) is established, the conclusion of the lemma can be inferred from a simple covering

argument. Indeed, let {x̄1, . . . , x̄N} ⊂ ∂Ω be such that ∂Ω ⊂
⋃N

j=1 B%x̄ j
(x̄ j). Then, there exists a

small δ0 > 0 for which Ω ⊂ Ωδ0 ∪
⋃N

j=1 B%x̄ j
(x̄ j), with Ωδ0 as in (3.17). Clearly, from this, (3.18)

and (3.19), it follows that

sup
x∈Ω

(
d−1

x |u(x)|
)

+ ‖Du‖L∞(Ω) + sup
x∈Ω

(
dγx |D

2u(x)|
)
≤

3
16
‖u‖C2,β

−1,γ(Ω) + 3C?

(
‖u‖L∞(Ω) + ‖ f ‖Cβ

γ(Ω)

)
, (3.22)

with C? B Cδ0 + max j∈{1,...,N}C x̄ j . On the other hand, employing again (3.18) and (3.19), we also
compute

sup
x,y∈Ω
x,y

(
dβ+γ

x,y
|D2u(x) − D2u(y)|

|x − y|β

)
= sup

x,y∈Ω
x,y, dx≤dy

(
dβ+γ

x
|D2u(x) − D2u(y)|

|x − y|β

)

≤ sup
x,y∈Ωδ0

(
dβ+γ

x
|D2u(x) − D2u(y)|

|x − y|β

)
+ max

j∈{1,...,N}
sup

x,y∈Ω∩B2%x̄ j
(x̄ j)

x,y

(
dβ+γ

x,y
|D2u(x) − D2u(y)|

|x − y|β

)

+ max
j∈{1,...,N}

sup
x∈Ω∩B%x̄ j

(x̄ j), y∈Ω\B2%x̄ j
(x̄ j)

x,y, dx≤dy

(
dβ+γ

x
|D2u(x) − D2u(y)|

|x − y|β

)

≤
7

16
‖u‖C2,β

−1,γ(Ω) + 7C?

(
‖u‖L∞(Ω) + ‖ f ‖Cβ

γ(Ω)

)
,

(3.23)

where we used that, for every j ∈ {1, . . . ,N},

sup
x∈Ω∩B%x̄i

(x̄ j), y∈Ω\B2%x̄ j
(x̄i)

x,y, dx≤dy

(
dβ+γ

x
|D2u(x) − D2u(y)|

|x − y|β

)

≤ sup
x∈Ω∩B%x̄ j

(x̄ j), y∈Ω\B2%x̄ j
(x̄ j)

x,y, dx≤dy


(

dx

%x̄ j

)β (
dγx |D

2u(x)| + dγy |D
2u(y)|

) ≤ 2 sup
x∈Ω

(
dγx |D

2u(x)|
)

≤
3
8
‖u‖C2,β

−1,γ(Ω) + 6C?

(
‖u‖L∞(Ω) + ‖ f ‖Cβ

γ(Ω)

)
,

thanks to (3.22). By combining (3.22) and (3.23), we obtain

‖u‖C2,β
−1,γ(Ω) ≤

5
8
‖u‖C2,β

−1,γ(Ω) + 10 C?

(
‖u‖L∞(Ω) + ‖ f ‖Cβ

γ(Ω)

)
,

which leads to (3.16), after we reabsorb on the left-hand side the C2,β
−1,γ norm appearing on the right.

The proof is complete. �

Thanks to the previous result, estimate (3.2) is reduced to an L∞(Ω) estimate for solutions of (3.1).
We take care of this issue in the following lemma, by means of a simple barrier.
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Lemma 3.5. Let γ ∈ (0, 1), Ω ⊂ Rn be a bounded domain with boundary of class C2, and f ∈ L∞loc(Ω).
Let u ∈ C2(Ω) ∩C0(Ω) be a solution of (3.1). Then,

‖u‖L∞(Ω) ≤ C sup
x∈Ω

(
dγx | f (x)|

)
, (3.24)

for some constant C > 0 depending only on n, γ, and Ω.

Proof. First, we recall that the distance function d(x) = dx is of class C2 in a neighborhood Nδ0 B

Ω \Ωδ0 of ∂Ω, for some δ0 > 0 depending only on Ω, see, e.g., [14, Lemma 14.16]. Here, we are using
notation (3.17).

Set
M B sup

x∈Ω

(
dγx | f (x)|

)
.

Up to a translation, we have that Ω ⊂ BR, with R B diam(Ω). Let δ ∈
(
0, δ0

2

)
and η ∈ C2([0,+∞)) be a

non-increasing function satisfying η = 1 in [0, 1], η = 0 in [2,+∞), and |η′|+ |η′′| ≤ 10 in (1, 2). Define

ϕ(x) B B
(
R2 − |x|2

)
− D η

(
δ−1d(x)

)
d(x)2−γ for x ∈ Ω,

for some positive constants B and D to be determined. Clearly, ϕ ∈ C2(Ω) ∩C0(Ω) with ϕ ≥ 0 on ∂Ω.
Using that |Dd| = 1 in N2δ, we compute

−∆ϕ(x) = 2nB + D
{
η′′

(
δ−1d(x)

)
δ−2d(x)2 + 2(2 − γ)η′

(
δ−1d(x)

)
δ−1d(x) + (2 − γ)(1 − γ)η

(
δ−1d(x)

)
+
(
η′

(
δ−1d(x)

)
δ−1d(x) + (2 − γ)η

(
δ−1d(x)

))
d(x)∆d(x)

}
d(x)−γ

≥ B + D
{
−120χ(δ,2δ)

(
d(x)

)
+ (1 − γ)χ(0,δ]

(
d(x)

)
− 50δ‖∆d‖L∞(Nδ0 )χ(0,2δ)

(
d(x)

)}
d(x)−γ

≥ B + D
{

1 − γ
2

χ(0,δ]
(
d(x)

)
− 121 χ(δ,2δ)

(
d(x)

)}
d(x)−γ,

provided we take δ B min
{
δ0
4 ,

1−γ
100 ‖∆d‖−1

L∞(Nδ0 )

}
. Choosing now

D B
2M

1 − γ
and B B

M
δγ

(
242

1 − γ
+ 1

)
,

we get that −∆ϕ ≥ | f | in Ω. From the weak comparison principle we thus infer that |u| ≤ ϕ in Ω, which
gives (3.24). �

We have now all the ingredients needed to establish Theorem 3.1. In particular, by the last two
results, we only need to show that problem (3.1) actually admits a C2,β

−1,γ(Ω)-solution.

Proof of Theorem 3.1. To establish the existence of a C2,β
−1,γ(Ω)-solution of problem (3.1), we use the

following simple approximation argument.
Let η ∈ C1([0,+∞)) be a non-decreasing function satisfying η = 0 in [0, 1], η = 1 in [2,+∞),

and |η′| ≤ 2 in (1, 2). Given k ∈ N, let fk(x) B η
(
kd(x)

)
f (x) for x ∈ Ω. Clearly, fk is of class Cβ up to

the boundary of Ω and thus, in particular, fk ∈ Cβ
γ(Ω). Moreover, its Cβ

γ(Ω) norm is bounded uniformly
with respect to k, as it holds

‖ fk‖Cβ
γ(Ω) ≤ 5‖ f ‖Cβ

γ(Ω). (3.25)
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Indeed, we have
sup
x∈Ω

(
dγx | fk(x)|

)
≤ sup

x∈Ω

(
dγx | f (x)|

)
and

sup
x,y∈Ω
x,y

(
dβ+γ

x,y
| fk(x) − fk(y)|
|x − y|β

)
= sup

x,y∈Ω
x,y, dx≤dy

(
dβ+γ

x
| fk(x) − fk(y)|
|x − y|β

)

≤ sup
x,y∈Ω

x,y, dx≤min{dy,
2
k }

dγx | f (x)|

dx

∣∣∣η(kd(x)
)
− η

(
kd(y)

)∣∣∣
|x − y|

β ∣∣∣η(kd(x)
)
− η

(
kd(y)

)∣∣∣1−β
+ sup

x,y∈Ω
x,y, dx≤min{dy,

2
k }

(
dβ+γ

x
| f (x) − f (y)|
|x − y|β

∣∣∣η(kd(y)
)∣∣∣) + sup

x,y∈Ω
x,y, 2

k<dx≤dy

(
dβ+γ

x
| f (x) − f (y)|
|x − y|β

)

≤ 22β sup
x∈Ω

(
dγx | f (x)|

)
+ 2 sup

x,y∈Ω
x,y

(
dβ+γ

x,y
| f (x) − f (y)|
|x − y|β

)
,

which give (3.25).
As fk ∈ Cβ(Ω), by standard elliptic theory there exists a unique solution uk ∈ C2,β(Ω) of−∆uk = fk in Ω,

uk = 0 on ∂Ω.

By virtue of Theorem 3.4, Lemma 3.5, and estimate (3.25), we have that

‖uk‖C2,β
−1,γ(Ω) ≤ C‖ f ‖Cβ

γ(Ω) for every k ∈ N,

for some constant C > 0 depending only on n, β, γ, and Ω. Thanks to this uniform bound,
standard compact embeddings of Hölder spaces, and a diagonal argument, we conclude that, up to
a subsequence, {uk} converges in C0(Ω) ∩C2(Ω) to a function u ∈ C2,β

−1,γ(Ω). Clearly, u solves (3.1) and
satisfies (3.2). �

4. Maximum principles

Before turning to the proof of Theorem 1.1, we need maximum principles for the mixed
operator p (−∆) + q Lk + g · D and an a priori estimate for the norm ‖ · ‖C0

−1(Ω) which stems from
them. In order to do that, we need a preparatory lemma.

