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Abstract: We provide sharp boundary regularity estimates for solutions to elliptic equations driven
by an integro-differential operator obtained as the sum of a Laplacian with a nonlocal operator
generalizing a fractional Laplacian. Our approach makes use of weighted Holder spaces as well
as regularity estimates for the Laplacian in this context and a fixed-point argument. We show the
optimality of the obtained estimates by means of a counterexample that we have striven to keep as
explicit as possible.
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1. Introduction

Let n € N and Q C R”" be a bounded open set with Lipschitz boundary. We are interested in the
boundary regularity of equations of the form

p(MNu+qgLliu+g-Du=f in Q, (1.1)
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where p,q, f : Q - R, g : Q — R" are measurable functions and L; stands for the integro-differential
nonlocal operator

Liu(x) = p.V.f (u(x) — u(x + 2))k(z)dz = lirgl+ f (u(x) — u(x + 2))k(z) dz (1.2)
R” &2V UR

"\Bj

determined by a measurable kernel k : R" — R satisfying

k(z) = k(~z) and IIL” < k@) < IIL” forae. z € R, (1.3)
Z n N Z n S

for some exponent s € (0, 1) and some constants k, > k; > 0. The presence of the nonlocal term makes

a (homogeneous) Dirichlet problem associated to (1.1) look like

p(-Mu+qLiu+g-Du=f inQ,
u=0 onodQ, (1.4)
u=0 inR"\Q.

In fact, the prescription of the values attained by the solution x in R” \ Q is of the utmost importance to
make sense of the definition of L;u in (1.2), whilst the prescribed values on 0€2 are immaterial for L; as
it does not see negligible sets, being an integral operator. Conversely, the boundary conditions on 9Q
are somewhat required for the uniqueness of a solution by the term —Au, which in turn is not affected
by the conditions on R” \ Q. A more detailed analysis of these interactions has been carried out by
two of the authors in [1], although here we are only interested in the homogeneous boundary values
as in (1.4). It is however important to underline that the boundary behavior of a solution to (1.4) is
strongly affected by the double nature of the left-hand side of (1.1), i.e., by the presence of both a
Laplacian and a nonlocal operator.

Indeed, the equation in (1.1) falls into the category of mixed local-nonlocal equations, which are
equations driven by an operator obtained by superposing a local differential operator with a nonlocal
integro-differential one. The most canonical example of an operator of this sort is obtained by
considering the kernel & in (1.2) and (1.3) to be given by k(z) = |zJ™ %, in which case L; reduces
to (a multiple of) the fractional Laplacian (—A)*, for which we refer to [2,4, 11-13]. In this spirit,
one of the simplest examples of mixed local-nonlocal equation, which is also covered by the structure
of (1.4), is given by

—Au+ (-A*u=f inQ,
u=0 onoQ, (1.5)
u=0 inR"\Q,

which has lately received a great deal of attention. Without claiming to be exhaustive, we give below a
brief account of the known regularity results on (1.5) which are more closely related to our scopes.
From the broad results by Barles, Chasseigne, and Imbert [6], which are actually operating in a
fully nonlinear setting, it is possible to deduce global C%“ regularity of solutions. Biagi et al. [7] laid
out the foundations of the elliptic theory for (1.5), providing existence and uniqueness of weak and
classical solutions, maximum principles, interior Sobolev regularity, and Lipschitz regularity up to the
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boundary: In some more detail, they showed (see [7, Theorem 1.6]) that the (unique) solution to (1.5)
satisfies the estimate

||u||c0,]@ < Cllfllz= if f is smooth enough and Q is strictly convex.

The same authors in [8, Theorem 2.7] improved the boundary regularity in C! bounded domains,
showing that

if f € L™(Q), then there exists B € (0, 1) such that u € C'#(Q). (1.6)

Additionally, [8, Theorem B.1] gives that
. 1 e ¥re} 2600
if s € (0, 5),3 € (0,1—=2s), and f € C¥(Q), then u € C**(Q). (1.7)

Biswas, Modasiya, and Sen [10, Theorem 1.3] generalized (1.6) to a larger context, replacing the
fractional Laplacian (—A)® with a nonlocal term L; (handling a class of operators which strictly contains
the one we are considering with (1.2) and (1.3)) and allowing for gradient terms in the equation. In a
series of works, Su et al. [17-19] looked at some semilinear counterpart of (1.5), reaching the following
results in the linear case: By [19, Theorem 1.3] one has

if feL™(Q),thenu e Cl’ﬁ(ﬁ) for every 8 € (0, min{1, 2 — 2s}), (1.8)

while, by [19, Theorem 1.6],
; 1 B 2,8
if s € (0, 5),,8 € (0,1 -2s], and f € C7(Q), then u € C"(Q). (1.9)

In this way, (1.8) improves (1.6) by quantifying the regularity exponent 8 and (1.9) improves (1.7) by
including the case g = 1 — 2.

At a first glance, the above results might sound disappointing, especially in the case s > 1/2 when
they are far from the full Schauder regularity, not even reaching C? up to the boundary: This might look
inconsistent with the fact that Eqs (1.1) and (1.5) are led by the Laplacian to leading order. Although
this intuition is heuristically correct far from 0Q, things start to get more involved at the boundary as an
effect of the nonlocal part, which somehow detects any lack of smoothness of the solutions across the
boundary and consequently reproduces this into the equations. Indeed, solutions cannot be expected to
be better than Lipschitz across the boundary, owing to a Hopf-type behavior.

So, the boundary regularity of solutions to (1.1) and (1.5) is where it is truly possible to witness a
deep interaction between the local and the nonlocal components of the equation, and even some sort
of competition between the two: on the one hand, the Laplacian is pushing for a regularization of the
solutions, while, on the other hand, L; is preventing them from becoming too regular.

Main results

We show in this paper that the above available boundary regularity results are not far from being
optimal. Our first result is stated as follows.
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Theorem 1.1. Let Q C R" be a bounded open set with boundary of class C*?, for some a € (0, 1). Letk
be a kernel satisfying (1.3), for some s € (0,1) and k, > «; > 0. Let p,q € C"(ﬁ) be two non-negative
functions, with p satisfying info p > 0. Let f, g € C(Q).

Then, problem (1.4) has a unique solution u € C*(Q)NC°(R"™). Moreover; u has the following global
regularity properties:

o Ifs€(0,3), thenu € C**(Q) and it satisfies lullcosgy < Cllfllcay with B = min{a, 1 - 2s}.

o [fs=: thenuce Cl’l_s(ﬁ)for every € € (0, 1) and it satisfies ||u||C1,1,E(§) < C€||fllca@.

1
2
e Ifse(3,1) thenu e C'2725(Q) and it satisfies lull 122, < Cllfllca):

The constant C depends only on n, s, a, k1, k2, Q, ||p||c(,(§), infq p, ”q”ca(ﬁ)’ and ”g”ca(ﬁ)» while C, also
depends on e.

The statement of Theorem 1.1 improves the existing literature in that we reach the optimal regularity
for s € (1/2,1), besides the presence of the coeflicients p and ¢, of the gradient term, and of the
kernel k. Indeed its claim is sharp in the sense that, regardless of how smooth p, ¢, g, and f are, there
exist solutions which are not smoother than C*!=2* (if s € (0, 1/2)) or C*7%* (if s € (1/2,1)) up to
the boundary. We show this through the following statement valid for dimension » = 1 and constant
coefficients p, g, g.

Theorem 1.2. Letn = 1 and s € (0,1). For every k € N, there exist a function f; € C"([O, %]) and a
solution u, € L*(R) N C°(R) N C*((0, 1)) of

~u + (=AYug = fi in (0, %)

=0 in(-00,0],

such that 1 1 1
C2,1—2s([0’ E]) \ EJO C2,1—2s+8([0’ ED ifs e (0, 5),
1 1 . 1
U € Q Cl,l—s([o, 5]) \ Cl,l([(), 5]) ifs = 5
25 1 2—2s5+e 1 ] 1
22 ([O, 5]) \ g 122 ([O, ED ifse (E, 1).