Lemma 4.1. Let k be a kernel satisfying (1.3), for some s ∈ (0, 1) and κ2 ≥ κ1 > 0. Given λ,R > 0, let

v(x) = vλ,R(x) B eλx1χB2R(x) for x ∈ Rn. (4.1)

Then, there exists a constant C ≥ 1, depending only on n, s, κ1, and κ2, such that

Lkv(x) ≤ −
1
C

eλR/2

λR1+2s v(x) for every x ∈ BR,

provided λR ≥ C.
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Proof. By recalling (1.3) and taking λ ≥ 4/R, we directly estimate, for x ∈ BR,

Lkv(x) = p.v.
∫
Rn

(
eλx1 − eλ(x1+z1)χB2R(x + z)

)
k(z) dz

≤ v(x)
{

p.v.
∫

BR

(
1 − eλz1

)
k(z) dz +

∫
Rn\BR

k(z) dz
}

= v(x)
{

1
λn p.v.

∫
BλR

(1 − ew1) k
(w
λ

)
dw +

∫
Rn\BR

k(z) dz
}

≤ v(x)
{

1
λn

∫
BλR\B1

(1 − ew1) k
(w
λ

)
dw −

1
λn p.v.

∫
B1

w1 k
(w
λ

)
dw + κ2

∫
Rn\BR

dz
|z|n+2s

}
= v(x)

{
1
λn

∫
BλR\B1

(1 − ew1) k
(w
λ

)
dw +

Hn−1(∂B1) κ2

2s
R−2s

}
,

(4.2)

where we have also used that

1 − ew1 ≤ −w1 for every w1 ∈ R and p.v.
∫

B1

w1 k
(w
λ

)
dw = 0, by symmetry.

We now look more closely at the term∫
BλR\B1

(1 − ew1) k
(w
λ

)
dw,

that we split as∫
BλR\B1

(1 − ew1) k
(w
λ

)
dw =

∫
(BλR\B1)∩{w1≤1}

(1 − ew1) k
(w
λ

)
dw +

∫
BλR∩{w1>1}

(1 − ew1) k
(w
λ

)
dw.

Using (1.3), the first of the above two integrals can simply be estimated by∫
(BλR\B1)∩{w1≤1}

(1 − ew1) k
(w
λ

)
dw ≤

∫
(BλR\B1)∩{w1≤1}

k
(w
λ

)
dw

≤ κ2 λ
n+2s

∫
Rn\B1

dw
|w|n+2s =

Hn−1(∂B1)
2s

κ2 λ
n+2s.

(4.3)

The second integral can be instead treated as follows. Keeping in mind once again assumption (1.3)
and that 1 − ew1 < −1

2 ew1 for every w1 > 1, we have that∫
BλR∩{w1>1}

(1 − ew1) k
(w
λ

)
dw ≤ −

1
2

∫
BλR∩{w1>1}

ew1k
(w
λ

)
dw

≤ −
κ1

2
λn+2s

∫
BλR∩{w1>1}

ew1

|w|n+2s dw

≤ −
κ1

2
R−n−2s

∫
BλR∩{w1>1}

ew1 dw.

By defining

E B
{
(w1,w′) ∈ R × Rn−1 : 1 < w1 <

λR
2
, |w′| <

√
3

2
λR

}
⊂ BλR ∩ {w1 > 1},
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we have ∫
BλR∩{w1>1}

ew1 dw ≥
∫

E
ew1 dw = c (λR)n−1

∫ λR/2

1
ew1 dw1 ≥

c
2

(λR)n−1eλR/2,

for some constant c > 0 only depending on n and where we have used that λR ≥ 4. Therefore,∫
BλR∩{w1>1}

(1 − ew1) k
(w
λ

)
dw ≤ −

c κ1

4
λn−1R−1−2s eλR/2.

Plugging this and (4.3) into (4.2) we obtain

Lkv(x) ≤ v(x)
{

C
(
λ2s + R−2s

)
−

2
C

eλR/2

λR1+2s

}
= −

1
C

eλR/2

λR1+2s v(x)
{

2 −C2
(
(λR)1+2s

eλR/2 +
λR

eλR/2

)}
,

for some constant C ≥ 4 only depending on n, s, κ1, and κ2. This leads to the inequality claimed in the
statement, provided we take λR suitably large. �

With this in hand, we may now state and prove our first maximum principle.

Lemma 4.2. Let Ω ⊆ Rn be a bounded open set and k be a kernel satisfying (1.3), for some s ∈ (0, 1)
and κ2 ≥ κ1 > 0. Let g ∈ L∞(Ω) and p, q : Ω → R be two measurable non-negative functions.
Let u : Rn → R be a measurable function, continuous in an open neighborhood of Ω, and C2 inside Ω,
which satisfies ∫

Rn

|u(x)|
1 + |x|n+2s dx < +∞

and
p (−∆)u + q Lku + g · Du ≤ 0 in Ω. (4.4)

(i) If the inequality in (4.4) is strict, then

sup
Ω

u ≤ sup
Rn\Ω

u.

(ii) If q > 0 in Ω and u achieves a global maximum in Ω, then u is constant.

(iii) If infΩ(p + q) > 0, then
sup

Ω

u ≤ sup
Rn\Ω

u.

Proof. Without loss of generality, we can suppose that

sup
Rn\Ω

u < +∞,

otherwise our claims are trivial.
Suppose that u has a global maximum at x0 ∈ Ω. Then

−∆u(x0) ≥ 0, Lku(x0) ≥ 0, Du(x0) = 0,

and therefore

p(x0) (−∆)u(x0) + q(x0) Lku(x0) + g(x0) · Du(x0) = p(x0) (−∆)u(x0) + q(x0) Lku(x0) ≥ 0. (4.5)
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This is not compatible with (4.4) holding with a strict inequality. Hence, point (i) is established.
On the other hand, (4.5) can hold alongside (4.4) with q > 0 only if Lku(x0) = 0, which is in

turn only possible when u is constant (given the fact that at x0 a global maximum is reached). This
proves (ii).

We turn to the proof of (iii). Let R > 0 be fixed in such a way that Ω ⊂ BR and v = vλ,R be as in (4.1).
An application of Lemma 4.1 and straightforward computations give that

−∆v(x) = −λ2v(x), Lkv(x) ≤ −
1
C

eλR/2

λR1+2s v(x), Dv(x) = λv(x) e1, for every x ∈ Ω,

for some C ≥ 1, depending only on n, s, κ1, and κ2, and provided λ ≥ CR−1. Define now uε B u + εv,
for ε > 0. Taking (4.4) into account, we see that

p (−∆)uε + q Lkuε + g · Duε ≤ ε
(
p (−∆)v + q Lkv + g · Dv

)
≤ ε

(
−λ2 p −

q
C

eλR/2

λR1+2s + λg · e1

)
v in Ω.

Using that infΩ(p + q) > 0 and v > 0 in Ω, by choosing λ sufficiently large we then get that

p (−∆)uε + q Lkuε + g · Duε < 0 in Ω.

By point (i), we deduce from the above inequality that

u < uε ≤ sup
Ω

uε ≤ sup
Rn\Ω

uε ≤ sup
Rn\Ω

u + εe2λR in Ω,

for every ε > 0. By sending ε→ 0+ we obtain the estimate claimed in (iii). �

As a consequence of the above maximum principle we deduce the following.

Proposition 4.3. Let Ω ⊆ Rn be a bounded open set and k be a kernel satisfying (1.3), for some s ∈
(0, 1) and κ2 ≥ κ1 > 0. Let g ∈ L∞(Ω) and p, q : Ω → R be two measurable non-negative functions.
Let u ∈ C2(Ω) ∩C0(Rn) be satisfying

p (−∆)u + q Lku + g · Du ≤ 0 in Ω,

u ≤ 0 on ∂Ω,

u ≤ 0 in Rn \Ω,

(4.6)

and assume either one of the following conditions to hold:

(i) the inequality on the first line of (4.6) is strict;

(ii) q > 0 in Ω;

(iii) infΩ(p + q) > 0.

Then, u ≤ 0 in Rn.

Thanks to the maximum principle, we can also establish an a priori estimate for subsolutions of the
Dirichlet problem (1.4) ensuring linear growth from the boundary.
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Theorem 4.4. Let Ω ⊆ Rn be a bounded open set having the exterior ball property and k be a kernel
satisfying (1.3), for some s ∈ (0, 1) and κ2 ≥ κ1 > 0. Let g ∈ L∞(Ω) and p, q : Ω → R be two
measurable non-negative functions satisfying

inf
Ω

p > 0 and sup
Ω

q < +∞.

Let f : Ω→ R be a measurable function bounded from above. If u ∈ C2(Ω) ∩C0(Rn) satisfies
p (−∆)u + q Lku + g · Du ≤ f in Ω,

u ≤ 0 on ∂Ω,

u ≤ 0 in Rn \Ω,

then
‖u+‖C0

−1(Ω) ≤ C‖ f+‖L∞(Ω),

for some constant C > 0 depending only on n, s, κ1, κ2, Ω, infΩ p, supΩ q, and ‖g‖L∞(Ω).