Our analysis relies, especially when s € (%, 1), on regularity estimates for the classical Poisson
equation in a variant of Holder spaces, to wit, with weights which are powers of the distance to the
boundary. These spaces are introduced in Section 2 and the associated regularity theory for the Poisson
equation is presented in Section 3. Section 4 derives some maximum principles for (1.1) which are
pivotal for the construction of suitable barriers in the subsequent analysis. Section 5 contains the proof
of Theorem 1.1 split into intermediate statements and claims: among these, we prove also the following
result, valid for s € (%, 1).

Proposition 1.3. Let Q C R" be a bounded open set with boundary of class C*?, for some a € (0,1).
Let k be a kernel satisfying (1.3), for some s € (%, 1) and k; > k1 > 0. Let p,g € C*Q) be two

non-negative functions, with p satisfying infq p > 0. Let f,g € C*(Q).
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Then, problem (1.4) has a unigue solution u € C*(Q) N C°(R"). Moreover, u satisfies

x) = D*u(y)|
< C” ” a(Q)
=P dat

2
sup (dis_l |D2u(x)|) + sup (dff;zs‘l |1D7u(
xeQ x}(yfyg

dy = dist(x,0Q),  d., = min{d,,d,},

with B = min{2 — 2s, a} and for some constant C > 0 depending only on n, s, a, ki, k2, Q, ||p||Ca(5),
infa p, glley and llgllce )

The above result is saying that the solution u actually belongs to a specific weighted C? space,
showing that the second derivatives of u might blow-up like the distance to the boundary raised to 1—
2 s. We can interpret this as a quantitative and more precise information than that given by Theorem 1.1.
A similar phenomenon holds also when s = % in which case |D?u| blows up slower than any negative
power.

The paper is concluded with Section 6. It contains the proof of Theorem 1.2, which is based on
somewhat long and delicate computations.

2. Functional framework: weighted Holder spaces

We collect in this section several tools that will be needed for the proofs of the main results of the
paper. We begin by introducing a few functional spaces that will be needed to handle our solutions and
the corresponding right-hand sides in the case s € [%, 1).

Let QQ c R" be a bounded open set with Lipschitz boundary. Denote by d, = d(x) the distance of a
point x € Q from the boundary of Q and write d,, := min{d,, d,} for every x,y € Q.

For 8 € (0, 1), we consider the weighted spaces

C%(Q) = {u e C%Q) : llullco (o) < +oo},
CL(Q) = {ue CoQ) : lluller (o) < +ool,
C(Q) = {u e CHQ) : llull2 ) < +o0},
@) =

loc

2, .
ueCrQ): el 26, < +oo},
respectively endowed with the norms
. -1
llleo () = sup (dlu(x)l).
xeQ
”u”Cll(Q) = ||u||c‘_’1(g) + [|Dull (s
. 2
lulez e = N, @ + sup (dD*u()])
XE

(d1+,3 |D2u(x) - Dz”()’)|)
ST kP )

“u”sz(Q) = ”u”C%I(Q) + sup
x,yeQ
XFEY

We will also need the following spaces, depending on an additional parameter y € (0, 1):

CUQ) = {f € CL : flesy < +o0.
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C?,(Q) = {u € CQ) : ez, (@) < +oo},
()= {u € Gl : s g, < +oo},

with

. o @) = £
W = g0« s o7 £ 50).
Xy

. 2
||”||C31y(g) = ||”||c91(9) + ||Dul|z=(q) + sup (dz |D M(x)|),
’ xeQ

( ey 1D Dzucyn)
™ lx -yl '

sy o = e, o+ sup
XZy
We briefly explain the above notational choices. Spaces denoted with just one subscript contain
functions which behave like the distance to the boundary raised to minus the power represented by said
subscript and whose higher order derivatives (gradients, Hessians, and/or the corresponding Holder
seminorms) scale in a homogeneous fashion. Conversely, if two subscripts are used, the first one
prescribes the behavior of the function (with its gradient following the homogeneous scaling), while
the second one is attached to the blow-up rate of the Hessian (and, possibly, of its Holder seminorm).
Moreover, the space Cﬁ will be typically used for the source term f of an elliptic equation, while the
other spaces for the solution u.
We begin with the following interpolation inequality for functions in the class C%f Q).

Lemma 2.1. Let 8 € (0, 1) and Q C R" be a bounded open set. Then,

B 248
¥ + 2,
s e < Cllal 5 7 W57, or every u e CH(Q) @.1)

for some constant C > 0 depending only on n and .

Proof. We adapt the argument of [15, Proposition 1.1.2]. First, we claim that

1 1
|[Du(x)| < Cllu”é‘jl(ﬂ)”””éf,(ﬂ) forevery x e Qand u € Czl(Q), (2.2)

for some dimensional constant C > 0. Let x € Q and assume that © # 0 in Q and Du(x) # 0, as
otherwise there is nothing to prove. For z € Bd% , we have

|Du(x) - 2| < |u(x + 2) — u(x) = Du(x) - z| + |u(x + 2)| + |u(x)|
< d; "2 sup (d\D*u()|) + 3d, sup (d; 'Tu(y)l).
yeQ yeQ

Du(x)
dy |Du(x)]”
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Claim (2.2) immediately follows after an optimization in ¢, that is, by choosing, e.g.,

g-:l ||M||c9](Q)
4 ||M||C§I(Q)

Next, we claim that

B 248
d.|D*u(x)| < Cllullgjjfgz)llullé(zlf(;) forevery x e Qand u € CE’f(Q), (2.3)
- -1

for some constant C > 0 depending only on n and B. The verification of this fact is similar to the

previous one. Indeed, for j € {1,...,n}and z = £d, lgg’zgl with £ € (0, %), we compute
J

d.|DDu(x)| = 7' |DDju(x) - 7|
< 0(|Dju(x + 2) = Dju(x) — DDju(x) - 2| + |Dju(x + )| + |Dju(x)|)

S s |D?u(y) — D*u(w)|
<2¢ l{dx;+§|z|l+ﬁ sup (d;,;f 5 + [1Dullr=q)
y,weQ |y - Wl
yEW

< 22+ﬁ{fﬂ||u||cz.¢® ¥ f—lnDunm)},

where we have used that d, v+, > d, —|z| = (1 = {)d, > %dx. Estimate (2.3) follows by taking

1 [1IDull=@) |
=1 e
@
and applying (2.2).

By combining (2.2) and (2.3), we easily obtain inequality (2.1). The proof is thus complete. O

Next, we show that the gradients of the functions in CELY(Q) are actually Holder continuous up to
the boundary of Q.

Lemma 2.2. Lety € (0,1), Q C R” be a bounded open set with Lipschitz boundary, and u € CEW(Q).
Then, u € C"'7(Q) with
||u||Cl,l—y(§) < C”u”CE.,y(Q)’

for some constant C > 0 depending only on n, y, and Q.

Proof. As
||I/lllcl(g) < (1 + diam(Q))llullcgl’y(Q),

we only need to verify that
|Du(x) — Du(y)| < Cllullcg1 @lx = yI'™ forall x,y € Q, 2.4
for some C > 0 depending only on n, y, and Q.
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To this aim, observe that, if [x — y| < %‘, then

1
|Du(x) — Du(y)| < |x -y f |D?u(tx + (1 = t)y)|dt
0

<2d7|x-) sup (2ID’u@) < 2z, @ylr = '

2€B, /2(x)

Thus, we proved that

d,
|Du(x) — Du(y)| < 2||u||cg1 @lx— y|177 for all x,y € Q such that |[x — y| < 5 (2.5)

Thanks to this, the interior differentiability of Du, and a simple covering argument, it is not hard to
see that (2.4) will be established if we show that, for every X € 0Q there exist a radius R; > 0 and a
constant C; > 0, both depending at most on n, y, ), and X, such that

d,
|[Du(x) — Du(y)| < C)—Cllullcg1 @l = yI'™"  forall x,y € QN B (%) such that |x — y| > 5 (2.6)

Claim (2.6) can be established by arguing as in the proof of [16, Proposition 1.1]. We reproduce
here the details for the convenience of the reader.

Let x € 0Q. As 0Q is Lipschitz, there exist a radius R > 0 and a Lipschitz diffeomorphism ¥ :
R" — R”, with inverse ® := W', such that ¥(0) = X, dyi < Zn < Kdy) for all z € Bgag NRY,
where R” := R""! x (0, +o0), and

Bysg(%) N Q € P(Bgsp NRY) C Byog(®) N Q.
Bysx(%) N 0Q C W(Bgsg N IRY) C Byop(¥) N OQ,

with K = 1 + [|[D¥|[px@®n) + [|DD||z~®n > 3, see the proof of the forthcoming Theorem 3.4 for the
construction of Y. Set v(z) := (Du o W) (z) for z € Bgsg N R}. Then, estimate (2.5) yields that

V(@) = vl < 2Kllullc2, o)z - w|'™  forall z,w € Bgag NR” such that |z — w| < Kz,.  (2.7)

Let now instead z,w € Bgg N R’ be such that |z — w| > K73z,. Consider the auxiliary points 7 =
z+|z—wle, and w := w + |z — wle, in Bg2g N R”, as well as the sequences {7}, (W} C Bgg NR"
defined by 7V = z + % e, and w¥ = w + % e, for j E N. Clearly zV = z, w® = W
and 2 - z, W@ - was j > +o0. Moreover, |zV+) — 20| < K3zY"D and jwi*h) — w0 < K3tV

for every j € N. As a result, we may apply (2.7) to deduce that
- i j j H|1=Y
Iv(z) — v(3)| < Z |V(Z(/+1)) _ V(ZU))| < ZKHMHCEW(Q) Z |Z(j+1) _ Z(J)|
jeN =
< 2K1—3(1—7)||u||C317(Q)|Z —w|' Z (1+ K—3)—(1—7)j < CK’7||u||C3W(Q)|z —w|'?,
’ jeN '
and, similarly, that |[v(w) — v(w)| < C mllullczl wlz— w|'=7, for some constant C ky > 0 depending only
—Ly

on K and vy.
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Since Z,, W, = |z—w]| and |z—w| = |z—w|, we can also obtain that [v(Z)—v(W)| < Ck,yllullcglyy(g)lz—w|1‘7,
for some possibly larger Ck,,, by dividing the segment joining Z and w into at most [K*] + 1 equally
spaced subsegments, applying (2.7) between each two consecutive endpoints, and adding up the result.

All in all, we proved that [v(z) — v(w)| < CK,yllullcgw(Q)lz — w|'™ for every z,w € Bgr N R" such
that |z—w| > K~3z,. By going back to u and the variables x, y € Q, we easily arrive at (2.6) with R; = R.
The proof of the lemma is thus finished. O

Note that the norm || - IICz1 (@) 18 (strictly) stronger than || - IICzl(Q), since the latter allows the Hessian
2y 2

to blow-up at the boundary at a faster rate. Consequently, the space C> 1,(€2) is continuously embedded
in C? (). The next lemma shows that, by requiring some Holder continuity on the second derivatives,
i.e., by considering Cif V(Q) in place of CEW(Q), the embedding is also compact.

Lemma 2.3. Let B,y € (0,1) and Q C R" be a bounded open set with Lipschitz boundary.
Then, C%f y(Q) is compactly embedded in Cgl(Q).

Proof. Let {u;}ren C Cflﬁ y(Q) be a bounded sequence, i.e., without loss of generality, such that

””k”Cf'ﬁy(Q) <1 forevery k € N. (2.8)

Since, by Lemma 2.2, the space C%Ly(Q) (and thus the smaller Czlﬁ ,(£2)) is continuously embedded
in C'-7(Q), standard compact embedding theorems for (unweighted) Holder spaces and a diagonal
argument yield that, up to a subsequence, u; converges in C'(Q)NC;, (Q) to a function u € C'Y(Q)N
Clzo’f () satisfying

IIMIICE.ﬁy(Q) <1l (2.9)

As each u; can be continuously extended to a function defined on Q vanishing on its boundary, so
does u, and we easily deduce that sup, ., (d;lluk(x) - u(x)l) < ||Duy — Du||p~qy — 0 as k — +co. We
are left to prove that

lim sup (d,/D%u(x) — D*u(x)|) = 0. (2.10)
k=0 yeq
To see it, let £ > 0 be fixed and observe that, by the local C? convergence, there exists N, € N such
that ||D*uy — D?ulli~q,,,) < diam(Q)~'e for every k € N with k > N,, where 6, = &7 /2. Here, we
adopted the notation Q; := {x € Q : d, > 6}, for § > 0. Consequently,

sup (dxlDZMk(x) - Dzu(x)l) < diam(Q)||D*u — D*ully~q, ) < & forevery k € N with k > N...

xEQge

On the other hand, recalling (2.8) and (2.9), we obtain

sup (dxlDzuk(x) - Dzu(x)l) <o {sup (dZIDzuk(x)l) + sup (dZIDZM(x)I)} <2677 = ¢,

x€Q\Qs, xeQ xeQ

for every k € N. These two facts immediately lead us to (2.10) and, with it, to the conclusion of the
proof. O
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3. Regularity for the Poisson equation in weighted Holder spaces

The aim of this section is to study the solvability of the Dirichlet problem for the Laplacian with
zero boundary datum and with a right-hand side that blows up at a strictly slower rate than the inverse
of the distance to the boundary. In particular, we are interested in describing the boundary behavior of
the solution and of its derivatives through the spaces Cz'f » Our statement is as follows.

Theorem 3.1. Let B,y € (0,1), Q C R" be a bounded open set with boundary of class C?P and f €
C/y’)(Q). Then, there exists a unique solution u € C*(Q) N C*(Q) of

-Au=f in Q,
3.1
u=20 on 0QQ.
Moreover, u € C%’ﬁy(Q) and it satisfies
”u”C%fy(Q) < C”f”clj(g)a (3.2)

for some constant C > 0 depending only on n, 3, v, and Q.

Due to its rather classical flavor, Theorem 3.1 is presumably stated somewhere in the literature and
probably known to the expert reader. However, since we could not find an exact reference, we provide
all the details of its proof—which takes great inspiration from [14, Sections 4 and 6].

To begin with, observe that, when n = 1, the equation —Au = f is an ODE and the claims of
Theorem 3.1 can be readily established by integration. In the following, we thus restrict to the case n >
2. In addition, we assume without loss of generality Q to actually be a domain, i.e., a connected open
set.

Let I' be the fundamental solution for the (minus) Laplacian, i.e.,

1
— —loglz] ifn=2
. 2
I'2) = 1 1

if n > 3.
nn-2B—= T

For r > 0, we write 6, := B, X (-r,r) and €' := B, X (0, r), see Figure 1. We also set €,(x) := x + 6,
and 9, = B, x {0}. Given a function f : 4, — R, we denote with f° its odd reflection with respect to
the horizontal hyperplane, i.e., the function defined at a.e. x = (x’, x,) € %, by

o S x0) if x, > 0,
f= {—f(x’, -x,)  ifx, <O.

In the following lemma, we explore the regularity properties of the Newtonian potential of f° near
the part of the boundary of ¢ constituted by the disk Z,. In order to do this, we need some more
notation.