Proof. We begin by showing that the C0
−1(Ω) norm of u+ can be bounded in terms of the suprema of u+

and f+, that is
‖u+‖C0

−1(Ω) ≤ C
(
‖u+‖L∞(Ω) + ‖ f+‖L∞(Ω)

)
, (4.7)

for some constant C > 0 depending only on n, s, κ2, Ω, infΩ p, supΩ q, and ‖g‖L∞(Ω).
As Ω has the exterior ball property, there exists a radius r0 ∈ (0, 1) such that, corresponding to each

point z ∈ ∂Ω there is a point yz ∈ R
n \Ω such that Br0(yz) ∩Ω = {z}. It is immediate to verify that (4.7)

will be proved if we show that there exist two constants C ≥ 1 and δ ∈
(
0, 1

2

]
, both depending only

on n, s, κ2, r0, infΩ p, supΩ q, and ‖g‖L∞(Ω), such that

u(x) ≤ C
(
‖u+‖L∞(Ω) + ‖ f+‖L∞(Ω)

)
|x − z| for every z ∈ ∂Ω and x ∈ Ω ∩ B(1+δ)r0(yz). (4.8)

Let z ∈ ∂Ω be fixed. Up to a translation, we may assume that yz = 0, so that in particular z ∈ ∂Br0 .
Let σ ∈

(
0,min

{
2 − 2s, 1

})
and consider the radially symmetric function

ψ(x) B



0 if x ∈ Br0 ,

|x| − r0 −

(
|x| − r0

)1+σ

1 + σ
if x ∈ B2r0 \ Br0 ,

r0 −
r1+σ

0

1 + σ
if x ∈ Rn \ B2r0 .

Clearly, ψ is globally bounded and Lipschitz continuous, smooth inside B2r0 \ Br0 . Moreover, it is
radially non-decreasing and thus non-negative, since r0 ≤ 1. We claim that

p (−∆)ψ + q Lkψ + g · Dψ ≥ 1 in B(1+δ)r0 \ Br0 , (4.9)

if δ ∈
(
0, 1

2

]
is sufficiently small, in dependence of n, s, κ2, r0, infΩ p, supΩ q, and ‖g‖L∞(Ω), and σ only.
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In order to establish (4.9), we compute, for x ∈ B2r0 \ Br0 ,

Dψ(x) =
(
1 −

(
|x| − r0

)σ) x
|x|
,

D2ψ(x) = −σ
(
|x| − r0

)σ−1 x ⊗ x
|x|2

+
(
1 −

(
|x| − r0

)σ) ( In

|x|
−

x ⊗ x
|x|3

)
,

(4.10)

where In is the n × n identity matrix. From this, it follows in particular that

−∆ψ(x) ≥ σ
(
|x| − r0

)σ−1
−

n − 1
r0
≥
σ

2
(
|x| − r0

)σ−1

g(x) · Dψ(x) ≥ −‖g‖L∞(Ω)

for all x ∈ B(1+δ)r0 \ Br0 , (4.11)

provided δ ≤
(

σrσ0
2(n−1)

) 1
1−σ . We now estimate Lkψ. To this aim, we write

Lkψ(x) = I1(x) + I2(x) + I3(x) + I4(x),

where

I1(x) B −
∫

B|x|−r0

(
ψ(x + z) − ψ(x) − Dψ(x) · z

)
k(z) dz,

I2(x) B ψ(x)
∫

Br0

k(y − x) dy,

I3(x) B
(
ψ(x) − ψ(2r0e1)

) ∫
Rn\B2r0

k(y − x) dy,

I4(x) B
∫

B2r0\(Br0∪B|x|−r0 (x))

(
ψ(x) − ψ(y)

)
k(y − x) dy.

We stress that, here and elsewhere in the paper, Br(p) denotes the open ball of radius r centered at
the point p, while Br stands for the ball of radius r centered at the origin, i.e., Br = Br(0). By Taylor
expansion, for every z ∈ B|x|−r0 there exists p = p(x, z) ∈ B|z|(x) ⊂ B2r0 \ Br0 such that

ψ(x + z) − ψ(x) − Dψ(x) · z =
1
2
〈D2ψ(p)z, z〉.

Recalling (4.10), we deduce that

ψ(x + z) − ψ(x) − Dψ(x) · z = −
σ

2
(
|p| − r0

)σ−1 (p · z)2

|p|2
+

1 −
(
|p| − r0

)σ
2

(
|z|2

|p|
−

(p · z)2

|p|3

)
≤
|z|2

r0
,

and thus, thanks to assumption (1.3),

I1(x) ≥ −
κ2

r0

∫
B|x|−r0

dz
|z|n−2+2s = −

Hn−1(∂B1) κ2

2(1 − s)

(
|x| − r0

)2−2s

r0
.

On the other hand, recalling the definition of ψ, (4.10), and again (1.3), we simply estimate

I2(x) ≥ 0, I3(x) ≥ −κ2 r0

∫
Rn\B r0

2

dz
|z|n+2s ≥ −

2Hn−1(∂B1) κ2

s
r1−2s

0 ,
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and

I4(x) ≥ −κ2‖Dψ‖L∞(B2r0 )

∫
B4r0\B|x|−r0

dz
|z|n−1+2s ≥ −C r1−2s

0 As

(
|x| − r0

r0

)
,

for some constant C > 0, depending only on n, s, and κ2, and where

As(r) B


1 if s ∈

(
0, 1

2

)
,

− log r if s = 1
2 ,

r1−2s if s ∈
(

1
2 , 1

)
,

for r ∈ (0, 1). All in all, we found that

Lkψ(x) ≥ −Cr1−2s
0 As

(
|x| − r0

r0

)
for every x ∈ B(1+δ)r0 \ Br0 . (4.12)

By comparing this with (4.11), we are easily led to (4.9), provided we take δ sufficiently small.
We are now in a position to establish (4.8). Indeed, as ψ ≥ 0 in B(1+δ)r0 , ψ ≥ κ B ψ

(
(1 + δ)r0e1

)
in Rn \ B(1+δ)r0 , and (4.9) holds true, we get that v B u − Mψ, with M B κ−1‖u+‖L∞(Ω) + ‖ f+‖L∞(Ω),
satisfies p (−∆)v + q Lkv + g · Dv ≤ 0 in Ω ∩ B(1+δ)r0 ,

v ≤ 0 in Rn \
(
Ω ∩ B(1+δ)r0

)
.

By the maximum principle of Proposition 4.3, we conclude that v ≤ 0 also in Ω∩B(1+δ)r0 , and therefore
that u(x) ≤ M

(
|x| − r0

)
≤ M|x − z| for every x ∈ Ω ∩ B(1+δ)r0 , which is (4.8).

We have established that (4.7) holds true. In order to conclude the proof of the theorem, it thus
suffices to show that

‖u+‖L∞(Ω) ≤ C‖ f+‖L∞(Ω). (4.13)

We do this by means of another barrier, arguing as in the proof of [14, Theorem 3.7]. Let R > 0 be
large enough to have that Ω ⊂ BR and φ B e2λR − vλ,R, with vλ,R as in (4.1). Clearly, φ ≥ 0 in Rn. In
addition, via the same computations performed in the proof of Lemma 4.2 it is immediate to see that

p (−∆)φ + q Lkφ + g · Dφ ≥ 1 in Ω,

provided λ > 0 is chosen sufficiently large, in dependence of n, s, κ1, κ2, R, infΩ p, and ‖g‖L∞(Ω) only.
Then, the function w B u − ‖ f+‖L∞(Ω) φ satisfiesp (−∆)w + q Lkw + g · Dw ≤ 0 in Ω,

w ≤ 0 in Rn \Ω.

Invoking again Proposition 4.3, we infer that w ≤ 0 in Ω, which gives (4.13). The proof is thus
complete. �

We point out that, when Lk is 2 s-stable, i.e., when its kernel k is homogeneous, it is possible
to obtain (4.12) through a simpler computation based on the representation formula provided in [3,
Lemma 2.4].
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5. Existence, uniqueness and boundary regularity for (1.4)

Proof of Theorem 1.1. We prove here Theorem 1.1, concerning the existence, uniqueness, and
regularity of solutions to the Dirichlet problem (1.4). To establish it, we move the nonlocal term q Lku
to the right-hand side and run a fixed-point argument based on the solvability properties of the
(standard) Laplacian.

To this aim, it is paramount to understand the regularity of the operator Lk applied to smooth
functions which are only Lipschitz continuous across the boundary of Ω, recall that solutions of
problem (1.4) (with, say, p, q ≡ 1, g ≡ 0, and κ1 = κ2 in (1.3)) are typically no better than Lipschitz
in Rn, thanks, e.g., to the Hopf lemma of [9, Theorem 2.2] or [5, Theorem 1.2].

In light of these observations, we proceed to deal separately with the two cases s ∈
(
0, 1

2

)
and s ∈[

1
2 , 1

)
, since the regularity properties of the solutions, as well as the functional spaces used to measure

them, change significantly.

5.1. The case s ∈
(
0, 1

2

)
We prove here the following statement, which implies in particular Theorem 1.1 in the case s < 1

2 .

Proposition 5.1. Let Ω ⊂ Rn be a bounded open set with boundary of class C2,α, for some α ∈ (0, 1).
Let k be a kernel satisfying (1.3), for some s ∈

(
0, 1

2

)
and κ2 ≥ κ1 > 0. Let p, q ∈ Cα(Ω) be two

non-negative functions, with p satisfying infΩ p > 0. Let f , g ∈ Cα(Ω).
Then, problem (1.4) has a unique solution u ∈ C2(Ω) ∩ C0(Rn). Moreover, u ∈ C2,β(Ω), with β =

min{1 − 2s, α}, and it satisfies
‖u‖C2,β(Ω) ≤ C‖ f ‖Cα(Ω), (5.1)

for some constant C > 0 depending only on n, s, α, κ1, κ2, Ω, ‖p‖Cα(Ω), infΩ p, and ‖q‖Cα(Ω).

We can address the proof of Proposition 5.1 through unweighted Hölder spaces, since, when s < 1
2 ,

the operator Lk maps Lipschitz functions to Hölder continuous ones. The following lemma provides a
statement of this fact in full details.

Lemma 5.2. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and k be a kernel
satisfying (1.3), for some s ∈

(
0, 1

2

)
and κ2 ≥ κ1 > 0. Let u ∈ C0,1(Ω) ∩ C0(Rn) with u = 0 in Rn \ Ω.

Then, Lku ∈ C1−2s(Ω), with ‖Lku‖C1−2s(Ω) ≤ C‖Du‖L∞(Ω), for some constant C > 0 depending only
on n, s, κ2, and diam(Ω).

Proof. Set R B diam(Ω). Using that u is globally Lipschitz in Rn with ‖Du‖L∞(Rn) = ‖Du‖L∞(Ω),
that |u(x)| ≤ ‖Du‖L∞(Ω) dx for x ∈ Ω, and that k satisfies (1.3), we compute

∣∣∣Lku(x)
∣∣∣ ≤ ∫

Ω

|u(x) − u(w)| k(w − x) dw + |u(x)|
∫
Rn\Ω

k(w − x) dw

≤ κ2‖Du‖L∞(Rn)

∫
BR

dz
|z|n−1+2s + κ2‖Du‖L∞(Ω) dx

∫
Rn\Bdx

dz
|z|n+2s

≤ Hn−1(∂B1) κ2‖Du‖L∞(Ω)

(
R1−2s

1 − 2s
+

d1−2s
x

2s

)
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≤
Hn−1(∂B1)
2s(1 − 2s)

κ2R1−2s‖Du‖L∞(Ω),

for every x ∈ Ω. This gives the boundedness in Ω of Lku. We now address its Hölder continuity. To do
it, we first observe that, given x, y ∈ Ω, it holds∣∣∣u(x) − u(x + z) − u(y) + u(y + z)

∣∣∣ ≤ 2 ‖Du‖L∞(Rn) min
{
|x − y|, |z|

}
for every z ∈ Rn.

Hence, we have∣∣∣Lku(x) − Lku(y)
∣∣∣ ≤ ∫

Rn

∣∣∣u(x) − u(x + z) − u(y) + u(y + z)
∣∣∣ k(z) dz

≤ 2κ2‖Du‖L∞(Rn)

∫
B|x−y|

dz
|z|n−1+2s + |x − y|

∫
Rn\B|x−y|

dz
|z|n+2s


≤
Hn−1(∂B1)
s(1 − 2s)

κ2‖Du‖L∞(Ω) |x − y|1−2s,

and the proof is complete. �

Thanks to this result, we may directly address Proposition 5.1.

Proof of Proposition 5.1. Of course, the uniqueness claim directly follows from the maximum
principle of Proposition 4.3. As to the existence, we run a fixed-point argument in the Banach space

X B
{
u ∈ C2(Ω) ∩C0(Rn) : u = 0 in Rn \Ω

}
,

endowed with the norm ‖u‖X B ‖u‖C2(Ω).
Let (−∆|Ω)−1 be the inverse operator of the Laplacian coupled with homogeneous boundary

conditions on Ω. That is, given h ∈ Cβ(Ω) with β B min{1− 2s, α} ∈ (0, 1), we indicate by (−∆|Ω)−1[h]
the unique solution u ∈ C2,β(Ω) of the Dirichlet problem−∆u = h in Ω,

u = 0 on ∂Ω.

Consider the affine map T̃ defined as

T̃ [u] B (−∆|Ω)−1
[ f − g · Du − q Lku

p

]
for u ∈ X. (5.2)

By Lemma 5.2 and the standard Schauder theory for the Laplacian, we have∥∥∥T̃ [u]
∥∥∥

C2,β(Ω)
≤ C

∥∥∥∥∥ f − g · Du − q Lku
p

∥∥∥∥∥
Cβ(Ω)

≤ C
∥∥∥∥∥1

p

∥∥∥∥∥
Cα(Ω)

(
‖ f ‖Cα(Ω) + ‖g‖Cα(Ω)‖Du‖Cα(Ω) + ‖q‖Cα(Ω)

∥∥∥Lku
∥∥∥

C1−2s(Ω)

)
≤ C

(
‖ f ‖Cα(Ω) + ‖Du‖Cα(Ω)

)
≤ C

(
‖ f ‖Cα(Ω) + ‖u‖X

)
,

(5.3)
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where, from now on, C > 0 denotes a general constant depending only on n, s, α, κ1, κ2, Ω, ‖p‖Cα(Ω),
infΩ p, ‖q‖Cα(Ω), and ‖g‖Cα(Ω). Hence, T̃ is a continuous operator from X to the subspace C2,β

0 (Ω)
of C2,β(Ω) made up of those functions that have vanishing limits on ∂Ω.

Let now ι : C2,β
0 (Ω) → C2

0(Ω) B
{
u ∈ C2(Ω) : u = 0 on ∂Ω

}
be the inclusion map and eΩ be the

trivial extension operator outside of Ω, i.e.,

eΩw =

w in Ω,

0 in Rn \Ω,
for every measurable function w : Ω→ R. (5.4)

Let T : X → X be defined by T B eΩ

(
ι ◦ T̃

)
. Clearly, the solvability of problem (1.4) is equivalent to

the existence of a fixed point for T .
Thanks to (5.3), the map T is continuous and satisfies∥∥∥T [u]

∥∥∥
X
≤ C

(
‖ f ‖Cα(Ω) + ‖u‖X

)
for every u ∈ X.

Moreover, since ι is compact, T is compact as well. Hence, we can show the existence of a fixed-point
for T via the Leray-Schauder Theorem (see [14, Theorem 11.3]), provided we check that

‖v‖X ≤ C‖ f ‖Cα(Ω) for every v ∈ X such that v = λT [v] for some λ ∈ [0, 1]. (5.5)

To see this, we first remark that every such v is a C2(Ω) ∩C0(Rn)-solution of the Dirichlet problem
p (−∆)v + λq Lkv + λg · Dv = λ f in Ω,

v = 0 on ∂Ω,

v = 0 in Rn \Ω.

(5.6)

Hence, by applying Theorem 4.4 to both v and −v, we deduce that

‖v‖L∞(Ω) ≤ diam(Ω) ‖v‖C0
−1(Ω) ≤ C‖ f ‖L∞(Ω).

Moreover, by (5.3),
‖v‖C2,β(Ω) = λ

∥∥∥T̃ [v]
∥∥∥

C2,β(Ω)
≤ C

(
‖ f ‖Cα(Ω) + ‖v‖C2(Ω)

)
.

By combining the last two estimates with the interpolation inequality

‖w‖C2(Ω) ≤ C‖w‖
β

2+β

L∞(Ω)‖w‖
2

2+β

C2,β(Ω)
,

see, e.g., [15, Definition 1.1.1 and Proposition 1.1.3], we obtain that

‖v‖C2,β(Ω) ≤ C0

(
‖ f ‖Cα(Ω) + ‖ f ‖

β
2+β

L∞(Ω)‖v‖
2

2+β

C2,β(Ω)

)
,

for some constant C0 > 0 depending on the same quantities as C. Claim (5.5) follows at once, thanks
to the weighted Young’s inequality

‖ f ‖
β

2+β

L∞(Ω)‖v‖
2

2+β

C2,β(Ω)
≤ C‖ f ‖L∞(Ω) +

1
2C0
‖v‖C2,β(Ω)

and the fact that ‖v‖X ≤ ‖v‖C2,β(Ω).
We thus proved that there exists a unique C2(Ω) ∩ C0(Rn)-solution to (1.4). Since the C2,β

estimate (5.1) also immediately follows from the previous calculations, the proof is complete. �

Mathematics in Engineering Volume 8, Issue 1, 1–42.



29

5.2. The case s ∈
[

1
2 , 1

)
We establish in this subsection the following proposition, which gives Theorem 1.1 when s ≥ 1

2 .

Proposition 5.3. Let Ω ⊂ Rn be a bounded open set with boundary of class C2,α, for some α ∈ (0, 1).
Let k be a kernel satisfying (1.3), for some s ∈

[
1
2 , 1

)
and κ2 ≥ κ1 > 0. Let p, q ∈ Cα(Ω) be two

non-negative functions, with p satisfying infΩ p > 0. Let f , g ∈ Cα(Ω).
Then, problem (1.4) has a unique solution u ∈ C2(Ω) ∩ C0(Rn). Moreover, u has the following

regularity properties:

• If s ∈
(

1
2 , 1

)
, then u ∈ C2,β

−1,2s−1(Ω) ⊂ C1,2−2s(Ω), with β B min
{
2 − 2s, α

}
, and it satisfies

‖u‖C2,β
−1,2s−1(Ω) + ‖u‖C1,2−2s(Ω) ≤ C‖ f ‖Cα(Ω),

for some C > 0 depending only on n, s, α, κ1, κ2, Ω, ‖p‖Cα(Ω), infΩ p, ‖q‖Cα(Ω), and ‖g‖Cα(Ω).

• If s = 1
2 , then u ∈ C2,α

−1,ε(Ω) ⊂ C1,1−ε(Ω) for every ε ∈ (0, 1) and it satisfies

‖u‖C2,α
−1,ε(Ω) + ‖u‖C1,1−ε(Ω) ≤ Cε‖ f ‖Cα(Ω),

for some Cε > 0 depending only on n, s, α, κ1, κ2, Ω, ‖p‖Cα(Ω), infΩ p, ‖q‖Cα(Ω), ‖g‖Cα(Ω), and ε.