For B,y € (0, 1), we define the spaces

CHE) =1 € L) Wil < +oo).
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((5+) = {W € CZOC(CKJr) ”W”CA‘JE’@(%’,U < +OO} s

respectively endowed with the norms

o ) = f(y)l)’

L= S Y + s min{x,, y,
1/l s, = sup () Lf2)I) up( X,y T

X€6T X,YEEF
X#y

. -1 2
Il ey = sup (3 WCO) + 1DWllocsy + 10wl

X€CT
Tn
— r o
€r
4 78 S 0+ T Tot- 4 b6,
-------- i e

Figure 1. A depiction of the notations used in Lemma 3.2 and Proposition 3.3.

Note that each function in a lﬂ y(‘é*) can be uniquely extended to a function in C*/(€*" U 2,),
vanishing on Z,. We then have the following result.

Lemma 3.2. Let B,y € (0,1) and f € 55(“5;). Then, the function
w(x) = f L(x—-y)f°(y)dy for x € €5 U D,
(2)

satisfies —Aw = fin €,, w = 0 on 9,, and it belongs to a’ﬁy(cff), with
w o < C s
I ||a»ﬁy(<61 ) ”f”a'i(gz)

for some constant C > 0 depending only on n, 5, and .

Proof. First of all, it is classical that w € Clzo’f (¢, and that it satisfies ~Aw = fin &,'.
The uniform C' bounds are rather straightforward. Indeed, for n > 3 and x € €' U 2, by changing
variables appropriately we have

dy dy,
ol < € sup (1 17) [ f - o)
-t B, (|x —y P+ (x, _— )2) |Vl

<C 2 ""fﬁ tn—2 d |xn _yn| d <C
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for some constant C > 0 depending only on n and y. After some tedious computations, one similarly
handles the case n = 2 and the estimate for the gradient of w. From this it follows in particular that w
is continuous in the whole ¢}" U ;.

The fact that w = 0 on %, stems from symmetry considerations. From this and the bound for the
gradient, we can also improve (3.3) to the desired weighted L* bound.

To estimate the Hessian of w, we take advantage of [14, Lemma 4.2] and write

Dyw() = L9 + B(x) + I5(x), (3.4)
forx € ¢ and i, j € {l,...,n}, where
Ii(x) = D;iI'(x =) f°(y) dy,
“H\K
o) = f DT = ) (FG) — F(x)) v, (3.5)
K

L(x) = —f(x) fa DT (x —y)v;(y) dH"(y),
K

and K CC ¢, is any open set with Lipschitz boundary containing x. Choosing K = ¢’x (x), we have

dy’ dyn
1Ll < Cllfllep ey f . (f 5 ; ) 7
22052 U8, (I¥ =y + (x, = ya)?)? ) Dl

[T
3 W, @) (10 =y P+ (- y)2R ) v
3 ;o2 de 3 i g2 dt
<C dt + dt
= ”f”@*(éz){fx; [fo (1 + 1y ]é’lt’—xnly fo ( y (L+0)" )51”
* dm ?

de
<C o | x| S < Alflpg
= ”f”éé*«rf;){"f; mm—1p " )y [ Wl

(3.6)

and

3
2

e dy’
L)) < Cllfllgs e 5" f f 7 |
Y T2 Xn Br’%n(x/) (lx,

E =Y+ G —yn)?)
7 %

2 2 de
( —B-y -y
< ”f”Cﬁy(‘fz*)xn L ( ; (1 [)”_ﬁ dt] e < Cllf”cy(cff)xn .

It is immediate to verify that the same bound also holds for |/3(x)|. Hence, we conclude that

|D*w(x)| < Cllfllg;g(%){)x,_,7 for every x € €}". (3.7)
We now claim that

oy [IDPW() = DPw(D)|

lx — X

min{x,,, X, } < Cllfllag(%);) for every x, ¥ € €, such that x # %. (3.8)
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assume that [x — X < Z—". By expressing D;jw(x) and D;jw(X) via (3.4) and (3.5) with K = ‘5% (x) in
both cases, we get that

Clearly, it is enough to establish (3.8) for x, ¥ € ¢}" with &%, > x,. Also, in view of (3.7), we may

7
|Dijw(x) = Dyw(E)| < Y Ji(x, ), (3.9)
i=1
where

I ®) = f DT~ 3) = DTG =~ D|IF 0l dy.
(!v”z\%%n (x)

BB = f PTG =) = DTG = ||F0) = £ dy,
@xp (O\Bje—sy (%)

f - D;I(x—y)dy|,
(g%n (X)\lefi\(%)

s = [ o [P =90 = 500,
il (5

2

J3(x, %) = |f(x) - f(3)|

Js(x, B = f o [P =00 = el
By (3

Jo(x, %) = | f(x) = F(D) |DLGe = )|y, dH" (),

0Cxn (x)
)

J7(X, )~C) = |f()~C)| - |D,~F(x - y) - D,T(fc — y)||vj(y)| d?’("_l(y)_

We now estimate each of these terms. Observe that, as |x — X| < f‘—”, for every y € 65 \ ‘K%n (x) we have

1 -
dt |x — X|
DT(x-y)-DT(x-y)|<C —~f < : 3.10
[T =3) = DTE=y)| € Cx =8 | oot < Oy (3.10)
Thus, computing as in (3.6), we easily obtain that
dy
J1(x, %) < Clf |z, |x — X < C|lfllz X, = A (3.11)
1 G ey o =TT G
A calculation similar to (3.10) yields
— ¥ + X
DPT(x — y) - DT(E - )| < C— x+:L+1 for every y € € (9)\ B (5
T2
From this and the fact that
—B— X+ )~C 8 X+ )'Z'
[£09) = 0] < gy | - for every y € €5 (0 Bug (3.
changing variables we get
g 5 g dz e g
D6, %) < Cll gy 577 1x - A f e < Olfllge = #. (312)
6y R\Biu_s |z|™ B (&
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To estimate J3, we employ the divergence theorem to write
f - DyI'(x-y)dy =— f DI(x - y)v;(y) dH"(y)
%7" \Be—s (%) 8(5% (%)

+11 DTG =y () dH ).
0B-5(*5%)

Since both surface integrals are bounded uniformly with respect to x and X, we infer that
J3(x, %) < Clif gy 1 = 3. (3.13)

The terms J4 and J5 can be dealt with at once. Using that

X+ X

B|x—fc|(T) C Byj_5(x) N Byj—5(X),

we estimate

dz e -
< Cllfllg gy lx = 5. (3.14)

~ ~ B~y
Ja(x, X) + J5(x, %) < C”f”ayf(g;)xn f |Z|n—,8 -

Byj—x
The analogous estimate for Jg follows by noticing that the surface integral which defines it is bounded,
while that for J; is a simple consequence of the bound

|x

|Dr'(x —y) - DI (- y)| < C for every y € 06 (x).

Xn
From these observations, (3.9) and (3.11)—(3.14), we conclude that claim (3.8) holds true. The proof
of the lemma is thus complete. m|

From this, we may easily infer the regularity of the solution of (3.1) near flat portions of the
boundary.

Proposition 3.3. Let 8,y € (0,1), r € (0, 1], and f € C(%y). Let u € CX(%,) N CUE,. U Dy,) be a
bounded solution of —Au = f in €, satisfying u = 0 on 9,. Then, u € CA? ']8 y(%j) and

-2
Il iy < € (7 ulmgyy + W) (3.15)

for some constant C > 0 depending only on n, 3, and vy.

Proof. First of all, by scaling we can reduce ourselves to the case r = 1. Indeed, assuming the validity
of the proposition for = 1, we define u,(x) := u(rx), f,(x) == r>f(rx) for x € ©," U 2,, notice that they
satisfy —Au, = f, in 6", u, = 0 on %,, and infer therefore that

s ey < € (Il + 1l )
Rephrasing this inequality back to u# and f, we obtain

-1 2— 2 2—
r{SUP (2" 1) + IIDulle«ﬁ)} + D ullgp ) < € (Ilullec@) +r 7||f||5§(<52+)),
X€6 -
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which gives (3.15) since r < 1.