In order to prove this result, we need to first investigate the behavior of Lk when applied to functions
which qualitatively resemble the sought solution u of (1.4). In light of the Hopf lemma established
in [9] or [5]—at least when p, q ≡ 1, g ≡ 0, and f ≥ 0—the graph of u presents corner points at the
boundary of Ω. When s ≥ 1

2 , Lku will then typically blow-up at those points, no matter how smooth
the function is inside Ω. The next two lemmas quantify the blow-up rate in the two cases s ∈

(
1
2 , 1

)
and s = 1

2 .

Lemma 5.4. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and k be a kernel
satisfying (1.3), for some s ∈

(
1
2 , 1

)
and κ2 ≥ κ1 > 0. Let u ∈ C2

−1(Ω) ∩ C0(Rn) with u = 0 in Rn \ Ω.
Then, Lku ∈ Cβ

2s−1(Ω) for every β ∈ (0, 2 − 2s], with∥∥∥Lku
∥∥∥

Cβ
2s−1(Ω)

≤ C‖u‖C2
−1(Ω),

for some constant C > 0 depending only on n, s, κ2, and diam(Ω).

Proof. We begin with the weighted L∞ estimate for Lku, i.e., we claim that∣∣∣Lku(x)
∣∣∣ ≤ C‖u‖C2

−1(Ω) d1−2s
x for all x ∈ Ω, (5.7)

for some constant C > 0 depending only on n, s, and κ2. For x ∈ Ω, we write Lku(x) = Iρ(x) + Oρ(x),
with

Iρ(x) B p.v.
∫

Bρ

(
u(x) − u(x + z)

)
k(z) dz,

Oρ(x) B
∫
Rn\Bρ

(
u(x) − u(x + z)

)
k(z) dz,
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and ρ > 0. Recalling assumption (1.3) on k and choosing ρ B dx/2, we compute∣∣∣Iρ(x)
∣∣∣ =

∣∣∣∣∣∣
∫

Bρ

(
u(x + z) − u(x) − Du(x) · z

)
k(z) dz

∣∣∣∣∣∣ ≤ κ2

∫
Bρ

∣∣∣u(x + z) − u(x) − Du(x) · z
∣∣∣

|z|n+2s dz

≤ κ2 ρ
−1 sup

y∈Ω

(
dy|D2u(y)|

) ∫
Bρ

dz
|z|n−2+2s ≤

Hn−1(∂B1)
2(1 − s)

κ2 ‖u‖C2
−1(Ω) ρ

1−2s.

On the other hand, exploiting the fact that u is globally Lipschitz continuous with ‖Du‖L∞(Rn) =

‖Du‖L∞(Ω), we simply have∣∣∣Oρ(x)
∣∣∣ ≤ κ2

∫
Rn\Bρ

|u(x) − u(x + z)|
|z|n+2s dz

≤ κ2‖Du‖L∞(Rn)

∫
Rn\Bρ

dz
|z|n−1+2s ≤

Hn−1(∂B1)
2s − 1

κ2 ‖u‖C2
−1(Ω) ρ

1−2s,

and claim (5.7) follows.
We now move to the weighted Hölder continuity estimate. Thanks to (5.7) and symmetry

considerations, it is clear that we may restrict to proving that∣∣∣Lku(x) − Lku(y)
∣∣∣ ≤ C‖u‖C2

−1(Ω)
|x − y|β

d2s−1+β
x

for all x, y ∈ Ω s.t. dx ≤ dy and |x − y| ≤
dx

4
, (5.8)

for some constant C > 0 depending only on n, s, and κ2. To see this, we let as before ρ B dx/2 and
observe that∣∣∣u(x) − u(x + z) − u(y) + u(x + z)

∣∣∣ ≤ 2‖Du‖L∞(Ω) min
{
|z|, |x − y|

}
for all z ∈ Rn.

Using this, we compute∣∣∣Oρ(x) − Oρ(y)
∣∣∣ ≤ κ2

∫
Rn\Bρ

∣∣∣u(x) − u(x + z) − u(y) + u(x + z)
∣∣∣

|z|n+2s dz

≤ 2κ2 ‖Du‖L∞(Ω)|x − y|
∫
Rn\Bρ

dz
|z|n+2s

≤
Hn−1(∂B1)

s
κ2 ‖u‖C2

−1(Ω)
|x − y|
ρ2s .

(5.9)

To estimate the difference between the Iρ terms, we use the second order estimate∣∣∣u(x + z) − u(x) − Du(x) · z − u(y + z) + u(y) + Du(y) · z
∣∣∣ ≤ 2‖u‖C2

−1(Ω) ρ
−1|z|min

{
|z|, |x − y|

}
,

valid for all z ∈ Bρ. Thanks to this, we get∣∣∣Iρ(x) − Iρ(y)
∣∣∣ ≤ κ2

∫
Bρ

∣∣∣u(x + z) − u(x) − Du(x) · z − u(y + z) + u(y) + Du(y) · z
∣∣∣

|z|n+2s dz

≤ 2κ2 ‖u‖C2
−1(Ω)ρ

−1

∫
B|x−y|

dz
|z|n−2+2s + |x − y|

∫
Bρ\B|x−y|

dz
|z|n−1+2s


≤
Hn−1(∂B1)

(1 − s)(2s − 1)
κ2 ‖u‖C2

−1(Ω) ρ
−1|x − y|2−2s.

This and (5.9) immediately lead to (5.8). The proof of the lemma is thus complete. �
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When s = 1
2 , Lku could develop logarithmic singularities at the boundary. With no aim to describe

this behavior with such precision, we state the following result, which can be proved with minor
modifications to the computations presented for Lemma 5.4.

Lemma 5.5. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and k be a kernel
satisfying (1.3), with s = 1

2 and for some κ2 ≥ κ1 > 0. Let u ∈ C2
−1(Ω) ∩ C0(Rn) with u = 0 in Rn \ Ω.

Then, Lku ∈ Cβ
ε(Ω) for every β, ε ∈ (0, 1), with∥∥∥Lku

∥∥∥
Cβ
ε (Ω)
≤ Cε‖u‖C2

−1(Ω),

for some constant Cε > 0 depending only on n, κ2, β, diam(Ω), and ε.

Next, we include the following result, which addresses the regularity of the gradient of functions
belonging to the space C2

−1(Ω).

Lemma 5.6. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and u ∈ C2
−1(Ω). Then, D ju ∈

Cβ
γ(Ω) for every j ∈ {1, . . . , n} and β, γ ∈ (0, 1), with∥∥∥D ju

∥∥∥
Cβ
γ(Ω)
≤ C‖u‖C2

−1(Ω),

for some constant C > 0 depending only on n, β, γ, and diam(Ω).

Proof. On the one hand, we have that

sup
x∈Ω

(
dγx |D ju(x)|

)
≤ diam(Ω)γ‖Du‖L∞(Ω) ≤ diam(Ω)γ‖u‖C2

−1(Ω). (5.10)

On the other hand, given any x ∈ Ω and y ∈ B dx
2

(x), by Lagrange’s mean value theorem there exists a
point z = z(x, y) ∈ B dx

2
(x) such that∣∣∣D ju(x) − D ju(y)

∣∣∣ =
∣∣∣DD ju(z) · (x − y)

∣∣∣ ≤ |x − y| sup
w∈B dx

2
(x)
|D2u(w)| ≤ 2‖u‖C2

−1(Ω)d
−1
x |x − y|.

Hence,

sup
x,y∈Ω

0<|x−y|< dx
2

(
dβ+γ

x,y
|D ju(x) − D ju(y)|

|x − y|β

)
= sup

x,y∈Ω
0<|x−y|< dx

2

dβ+γ
x,y

(
|D ju(x) − D ju(y)|

|x − y|

)β
|D ju(x) − D ju(y)|1−β


≤ 2 diam(Ω)γ‖u‖β

C2
−1(Ω)
‖Du‖1−βL∞(Ω) ≤ 2 diam(Ω)γ‖u‖C2

−1(Ω).

Since the supremum of the above quantity with respect to points x, y ∈ Ω with |x− y| ≥ dx
2 can be easily

estimated using (5.10), the proof of the lemma is complete. �

With these preparatory results in hand, we are ready to show the claims contained in Proposition 5.3.

Proof of Proposition 5.3. The general strategy of the proof is the same adopted to establish
Proposition 5.1. The differences lie in the functional spaces that we employ and the estimates that
we take advantage of.
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First of all, we write

β B min
{
α, 2 − 2s

}
and γ B


2s − 1 if s ∈

(
1
2
, 1

)
,

ε if s =
1
2
,

where, in the case s = 1
2 , ε is any fixed number in (0, 1). In what follows, C indicates a general

positive constant depending at most on n, s, α, κ1, κ2, Ω, ‖p‖Cα(Ω), infΩ p, ‖q‖Cα(Ω), ‖g‖Cα(Ω), and also
on ε when s = 1

2 .
As in the proof of Proposition 5.1, we plan to obtain the existence of a solution of (1.4) through the

Leray-Schauder fixed-point theorem applied to an affine endomorphism T in a Banach space X. The
domain of T is now

X B
{
u ∈ C2

−1(Ω) ∩C0(Rn) : u = 0 ∈ Rn \Ω
}
,

with ‖u‖X B ‖u‖C2
−1(Ω), while the map T is formally defined as before. That is, T B eΩ

(
ι ◦ T̃

)
,

where T̃ is exactly as in (5.2), eΩ is the extension operator (5.4), and ι is now the inclusion of C2,β
−1,γ(Ω)

into C2
−1(Ω). Of course, this map is well-defined provided we check that T̃ maps X in C2,β

−1,γ(Ω). This is
a consequence of Lemma 5.4 (when s > 1

2 ) or Lemma 5.5 (when s = 1
2 ), Lemma 5.6, and Theorem 3.1,

whose combined use yields in particular the continuity of T̃ and T via the estimates∥∥∥T [u]
∥∥∥

X
≤ C

∥∥∥T̃ [u]
∥∥∥

C2,β
−1,γ(Ω)

≤ C
(
‖ f ‖Cα(Ω) + ‖u‖X

)
for every u ∈ X. (5.11)

Next, we observe that T is compact, as a consequence of the compactness of ι warranted by
Lemma 2.3. Hence, in order to obtain a fixed-point for T (and thus a solution of (1.4)), we only
need to check the validity of the a priori estimate (5.5). As in the proof of Proposition 5.1, any v ∈ X
satisfying v = λT [v] for some λ ∈ [0, 1] solves in particular the Dirichlet problem (5.6). By applying
to it (5.11), the interpolation inequality of Lemma 2.1, and the weighted L∞ estimate of Theorem 4.4,
we deduce that

‖v‖C2,β
−1,γ(Ω) = λ

∥∥∥T̃ [v]
∥∥∥

C2,β
−1,γ(Ω)

≤ C
(
‖ f ‖Cα(Ω) + ‖v‖C2

−1(Ω)

)
≤ C

(
‖ f ‖Cα(Ω) + ‖v‖

β
2(1+β)

C0
−1(Ω)
‖v‖

2+β
2(1+β)

C2,β
−1 (Ω)

)
≤ C

(
‖ f ‖Cα(Ω) + ‖ f ‖

β
2(1+β)

L∞(Ω)‖v‖
2+β

2(1+β)

C2,β
−1,γ(Ω)

)
,

from which claim (5.5) follows after an application of the weighted Young’s inequality.
We have thus proved that problem (1.4) admits a solution u ∈ C2,β

−1,γ(Ω). Of course, its uniqueness
is granted by Proposition 4.3, while its unweighted global fractional regularity follows from the
embedding of Lemma 2.2. �

6. Sharpness of the boundary regularity

Proof of Theorem 1.2. Given s ∈ (0, 1), we consider the one-dimensional fractional Laplace operator

(−∆)su(x) B Cs p.v.
∫
R

u(x) − u(y)
|x − y|1+2s dy,
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with Cs =
22sΓ( 1+2s

2 )
√
πΓ(2−s) s(1 − s), as well as the mixed local-nonlocal operator −u′′ + (−∆)su.

In order to construct uk and fk as sought in the statement of Theorem 1.2, we consider the following
auxiliary functions. Given α ∈ (0,+∞) and j ∈ N, let uα,0, uα, j ∈ L∞(R) ∩ C0(R) ∩ C∞((0, 1)) be the
functions defined by

uα,0(x) B


0 if x ∈ (−∞, 0],
xα if x ∈ (0, 1),
1 if x ∈ [1,+∞),

uα, j(x) B

0 if x ∈ (−∞, 0] ∪ [1,+∞),
xα(log x) j if x ∈ (0, 1).

In the following, in order to reduce and shorten the notation, we are going to write log jx instead
of (log x) j. In the next lemma, we compute the fractional Laplacian of these functions inside the
interval

(
0, 1

2

)
.

Lemma 6.1. Let s ∈ (0, 1), α ∈ (0,+∞), and j ∈ N∪{0}. Then, there exist constants a(0)
α, j, . . . , a

( j+1)
α, j ∈ R

and a function fα, j ∈ C∞
([

0, 1
2

])
such that

(−∆)suα, j(x) = xα−2s
j+1∑
k=0

a(k)
α, j logkx + fα, j(x) for every x ∈

(
0,

1
2

)
. (6.1)

Furthermore, a( j+1)
α, j = 0 when α−2s < N∪ {0} and a(0)

α, j = 0 when α−2s ∈ N∪ {0}. In addition, a(0)
1,0 , 0

if s , 1
2 and a(1)

1,0 , 0 if s = 1
2 .

Proof. Changing variables appropriately, for x ∈
(
0, 1

2

)
we compute

C−1
s (−∆)suα, j(x) =

xα−2s log jx
2s

+ xα−2s p.v.
∫ 2

0

log jx − tα log j(xt)
|1 − t|1+2s dt +

xα−2s log jx
2s

−
1
2s

xα log jx
(1 − x)2s − xα−2s

∫ 1
x

2

tα log j(xt)
(t − 1)1+2s dt +

1
2s

xα log jx
(1 − x)2s −

1
2s

δ j0

(1 − x)2s

=

{
1
s

+ p.v.
∫ 2

0

1 − tα

|1 − t|1+2s dt
}

xα−2s log jx

−

j−1∑
k=0

{(
j
k

)
p.v.

∫ 2

0

tα log j−kt
|1 − t|1+2s dt

}
xα−2s logkx

−

j∑
k=0

(−1) j−k

(
j
k

) ∫ 1
2

x

v2s−1−α log j−kv
(1 − v)1+2s dv

 xα−2s logkx −
1
2s

δ j0

(1 − x)2s .

(6.2)

In order to expand in x the integral function appearing on the last line, we observe that

1
(1 − v)1+2s =

∞∑
i=0

(
i + 2s

i

)
vi, where, for β ∈ R,

(
β

i

)
B


1 if i = 0,

1
i!

i−1∏
`=0

(β − `) if i ∈ N.
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Hence, by Lebesgue’s dominated convergence theorem,∫ 1
2

x

v2s−1−α log j−kv
(1 − v)1+2s dv =

∞∑
i=0

(
i + 2s

i

) ∫ 1
2

x
v2s−1−α+i log j−kv dv.

To evaluate the last integral, we distinguish between the two cases α − 2s ∈ N ∪ {0} and α − 2s <
N ∪ {0}. In the first case, there exists a unique i? ∈ N ∪ {0} such that 2s − α + i? = 0. As a result, after
a few integration by parts, we find that∫ 1

2

x

v2s−1−α log j−kv
(1 − v)1+2s dv = (−1) j−k

∑
i∈(N∪{0})\{i?}

(
i + 2s

i

)
2α−2s−i

j−k∑
`=0

( j − k)` log j−k−`2
(2s − α + i)`+1

−
∑

i∈(N∪{0})\{i?}

(
i + 2s

i

)
x2s−α+i

j−k∑
`=0

(−1)`( j − k)`
(2s − α + i)`+1 log j−k−`x

+

(
i? + 2s

i?

) (
(−1) j−k+1 log j−k+12

j − k + 1
−

log j−k+1x
j − k + 1

)
,

where (m)` = m!
(m−`)! indicates the descending Pochhammer symbol. Combining this with (6.2), we get

C−1
s (−∆)suα, j(x)

=

{
1
s

+ p.v.
∫ 2

0

1 − tα

|1 − t|1+2s dt
}

xα−2s log jx −
j−1∑
k=0

{(
j
k

)
p.v.

∫ 2

0

tα log j−kt
|1 − t|1+2s dt

}
xα−2s logkx

−

j∑
k=0

(
j
k

)  ∑
i∈(N∪{0})\{i?}

(
i + 2s

i

)
2α−2s−i

j−k∑
`=0

( j − k)` log j−k−`2
(2s − α + i)`+1 −

(
i? + 2s

i?

)
log j−k+12
j − k + 1

 xα−2s logkx

+

j∑
k=0

(−1) j−k

(
j
k

) ∑
i∈(N∪{0})\{i?}

(
i + 2s

i

) j−k∑
`=0

(−1)`( j − k)`
(2s − α + i)`+1 xi log j−`x


+


(
i? + 2s

i?

) j∑
`=0

(
j
`

)
(−1) j−`

j − ` + 1

 xα−2s log j+1x −
1
2s

δ j0

(1 − x)2s .

Notice now that, by changing indices as m = j − k and exchanging the order of summation,
j∑

k=0

(−1) j−k

(
j
k

) ∑
i∈(N∪{0})\{i?}

(
i + 2s

i

) j−k∑
`=0

(−1)`( j − k)`
(2s − α + i)`+1 xi log j−`x


=

∑
i∈(N∪{0})\{i?}

(
i + 2s

i

) j∑
`=0

 j∑
m=`

(
j

j − m

)
(−1)m−`(m)`

 xi log j−`x
(2s − α + i)`+1

= j!
∑

i∈(N∪{0})\{i?}

(
i + 2s

i

)
xi

(2s − α + i) j+1 ,

where for the last identity we used that
(

j
j−m

)
(m)` =

j!
m!( j−m)!

m!
(m−`)! =

j!
( j−`)!

(
j−`

m−`

)
to deduce that, shifting

the index of summation,
j∑

m=`

(
j

j − m

)
(−1)m−`(m)` =

j!
( j − `)!

j−∑̀
k=0

(
j − `

k

)
(−1)k1 j−`−k =

j!
( j − `)!

(1 − 1) j−` = δ j` j!.
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Accordingly, the claim of the lemma follows with

a(0)
α, j = 0,

a(k)
α, j = −Cs

(
j
k

){
p.v.

∫ 2

0

tα log j−kt
|1 − t|1+2s dt +

∑
i∈(N∪{0})\{i?}

(
i + 2s

i

)
2α−2s−i

j−k∑
`=0

( j − k)` log j−k−`2
(2s − α + i)`+1

−

(
i? + 2s

i?