Let w be the function introduced in Lemma 3.2 and write v := u —w. Clearly, v is of class C? in ©,,
continuous up to %,, and harmonic in 6;°. As v vanishes on %,, we can consider its odd reflection
across %, which is harmonic in the whole %,. By standard interior estimates for harmonic functions,
we deduce that v is smooth and satisfies ||Dv||cz(<gl+) < C|vl| L) for some dimensional constant C > 0.
The estimate in (3.15) immediately follows from this and Lemma 3.2. O

By straightening the boundary, we may deduce from the previous result an a priori estimate
in C iﬁ y(Q) for solutions of (3.1). The precise statement is as follows.

Theorem 3.4. Let B,y € (0,1), Q C R" be a bounded domain with boundary of class C**, and f €
CY(Q). Let u € C*} (Q) be a solution of —=Au = f in Q. Then,

llleas g < € (lullzoe + 1fllegqy) (3.16)

for some constant C > 0 depending only on n, 3, y, and Q.

Proof. Given ¢ > 0, consider the set
Qs ={xeQ:d, >}. (3.17)
By standard interior estimates, it is clear that u € C*# @) for every 6 > 0 with
lllczsyy < Cs (lulls@) + 1 llcs ) (3.18)

for some constant Cs5 > 0 depending only on n, 8, v, and 9.
We now address the boundary regularity of u. We claim that, for every ¥ € 0Q, there exist a
radius o5 > 0 and a constant C; > 0, depending only on n, 8, v, dQ, and X, such that

1
”u”&vﬁy(g;lgzﬁ(;{)) < 1_6 ||u||CEfY(Q) + Cx (||u||L°°(Q) + ”f”cf;(g)) > (319)
where, for X € 90Q and r > 0,

. -1
”””Ezf @:B,(x) — SUP (dx |u(x)|) + ||Dul|z=@nB, %)
Ly X€QNB,(F)

+ sup (dz |D2u(x)|) + sup (df;y
XEQNB,(¥) xyeQNB,(® \
X£y

|D?u(x) - Dzu(y)l)
lx -y '

Note that here d, still indicates the distance of x from the entirety of the boundary of Q.

As 0Q is of class C*#, for every ¥ € 0Q there exists a radius R = R; € (0, 1) such that, up
to a rotation, it holds Q N Gx(¥) = {(xX, x,) € €r(X) : x, > h(x')}, for some function & € C*AR")
satisfying h(x") = X,, D’h(x’) = ', and ||Al|c2s@s-1y, < K, where, from here on, K denotes a general
constant larger than 1, depending at most on n, 5, v, 9Q, and X. Without loss of generality, we may
also suppose A to have compact support.

In order to prove (3.19) we straighten the boundary around the point X, which, after a translation,

we assume to be the origin. Consider the mapping ¥ : R” — R” defined by ¥(z) = (Z, z, + h(z'))
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for every z = (/,z,) € R". It is easy to see that ¥ is a C*#-diffeomorphism of R” onto itself such
that P(R™! x (0, +00)) = {(x’, x,) € R" : x, > h(x')} and ®(x) = ¥~!(x) = (¥, x,, — h(x")) for every x €
R". Also note that

1 S ”Dlpllcl,ﬁ(Rn) S K, 1 S ||D(I)||C}ﬁ(Rn) S K,
1
x z—w| < ¥ () —Yw)| < K|z —w| forall z,w € R", (3.20)

dy) < 2y < Kdyy forall z € €.,

for every r < K™'R.
-1
Observe now that W(%64,,) C %x, with ry = g(l + ||D’h||Lm(Rn-1)) . Thus, the function v = uo ¥
belongs to C*(%) N C*(6,. U Z,) and solves

-Av=g in%,,
v=0 on %,,

for every r € (0, 9], and where g := —~Tr(AD*v) — b - Dv + f o P, with

0,1 | D)
D/h(Z/)T ‘ |D,]’l(Z,)

A(z) =

. ] and  b(z) = (0, Ah(2))".

Hence, we may apply Proposition 3.3 and obtain the estimate

-2
”V“E‘%rl@y(%f) < K(}"y ”V”LOO(%J;) + ”g”a'i((gzt))
(3.21)

) 2
< K(,ﬁ llull ) + ||Tr(AD v)”@g(%;) + b - Dvllgg((@) +1fo ‘I’||5§(<g2+r)).

Note that A and b satisfy ||A|| Loy < Kr and ||DA]| Loy T ||b||C5(9g2+r) < K. Consequently, after some
computations we find that, if r is sufficiently small,

28
@

||T1‘(AD2V)||5€(<€2J;) < Kr”ullc

. — Y
b Dv”ij(‘@”{;) < Kr ”uHCEfY(Q)’

1f 0 Wlizes) < Kl

where we also took advantage of (3.20). Thanks to these bounds, (3.21) yields
-2
Wlees g < K (7 llces g, + 72 lalliicn + et )

Letting o := kor with kg := (2||DD|| Lw(Rn))_l, we clearly have that B, € ¥(%,). Thanks to this and (3.20),
it is not hard to see that ||u||zs @By S K|Vl z26 @) Accordingly, we conclude that
—lyvore —1NOr

Y y=2
”u”asﬁy(g;gg) < K(l’ ”ullczf’y(g) +r ”M”L‘X’(Q) + ”f”C/;(Q)) s
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and claim (3.19) follows by taking r (and therefore o) suitably small.

Now that (3.19) is established, the conclusion of the lemma can be inferred from a simple covering
argument. Indeed, let {X,...,Xy} C 0Q be such that 0Q) C U;V:l ngj()'cj). Then, there exists a
small 69 > O for which Q c Qs U U?Ll BQX/()_CJ'), with Qs as in (3.17). Clearly, from this, (3.18)
and (3.19), it follows that

_ 3
sup (dJu)) + |Dulc@ + sup (2 ID°u()]) < < lllezs g + 3C (Il + Wfllp) . (3:22)
xeQ xeQ - 4

.....

sup (dﬁ+y |D*u(x) — Dzu()’)|) — sup (dﬁﬂ, |D*u(x) — Dzu()/)|)
X,yeQ - |~)C - )’|ﬁ x,yeQ * |)C - )’|'8
Xy x#y, dy<d
D? - D? D? -D?
< sup ( & |D?u(x) u()’)l) © max sup ( & |D*u(x) u(Y)l)
x,yeQs, lx — yp JE{L,...N} xYEQN By (X)) | |x -yl
x#y (3.23)
D?u(x) — D*u
+ max sup (dff”l ) (y)l)
Jjell,...N} XEQN By (%)), yEQ\Bagy (%)) |x — yPP
x#y,dy<dy

7
< e llezp o+ 7Cx (o + 1flles ) -

where we used that, for every j € {1,..., N},

- ( govr 12000 = D2u<y>|)

XEQNBoy()), YEQ\Bagg (i) lx =y
x#y,dy<d, .
dx 2 Y112 Y112
< sup — | (XD u(x0)| + d}|D"u(y)|) ¢ < 2 sup (d}|D"u(x)|
XEQNBy (%)), yeQ\Bags (%)) Ox; xeQ

x#y,di<dy,
< 3 6C
= g ”u”Cz{y(Q) + * (”u”L‘”(Q) + ||f||cf:(g)) ’

thanks to (3.22). By combining (3.22) and (3.23), we obtain

5
”u”C%’ﬁy(Q) < g ”ullczﬁy(g) +10Cy (||M||L°°(Q) + ”f”C'g(Q)) >

which leads to (3.16), after we reabsorb on the left-hand side the CEIB , horm appearing on the right.
The proof is complete. O

Thanks to the previous result, estimate (3.2) is reduced to an L*(€2) estimate for solutions of (3.1).
We take care of this issue in the following lemma, by means of a simple barrier.
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Lemma 3.5. Let y € (0, 1), Q C R" be a bounded domain with boundary of class C?, and f € Ly (Q).
Letu € C*(Q) N Co(ﬁ) be a solution of (3.1). Then,

lullzscy < C sup (I £(x)]). (3.24)

xeQ)

for some constant C > 0 depending only on n, y, and Q.