)
log j−k+12
j − k + 1

}
,

a( j)
α, j = Cs

{
1
s

+ p.v.
∫ 2

0

1 − tα

|1 − t|1+2s dt −
∑

i∈(N∪{0})\{i?}

(
i + 2s

i

)
2α−2s−i

2s − α + i
+

(
i? + 2s

i?

)
log 2

}
,

a( j+1)
α, j = Cs

(
i? + 2s

i?

) j∑
`=0

(
j
`

)
(−1) j−`

j − ` + 1
,

fα, j(x) = −Cs

{(
p.v.

∫ 2

0

tα log jt
|1 − t|1+2s dt +

∑
i∈(N∪{0})\{i?}

(
i + 2s

i

)
2α−2s−i

j∑
`=0

( j)` log j−`2
(2s − α + i)`+1

−

(
i? + 2s

i?

)
log j+12

j + 1

)
xα−2s − j!

∑
i∈(N∪{0})\{i?}

(
i + 2s

i

)
xi

(2s − α + i) j+1 +
1
2s

δ j0

(1 − x)2s

}
,

for every k = 1, . . . , j − 1. Note that a(0)
α, j is equal to zero since the corresponding term in the sum (6.1)

has been incorporated into the smooth remainder fα, j, as α − 2s ∈ N ∪ {0}.
When α − 2s < N∪ {0}, then no such i? exists. Nevertheless, the above computations are still valid,

provided that the terms involving i? are neglected and the sums over (N ∪ {0}) \ {i?} are understood to
be over the non-negative integers. The resulting values for the coefficients a(k)

α, j’s and the function fα, j
are

a(k)
α, j = −Cs

(
j
k

){
p.v.

∫ 2

0

tα log j−kt
|1 − t|1+2s dt +

∞∑
i=0

(
i + 2s

i

)
2α−2s−i

j−k∑
`=0

( j − k)` log j−k−`2
(2s − α + i)`+1

}
,

a( j)
α, j = Cs

1
s

+ p.v.
∫ 2

0

1 − tα

|1 − t|1+2s dt −
∞∑

i=0

(
i + 2s

i

)
2α−2s−i

2s − α + i

 ,
a( j+1)
α, j = 0,

fα, j(x) = Cs

 j!
∞∑

i=0

(
i + 2s

i

)
xi

(2s − α + i) j+1 −
1
2s

δ j0

(1 − x)2s

 ,
for every k = 1, . . . , j − 1.

Finally, the statement concerning the non-vanishing nature of the coefficients a(0)
1,0 (when s , 1

2 )
and a(1)

1,0 (when s = 1
2 ) follows from a direct inspection of identity (6.2) when α = 1 and j = 0.

Indeed, in this case claim (6.1) holds true with a(0)
1,0 = Cs

2s(1−2s) , a(1)
1,0 = 0, and f1,0(x) = − Cs

2s(1−2s) (1 − x)1−2s

when s , 1
2 and with a(0)

1,0 = 0, a(1)
1,0 = C 1

2
, and f1,0(x) = −C 1

2
log(1 − x) when s = 1

2 . �

Thanks to this result, we may now proceed with the following proof.
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Proof of Theorem 1.2. We distinguish between the two cases s < Q and s ∈ Q. In the first case, we
let M ∈ N \ {1} and set

vM(x) B
M∑

i=0

bi u2(1−s)i+1,0(x),

for some coefficients bi ∈ R to be determined. For x ∈
(
0, 1

2

)
, taking advantage of Lemma 6.1 we have

that

− v′′M(x) + (−∆)svM(x) =

M∑
i=0

bi

{
−u′′2(1−s)i+1,0(x) + (−∆)su2(1−s)i+1,0(x)

}
=

M∑
i=0

bi

{
−2(1 − s)i(2(1 − s)i + 1)x2(1−s)i−1 + a(0)

2(1−s)i+1,0 x2(1−s)i+1−2s + f2(1−s)i+1,0(x)
}

=

M∑
i=1

{
a(0)

2(1−s)(i−1)+1,0 bi−1 − 2(1 − s)i(2(1 − s)i + 1) bi

}
x2(1−s)i−1

+ a(0)
2(1−s)M+1,0 bM x2(1−s)(M+1)−1 +

M∑
i=0

bi f2(1−s)i+1,0(x).

Here we used the fact that 2(1 − s)i + 1 − 2s < N ∪ {0} for every i ∈ N ∪ {0}, as s < Q. By choosing
b0 = 1,

bi =
a(0)

2(1−s)(i−1)+1,0 bi−1

2(1 − s)i(2(1 − s)i + 1)
for i ∈ {1, . . . ,M},

we obtain that

−v′′M(x) + (−∆)svM(x) = a2(1−s)M+1,0 bM x2(1−s)(M+1)−1 +

M∑
i=0

bi f2(1−s)i+1,0(x) for all x ∈
(
0,

1
2

)
.

Notice that the right-hand side of this equation belongs to Ck
([

0, 1
2

])
if we take, say, M = M1(k) B⌈

k+1
2(1−s)

⌉
. Observe that the function uk B vM1(k) thus constructed lies in C3−2s

([
0, 1

2

])
, but is not of

class C3−2s+ε at 0 for any ε > 0. Indeed,

uk(x) = x +
a(0)

1,0

2(1 − s)(3 − 2s)
x3−2s + o

(
x3−2s

)
as x→ 0+, (6.3)

and a(0)
1,0 , 0, thanks to Lemma 6.1.

We now address the case of s ∈ Q. To handle it, we need a more refined construction. Let p, q ≥ 1
be the two unique coprime integers such that 2(1 − s) =

p
q . Then, 2(1 − s)i + 1 − 2s ∈ N∪ {0} for some

non-negative integer i if and only if i + 1 ∈ qN. Given any M ∈ N \ {1}, we define

wM(x) B
M∑

m=0

q∑
`=1

m∑
j=0

bm,`, j u2(1−s)(mq−1+`)+1, j(x),
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for some coefficients bm,`, j ∈ R to be determined. Lemma 6.1 yields that

−w′′M(x) + (−∆)swM(x) =

M∑
m=0

q∑
`=1

m∑
j=0

bm,`, j

{
−u′′2(1−s)(mq−1+`)+1, j(x) + (−∆)su2(1−s)(mq−1+`)+1, j(x)

}
= A1(x) + A2(x) + A3(x) +

M∑
m=0

q∑
`=1

m∑
j=0

bm,`, j f2(1−s)(mq−1+`)+1, j(x), (6.4)

for every x ∈
(
0, 1

2

)
, with

A1(x) B
q−1∑
`=1

b0,`,0

{
a(0)

2(1−s)(`−1)+1,0 x2(1−s)`−1 − 2(1 − s)(` − 1)
(
2(1 − s)(` − 1) + 1

)
x2(1−s)(`−1)−1

}
+ b0,q,0

{
a(1)

2(1−s)(q−1)+1,0 x2(1−s)q−1 log x − 2(1 − s)(q − 1)
(
2(1 − s)(q − 1) + 1

)
x2(1−s)(q−1)−1

}
,

A2(x) B
M∑

m=1

q−1∑
`=1

m∑
j=0

bm,`, j

−x2(1−s)(mq−1+`)−1
(
2(1 − s)(mq − 1 + `)

(
2(1 − s)(mq − 1 + `) + 1

)
log jx

+
(
4(1 − s)(mq − 1 + `) + 1

)
j log j−1x + j( j − 1) log j−2x

)
+ x2(1−s)(mq+`)−1

j∑
k=0

a(k)
2(1−s)(mq−1+`)+1, j logkx

 ,
A3(x) B

M∑
m=1

m∑
j=0

bm,q, j

−x2(1−s)((m+1)q−1)−1
(
2(1 − s)

(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

)
log jx

+
(
4(1 − s)

(
(m + 1)q − 1

)
+ 1

)
j log j−1x + j( j − 1) log j−2x

)
+ x2(1−s)(m+1)q−1

j+1∑
k=1

a(k)
2(1−s)((m+1)q−1)+1, j logkx

 ,
for m ∈ {0, . . . ,M}.

We begin by analyzing A1, which can be dealt with similarly to what we did in the case of
irrational s. By splitting it into two sums and shifting indices, we have

A1(x) =

q−1∑
`=1

{
a(0)

2(1−s)(`−1)+1,0 b0,`,0 − 2(1 − s)`
(
2(1 − s)` + 1

)
b0,`+1,0

}
x2(1−s)`−1

+ a(1)
2(1−s)(q−1)+1,0 b0,q,0 x2(1−s)q−1 log x

= a(1)
2(1−s)(q−1)+1,0 b0,q,0 x2(1−s)q−1 log x,

(6.5)

provided we choose the b0,`,0’s recursively as follows:
b0,1,0 = 1,

b0,`+1,0 =
a(0)

2(1−s)(`−1)+1,0 b0,`,0

2(1 − s)`
(
2(1 − s)` + 1

) for ` ∈ {1, . . . , q − 1}.
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We then move to the A2 term. Our goal is to rearrange it and factor out the different terms of the
form x2(1−s)(mq−1+`)−1 log jx—much like what we just did for A1, but now with logarithms involved as
well. After some tedious computations involving shifts in the sum indices and exchanges of the orders
of summation, we find that

A2(x) =

M∑
m=1

q∑
`=1

m∑
j=0

Cm,`, j x2(1−s)(mq−1+`)−1 log jx,

with

Cm,1, j B − 2(1 − s)
(
2(1 − s)mq + 1

)
mq bm,1, j −

(
4(1 − s)mq + 1

)
( j + 1)bm,1, j+1

− ( j + 1)( j + 2)bm,1, j+2 for j ∈ {0, . . . ,m − 2},

Cm,1,m−1 B − m
(
2(1 − s)