Proof. First, we recall that the distance function d(x) = d, is of class C? in a neighborhood Ns, =
Q \ Qs, of 0Q, for some ¢y > 0 depending only on €, see, e.g., [14, Lemma 14.16]. Here, we are using
notation (3.17).

Set

M = sup (21 (x)]).

xeQ

Up to a translation, we have that Q C Bg, with R := diam(Q2). Let 6 € (O, %“) and n € C*([0, +c0)) be a
non-increasing function satisfying 7 = 1in [0, 1], 7 = 0 in [2, +00), and [7’| + [7”’] < 10 1n (1, 2). Define

o(x) = B(R® = |xI*) - Dp(6™'d(x))d(x)"™ for x € Q,

for some positive constants B and D to be determined. Clearly, ¢ € C2(Q) N C°(Q) with ¢ > 0 on Q.
Using that |Dd| = 1 in N,5, we compute

—Ag(x) = 2nB + D{n" (67! d(x))5d(x)* + 22 = y)n' (6 d(0))5 ™ d(x) + (2 = Y)(1 = y)n(6~'d(x))
+(n' (671 ()67 d(x) + (2 = (6™ d(x)) Jd()AL(x) ()
>B+D {—120)((5,25)(d(x)) + (1 = yxoealdx) - 506||Ad||L°°(N50))((0,26)(d(x))}d(x)_y

1—
=B+D {Ty)((o,a](d(x)) - 121/\/(6,25)(61(36))} d(x)7,

provided we take ¢ := min {%0, %IIAdIIZL(N%)}. Choosing now
2M M [ 242
D=—— and B:=—|—+1],
-y o\l -y

we get that —Ag > |f] in Q. From the weak comparison principle we thus infer that |u| < ¢ in Q, which
gives (3.24). |

We have now all the ingredients needed to establish Theorem 3.1. In particular, by the last two
results, we only need to show that problem (3.1) actually admits a C Ef V(Q)—solution.

Proof of Theorem 3.1. To establish the existence of a Cff y(Q)—solution of problem (3.1), we use the
following simple approximation argument.

Let n € C'([0, +0)) be a non-decreasing function satisfying = 0 in [0,1], n = 1 in [2, +00),
and |7’| < 21in (1,2). Given k € N, let fi(x) := n(kd(x))f(x) for x € Q. Clearly, f; is of class C* up to
the boundary of  and thus, in particular, f; € Cg(Q). Moreover, its Cf(Q) norm is bounded uniformly
with respect to k, as it holds

||fk||C€(Q) < Sllfllcg(g)- (3.25)
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Indeed, we have

sup (d71f(0)]) < sup (&1 £(0))

x€Q xeQ
and

sup (dmylﬁ(x)—ﬁ(wl)_ cup (dﬁwm(x)—ﬁ((yn)
x,yeQ

x,yeQ - |X - )’|B * |X - )’|’8
Xy x#y, dy<dy

|n(kd(x)) — n(kd(y))|
|x =yl

x,yeQ
XEY, dXSmin{dy, % }

< sup {dllf(x)l [dx ]H|n(kd<x>> - n(kd(y))llﬁ}

+ sup (d€+'y |f(-x) - f(y)l

Ix — 8 |77(kd()’))|) + sup (dﬂww)

x,yeQ) x,yeQ) * |X - yl’B
x#y, dy<min{d,, 3} x#y, 2<d <dy
< 2% sup (dZ |f (x)|) +2 sup (df;y—lf(X) — f(y)l) ;
xeQ x,yeQ | |.X - )’|'8
XFY

which give (3.2_5). B
As f, € CP(Q), by standard elliptic theory there exists a unique solution u; € C*#(Q) of

—Au; = fi inQ,
uy =0 on 0Q.
By virtue of Theorem 3.4, Lemma 3.5, and estimate (3.25), we have that

||uk||Cg.{jy(Q) < Clfllgzq forevery k €N,

for some constant C > 0 depending only on n, 8, v, and Q. Thanks to this uniform bound,
standard compact embeddings of Holder spaces, and a diagonal argument, we conclude that, up to
a subsequence, {u;} converges in Co(ﬁ) N C*(Q) to a function u € Cflﬂ y(Q). Clearly, u solves (3.1) and
satisfies (3.2). O

4. Maximum principles

Before turning to the proof of Theorem 1.1, we need maximum principles for the mixed
operator p(—A) + gL, + g - D and an a priori estimate for the norm || - IICQI(Q) which stems from
them. In order to do that, we need a preparatory lemma.

Lemma 4.1. Let k be a kernel satisfying (1.3), for some s € (0,1) and k, > k; > 0. Given A, R > 0, let

X By (X) for x € R". 4.1)

Then, there exists a constant C > 1, depending only on n, s, k|, and k,, such that

v(x) = vyr(x) = et

AR/2

Lkv(x) < _EW 1%

(x) for every x € Bg,

provided AR > C.
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Proof. By recalling (1.3) and taking A > 4/R, we directly estimate, for x € Bg,

Liv(x) = p.v. f (e“' — ety (X + z)) k(z)dz

< v(x) {p.v.f (1 - e‘“)k(z) dz + f k(z) dz}
Bgr R™\Bg
1
= v(x) {ﬁ p.V.jl; (1- ewl)k(%)dw + LH\B k() a’z} 4.2)
1 wiy i (WY o L w _dz
< v(x){E fBM\B] (1-e )k(/l)dw = p.V.L] wlk(/l)dw+K2Ln\BR Izl””s}

n—1
:V(x){if (1 _em)k(Y)dw_,_wR—%}’
/ln Br\B; /1 25

where we have also used that
1-¢e" <—-w, foreveryw; € R and p.V.f wi k(%)dw =0, by symmetry.
B

We now look more closely at the term

f a —ew‘)k(v—v)dw,
Br\B1 A
that we split as

f (1—eW1)k(Y)dw:f (1—eW1)k(1V)dw+f (l—ew')k(y)dw.
Bir\Bi A (Bar\B)N{w <1} A BirN{w>1} A

Using (1.3), the first of the above two integrals can simply be estimated by

f (1—eW1)k(Y)dwsf k(v—v)dw
(Bar\B)Nwi<1) A Bur\B)Nw<l) VA

n—1
< k) /ln+25f dw _ H"(0B)) Ky 2
R

"B, |W|n+25 s

4.3)

The second integral can be instead treated as follows. Keeping in mind once again assumption (1.3)
and that 1 — ™! < —% e for every wy > 1, we have that

w 1 w
(1- eW')k(—)dw < f ew‘k(—)dw
»fB/IRﬂ{wpl} A 2 BarN{w1>1} A
K1 ) e
< - /ln+25f dw
2 BarN{w>1} |W|n+25

Kt .
<——R" 2sf e dw.
2 Baniwi>1)

By defining
V3

AR
E = {(W],W/) S RXRn_l 1w < 7, |W,| < T/lR} CBgrnN {W1 > 1},
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we have

AR/2 c
f e dw > f " dw = ¢ (AR)"! f e dw, > = (AR e/,
BirN{w>1} E 1 2

for some constant ¢ > 0 only depending on n and where we have used that AR > 4. Therefore,

f (1- ewl)k(K)dw < _h AR pARI2,
Bignfwi>1) A 4

Plugging this and (4.3) into (4.2) we obtain

2 e/lR/Z 1 e/lR/Z (/lR)st AR
2s -2s _ 2
Liv(x) < v(x) {c (2 +R™) - z —/1R1+2S} =& W {2 -C ( Rt o /2)},

for some constant C > 4 only depending on n, s, k1, and «,. This leads to the inequality claimed in the
statement, provided we take AR suitably large. O

With this in hand, we may now state and prove our first maximum principle.

Lemma 4.2. Let Q C R" be a bounded open set and k be a kernel satisfying (1.3), for some s € (0, 1)
and k, > k; > 0. Let g € L*(Q) and p,q : Q — R be two measurable non-negative functions.

Let u : R" — R be a measurable function, continuous in an open neighborhood of Q, and C? inside Q,

which satisfies
f ()|
———dx <+
re 1+ |x]H2s

p(—ANu+qLiu+g-Du<0 in Q. 4.4)

and

(i) If the inequality in (4.4) is strict, then

supu < sup u.
Q RN\Q

(@ii) If ¢ > 0in Q and u achieves a global maximum in C, then u is constant.
(@ii) Ifinfo(p + q) > O, then
supu < sup u.
Q RN\Q

Proof. Without loss of generality, we can suppose that

sup u < 409,
R1\Q

otherwise our claims are trivial.
Suppose that u has a global maximum at x, € Q. Then

—Au(xp) 20, Liu(xg) >0, Du(xp) =0,
and therefore

P(xo0) (=A)u(xo) + g(x0) Lyu(xo) + g(xo) - Du(xo) = p(xo) (—A)u(xo) + g(xo) Lxu(xo) = 0. 4.5)
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This is not compatible with (4.4) holding with a strict inequality. Hence, point () is established.

On the other hand, (4.5) can hold alongside (4.4) with ¢ > 0 only if Liu(xo) = 0, which is in
turn only possible when u is constant (given the fact that at xy a global maximum is reached). This
proves (ii).

We turn to the proof of (iii). Let R > 0 be fixed in such a way that QQ C Bgand v = v,z be asin (4.1).
An application of Lemma 4.1 and straightforward computations give that

AR/2

—Av(x) = —2%v(x), L(x) < TC IR v(x), Dv(x) = Av(x)ey, for every x € Q,

for some C > 1, depending only on n, s, k;, and k,, and provided A > CR™!. Define now u, := u+ev,
for £ > 0. Taking (4.4) into account, we see that

oR/2

- E /lRst

p(—=Au, + g Lyu, + g - Du, < s(p (“Ayv+qLy+g- Dv) < 8(—/12 + Ag - el)v in Q.
Using that info(p + ¢g) > 0 and v > 0 in Q, by choosing A sufficiently large we then get that
p(=MNu,+qgLiu. +g-Du, <0 in Q.

By point (i), we deduce from the above inequality that

U <y < SUp Uy < Sup u; < sup u + ge*'® inQ,
Q RIN\Q RIN\Q
for every € > 0. By sending &€ — 0" we obtain the estimate claimed in (iif). O

As a consequence of the above maximum principle we deduce the following.

Proposition 4.3. Let Q C R" be a bounded open set and k be a kernel satisfying (1.3), for some s €
O,1)and k, = k; > 0. Let g € L*(Q) and p,q : Q& — R be two measurable non-negative functions.
Letu € C%(Q) N CO(R™) be satisfying

p(-Du+qLiu+g-Du<0 inQ,
u<0 ondQ, (4.6)
u<0 inR"\Q,
and assume either one of the following conditions to hold:
(i) the inequality on the first line of (4.6) is strict;
(ii) g > 0in Q;
(@ii) info(p +q) > 0.
Then, u < 0inR".

Thanks to the maximum principle, we can also establish an a priori estimate for subsolutions of the
Dirichlet problem (1.4) ensuring linear growth from the boundary.
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Theorem 4.4. Let QO C R" be a bounded open set having the exterior ball property and k be a kernel
satisfying (1.3), for some s € (0,1) and k; > k; > 0. Let g € L*(Q) and p,q : Q — R be two
measurable non-negative functions satisfying

infp>0 and sup g < +oo.
Q Q

Let f : Q — R be a measurable function bounded from above. If u € C*(Q) N CO(R") satisfies

p(—MNu+qgLiu+g-Du<f inQ,
u<0 ondQ,
u<0 ian\ﬁ,

then
||u+||c(_’1(g) < C||f+||L°°(Q),

for some constant C > 0 depending only on n, s, ki, k2, Q, infq p, supg, g, and ||gl|.~q)-

Proof. We begin by showing that the C°,(Q) norm of u, can be bounded in terms of the suprema of u,
and f,, that is

lillco 0y < Clllllz=@ + I1fillz=)- (4.7)

for some constant C > 0 depending only on n, s, k2, Q, infg p, sup, g, and [|g|~q).

As Q has the exterior ball property, there exists a radius ry € (0, 1) such that, corresponding to each
point z € 9Q there is a point y, € R" \ Q such that B, (y;) N Q= {z}. It is immediate to verify that (4.7)
will be proved if we show that there exist two constants C > 1 and ¢ € (O, %], both depending only
onn, s, k2, 1o, infq p, supg, g, and ||g]|.~), such that

u(x) < C(||M+||L°°(Q) + ||f+||L°°(Q))|x —z| forevery z € 9Q and x € Q N B(1.46),,(¥2)- (4.8)

Let z € 9Q be fixed. Up to a translation, we may assume that y, = 0, so that in particular z € 0B,,,.
Let o € (0, min {2 — 25, 1}) and consider the radially symmetric function

0 if x € B,,,
(Il —r)™" —
W(x) = M"b‘T if x € By, \ By,
,,.1+0'
’”0—1(:_ if x e R"\ By,,.
o

Clearly, y is globally bounded and Lipschitz continuous, smooth inside B,,, \ B,,. Moreover, it is
radially non-decreasing and thus non-negative, since ry < 1. We claim that

p(~-MW+qLiy+g-Dy =1 inBis, \ By, 4.9)
ifé € (0, %] is sufficiently small, in dependence of n, s, k2, 9, infq p, supg ¢, and [|g|z~q), and o only.
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In order to establish (4.9), we compute, for x € By, \ E,O,

o\ X
DY) = (1= (vl =r0)”) .
4.10)
o1 X® X (L, x®x (
D*y(x) = —o(lx| — ro)””! 24{P%M—m)“—— 3),
|x] x| |«
where [, is the n X n identity matrix. From this, it follows in particular that
4 n-1_ o -
—AY(x) = (x| = r)” " - > —(|x| = ro)” _
¥ ) 2 ol = o) 7 (= n) for all x € Biias, \ By, (4.11)

8(x) - Dy(x) = —llgll=(

e 1

provided ¢ < (%)E We now estimate L. To this aim, we write
Lip(x) = Li(x) + L(x) + I3(x) + L4(x),

where

Ii(x) = - f W (x +2) — Y (x) — DY(x) - 2)k(2) dz,
B

[xl=r

bux=wu{ﬁ Ky — x) dy,

I3(x) = (Y (x) = ¥(2roey)) k(y — x)dy,

R \BZVO

mm:j‘ W) — Ok - 2) dy.
Barg\(Bry UBjsi-rg (1))

We stress that, here and elsewhere in the paper, B,(p) denotes the open ball of radius r centered at
the point p, while B, stands for the ball of radius r centered at the origin, i.e., B, = B,(0). By Taylor
expansion, for every z € B, there exists p = p(x, z) € B;(x) C By, \ B,, such that

1
Y(x+2) = Y(0) = DY() - 2 = S(DY(p)z,2).
Recalling (4.10), we deduce that

.2 1 =(pl=7r) (|72 .2 2
U+ 9 =0~ DU -2 = - pl -y L L2 ””(EL_(PZ))<EL

Ipl? 2 14 pP ]~ ro’

and thus, thanks to assumption (1.3),

f dz___HT@B)K (8l =)
B

K2
1 =z —— =
1(X) |Z|n—2+2s 2(1 _ S) ’”0

ro

lxl=rg

On the other hand, recalling the definition of i, (4.10), and again (1.3), we simply estimate

n—1
dz_ 2H"'@B) K, oo,
|Z|n+25 s

L(x) >0, L(x) > k> rof
Rn\BLO
2
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and
dz og |x| — 7
Iy(x) 2 —K2||DW||L°°(BZ,O)f — . 2 —C ry AS( 0) ,
Barg \Bjy-r, Iz ‘ o

for some constant C > 0, depending only on n, s, and «,, and where

1 if s € (0.1).