(
2(1 − s)mq + 1

)
q bm,1,m−1 +

(
4(1 − s)mq + 1

)
bm,1,m

)
,

Cm,1,m B − 2(1 − s)
(
2(1 − s)mq + 1

)
mq bm,1,m,

Cm,`, j B
m∑

k= j

a( j)
2(1−s)(mq−2+`)+1,k bm,`−1,k − 2(1 − s)(mq − 1 + `)

(
2(1 − s)(mq − 1 + `) + 1

)
bm,`, j

−
(
4(1 − s)(mq − 1 + `) + 1

)
( j + 1)bm,`, j+1 − ( j + 1)( j + 2)bm,`, j+2 for j ∈ {0, . . . ,m − 2},

Cm,`,m−1 B
m∑

k=m−1

a(m−1)
2(1−s)(mq−2+`)+1,k bm,`−1,k − 2(1 − s)(mq − 1 + `)

(
2(1 − s)(mq − 1 + `) + 1

)
bm,`,m−1

−
(
4(1 − s)(mq − 1 + `) + 1

)
m bm,`,m,

Cm,`,m B a(m)
2(1−s)(mq−2+`)+1,m bm,`−1,m − 2(1 − s)(mq − 1 + `)

(
2(1 − s)(mq − 1 + `) + 1

)
bm,`,m,

Cm,q, j B
m∑

k= j

a( j)
2(1−s)((m+1)q−2)+1,k bm,q−1,k for j ∈ {0, . . . ,m},

for m ∈ {1, . . . ,M} and ` ∈ {2, . . . , q−1}. We make the majority of these coefficients vanish by choosing

bm,`,m =
a(m)

2(1−s)(mq−2+`)+1,m bm,`−1,m

2(1 − s)(mq − 1 + `)
(
2(1 − s)(mq − 1 + `) + 1

) ,
bm,`,m−1 =

m∑
k=m−1

a(m−1)
2(1−s)(mq−2+`)+1,k bm,`−1,k −

(
4(1 − s)(mq − 1 + `) + 1

)
m bm,`,m

2(1 − s)(mq − 1 + `)
(
2(1 − s)(mq − 1 + `) + 1

) ,

bm,`, j =

m∑
k= j

a( j)
2(1−s)(mq−2+`)+1,k bm,`−1,k

2(1 − s)(mq − 1 + `)
(
2(1 − s)(mq − 1 + `) + 1

)
−

(
4(1 − s)(mq − 1 + `) + 1

)
( j + 1)bm,`, j+1 + ( j + 1)( j + 2)bm,`, j+2

2(1 − s)(mq − 1 + `)
(
2(1 − s)(mq − 1 + `) + 1

) ,

for m ∈ {1, . . . ,M}, ` ∈ {2, . . . , q − 1}, and j ∈ {0, . . . ,m}. This leaves us with

A2(x) =

M∑
m=1

m∑
j=0

Cm,1, j x2(1−s)mq−1 log jx +

M∑
m=1

m∑
j=0

Cm,q, j x2(1−s)((m+1)q−1)−1 log jx, (6.6)
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and bm,1, j, bm,q, j still free to choose, for m ∈ {1, . . . ,M} and j ∈ {0, . . . ,m}.
In order to get rid of these terms, we now inspect A3. By rearranging the logarithmic terms, we

write it as

A3(x) =

M∑
m=1

m∑
j=0

Dm,q, j x2(1−s)((m+1)q−1)−1 log jx +

M∑
m=1

m+1∑
j=1

Dm,q+1, j x2(1−s)(m+1)q−1 log jx,

with

Dm,q, j B −2(1 − s)
(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

)
bm,q, j

−
(
4(1 − s)

(
(m + 1)q − 1

)
+ 1

)
( j + 1) bm,q, j+1

−( j + 1)( j + 2) bm,q, j+2 for j ∈ {0, . . . ,m − 2},
Dm,q,m−1 B −2(1 − s)

(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

)
bm,q,m−1

−
(
4(1 − s)

(
(m + 1)q − 1

)
+ 1

)
m bm,q,m,

Dm,q,m B −2(1 − s)
(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

)
bm,q,m,

Dm,q+1, j B
m∑

k= j−1

a( j)
2(1−s)((m+1)q−1)+1,k bm,q,k for j ∈ {1, . . . ,m + 1},

for m ∈ {1, . . . ,M}. As a result, recalling (6.4)–(6.6), we have

− w′′M(x) + (−∆)swM(x)

=
(
a(1)

2(1−s)(q−1)+1,0 b0,q,0 + C1,1,1

)
x2(1−s)q−1 log x

+

M∑
m=1

Cm,1,0 x2(1−s)mq−1 +

M∑
m=2

m∑
j=1

(
Cm,1, j + Dm−1,q+1, j

)
x2(1−s)mq−1 log jx

+

M∑
m=1

m∑
j=0

(
Cm,q, j + Dm,q, j

)
x2(1−s)((m+1)q−1)−1 log jx

+

M+1∑
j=1

DM,q+1, j x2(1−s)(M+1)q−1 log jx +

M∑
m=0

q∑
`=1

m∑
j=0

bm,`, j f2(1−s)(mq−1+`)+1, j(x).

By setting recursively

b1,1,1 =
a(1)

2(1−s)(q−1)+1,0 b0,q,0

2(1 − s)
(
2(1 − s)q + 1

)
q
, b1,1,0 = −

(
4(1 − s)q + 1

)
b1,1,1

2(1 − s)
(
2(1 − s)q + 1

)
q
,

b1,q,1 =
a(1)

4(1−s)(q−1)+1,1 b1,q−1,1

2(1 − s)
(
2q − 1

)(
2(1 − s)

(
2q − 1

)
+ 1

) ,
b1,q,0 =

−
(
4(1 − s)

(
2q − 1

)
+ 1

)
b1,q,1 + a(0)

4(1−s)(q−1)+1,0 b1,q−1,0 + a(0)
4(1−s)(q−1)+1,1 b1,q−1,1

2(1 − s)
(
2q − 1

)(
2(1 − s)

(
2q − 1

)
+ 1

) ,

bm,1,m =
a(m)

2(1−s)(mq−1)+1,m−1 bm−1,q,m−1

2(1 − s)
(
2(1 − s)mq + 1

)
mq

,

Mathematics in Engineering Volume 8, Issue 1, 1–42.



40

bm,1,m−1 =

−
(
4(1 − s)mq + 1

)
m bm,1,m +

m−1∑
k=m−2

a(m−1)
2(1−s)(mq−1)+1,k bm−1,q,k

2(1 − s)
(
2(1 − s)mq + 1

)
mq

,

bm,1, j =

−
(
4(1 − s)mq + 1

)
( j + 1) bm,1, j+1 − ( j + 1)( j + 2) bm,1, j+2 +

m−1∑
k= j−1

a( j)
2(1−s)(mq−1)+1,k bm−1,q,k

2(1 − s)
(
2(1 − s)mq + 1

)
mq

,

bm,1,0 = −

(
4(1 − s)mq + 1

)
bm,1,1 + 2bm,1,2

2(1 − s)
(
2(1 − s)mq + 1

)
mq

,

bm,q,m =
a(m)

2(1−s)((m+1)q−2)+1,m bm,q−1,m

2(1 − s)
(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

) ,
bm,q,m−1 =

−
(
4(1 − s)

(
(m + 1)q − 1

)
+ 1

)
m bm,q,m +

m∑
k=m−1

a(m−1)
2(1−s)((m+1)q−2)+1,k bm,q−1,k

2(1 − s)
(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

) ,

bm,q, j = −

(
4(1 − s)

(
(m + 1)q − 1

)
+ 1

)
( j + 1) bm,q, j+1 + ( j + 1)( j + 2) bm,q, j+2

2(1 − s)
(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

)
+

m∑
k= j

a( j)
2(1−s)((m+1)q−2)+1,k bm,q−1,k

2(1 − s)
(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

) ,
bm,q,0 =

−
(
4(1 − s)

(
(m + 1)q − 1

)
+ 1

)
bm,q,1 − 2 bm,q,2 +

m∑
k=0

a(0)
2(1−s)((m+1)q−2)+1,k bm,q−1,k

2(1 − s)
(
(m + 1)q − 1

)(
2(1 − s)

(
(m + 1)q − 1

)
+ 1

) ,

for m ∈ {2, . . . ,M} and j ∈ {1, . . . ,m − 2}, the previous expression further simplifies to

−w′′M(x) + (−∆)swM(x) =

M+1∑
j=1

DM,q+1, j x2(1−s)(M+1)q−1 log jx +

M∑
m=0

q∑
`=1

m∑
j=0

bm,`, j f2(1−s)(mq−1+`)+1, j(x).

If we now take M = M2(k) B
⌈

k+1
2(1−s)q

⌉
, the right-hand side of the above identity belongs

to Ck
([

0, 1
2

])
. Moreover, the function uk B wM2(k) just constructed has the regularity claimed in the

statement of the theorem. Indeed, if s , 1
2 , then q ≥ 2 and it is therefore easy to see that the

expansion (6.3) holds true. If, on the other hand, s = 1
2 , then q = 1 and we have

uk(x) = x +
a(1)

1,0

2
x2 log x + O

(
x2

)
as x→ 0+,

with a(1)
1,0 , 0 in view of Lemma 6.1. The proof is thus complete. �
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