Ay(r) ={-logr if s = %,

rl=2s ifse %,1),

for r € (0, 1). All in all, we found that
125 4 12 =70 o
Lip(x) > =Cry A, for every x € B1sy, \ By,- 4.12)
o

By comparing this with (4.11), we are easily led to (4.9), provided we take ¢ sufficiently small.
We are now in a position to establish (4.8). Indeed, as ¢ > 0 in By, ¥ = k = Y((1 + 6)rper)
in R" \ B(i16),, and (4.9) holds true, we get that v := u — My, with M = K_1||u+||LOO(Q) + | fll o)
satisfies
{p AWV +gLwv+g-Dv<0 inQN Bqisy,

vy<0 inR" \ (Q N B(1+5)r0).
By the maximum principle of Proposition 4.3, we conclude that v < 0 also in QN Byj.s),, and therefore
that u(x) < M(|x| — ro) < Mlx — 2| for every x € Q N B(1.4),, Which is (4.8).

We have established that (4.7) holds true. In order to conclude the proof of the theorem, it thus
suffices to show that

luillz=@) < Cllfillie@)- 4.13)

We do this by means of another barrier, arguing as in the proof of [14, Theorem 3.7]. Let R > 0 be
large enough to have that Q C By and ¢ := > — v, with v as in (4.1). Clearly, ¢ > 0 in R". In
addition, via the same computations performed in the proof of Lemma 4.2 it is immediate to see that

p(—A)p+qLip+g-Dp>1 inQ,

provided A4 > 0 is chosen sufficiently large, in dependence of n, s, ki, k2, R, infq p, and [|g||z~) only.
Then, the function w := u — || £, ||~ ) ¢ satisfies

p(=Aw+qgLiw+g-Dw<0 inQ,
w<0 inR"\Q.

Invoking again Proposition 4.3, we infer that w < 0 in Q, which gives (4.13). The proof is thus
complete. O

We point out that, when L; is 2 s-stable, i.e., when its kernel k is homogeneous, it is possible
to obtain (4.12) through a simpler computation based on the representation formula provided in [3,
Lemma 2.4].

Mathematics in Engineering Volume 8, Issue 1, 1-42.



26

5. Existence, uniqueness and boundary regularity for (1.4)

Proof of Theorem 1.1. We prove here Theorem 1.1, concerning the existence, uniqueness, and
regularity of solutions to the Dirichlet problem (1.4). To establish it, we move the nonlocal term ¢ L;u
to the right-hand side and run a fixed-point argument based on the solvability properties of the
(standard) Laplacian.

To this aim, it is paramount to understand the regularity of the operator L; applied to smooth
functions which are only Lipschitz continuous across the boundary of €, recall that solutions of
problem (1.4) (with, say, p,g = 1, g = 0, and x; = k; in (1.3)) are typically no better than Lipschitz
in R", thanks, e.g., to the Hopf lemma of [9, Theorem 2.2] or [5, Theorem 1.2].

In light of these observations, we proceed to deal separately with the two cases s € (O, %) and s €

[%, 1), since the regularity properties of the solutions, as well as the functional spaces used to measure
them, change significantly.

5.1. The case s € (O, %)
We prove here the following statement, which implies in particular Theorem 1.1 in the case s < %

Proposition 5.1. Let Q C R" be a bounded open set with boundary of class C*?, for some a € (0,1).
Let k be a kernel satisfying (1.3), for some s € ((), l) and k; > k; > 0. Let p,q € C*Q) be two

non-negative functions, with p satisfying infq p > 0. Let f,g € C*(Q). B
Then, problem (1.4) has a unique solution u € C*(Q) N CO(R"). Moreover, u € C*#(Q), with § =
min{l — 2s, a}, and it satisfies

il casy < Cll Ml 5.1)

for some constant C > 0 depending only on n, s, a, k1, k2, &, ||p||C(,@, infq p, and ||q||C(,@.

We can address the proof of Proposition 5.1 through unweighted Holder spaces, since, when s < %,
the operator L; maps Lipschitz functions to Holder continuous ones. The following lemma provides a
statement of this fact in full details.

Lemma 5.2. Let Q C R" be a bounded open set with Lipschitz boundary and k be a kernel
satisfying (1.3), for some s € (O, %) and ky > k1 > 0. Let u € C*'(Q) N COR™") withu = 0 in R" \ Q.

Then, L € C'=25(Q), with ILxull o2y, < CllDullp«gy, for some constant C > 0 depending only
on n, s, K», and diam(Q).

Proof. Set R := diam(Q). Using that u is globally Lipschitz in R" with ||Dul[;~®r = ||Dulli~),
that |u(x)| < ||Dul| =) d, for x € Q, and that k satisfies (1.3), we compute

|Lku(x)| < f lu(x) — uw)| k(w — x) dw + |u(x)| f k(w — x)dw
Q RN\Q

dz dz
< K2||DM||L°°(R")f —— 5 T kllDull~q) d;
Br |z| R’

|Z|n+2s
1-2 1-2
R"> d! )

"\By,

< H" 1 (0B)) k2|l Dull = (1 >, + 7
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n—1
< H"(0B)

< ———— 1R Dul| 1),
35 =29 1Dullz()

for every x € Q. This gives the boundedness in Q of L;u. We now address its Holder continuity. To do
it, we first observe that, given x, y € Q, it holds

|u(x) —u(x+2z)—uly)+u(y + z)| < 2||Dul|go@n min {|x — y|, |z}  for every z € R".

Hence, we have

L) = L] < [ o) =t +2) =) + s+ 2| 62)
Rﬂ

< 2K2||Du||L°°(R”) (f Iz |n 1+2s }7|f |Z|n+zs)
By« ! \Bh_)‘

H"1(OB)) -
< — 7 Dull; 5
= 51— 29) K2||Dul| 1. Q) |x =yl

and the proof is complete. O

Thanks to this result, we may directly address Proposition 5.1.

Proof of Proposition 5.1. Of course, the uniqueness claim directly follows from the maximum
principle of Proposition 4.3. As to the existence, we run a fixed-point argument in the Banach space

X:={ueC@nC®):u=0inR"\Q},

endowed with the norm ||u||x = llutll 2 -

Let (-Alg)™" be the inverse operator of the Laplacian coupled with homogeneous boundary
conditions on €. That is, given & € CP(Q) with 8 := min{1 - 2s, @} € (0, 1), we indicate by (—Alg)™'[A]
the unique solution u € C*#(Q) of the Dirichlet problem

—-Au=nh in Q,
u=0 on 0Q.

Consider the affine map T defined as

foru € X. (5.2)

f—g-Du—quu]

T = (—A|Q>‘1[ :

By Lemma 5.2 and the standard Schauder theory for the Laplacian, we have

“f—g-Du—quu
p

|71l o, < €

CA(Q)

<C “ (5.3)

@ ”f”co(ﬁ) + ”gllca(ﬁ)”Du”(;a(ﬁ) + ”qnca(ﬁ)||Lku||cl—2s(ﬁ))

< C(Iflleom) + 1DUll o)) < C(I Nl + il ),
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where, from now on, C > 0 denotes a general constant depending only on n, s, @, i, k2, £, || P||Ca(§),
infq p, ||q||cp,@, and ||g||cw@. Hence, T is a continuous operator from X to the subspace C(z)”g (5)

of C*#(Q) made up of those functions that have vanishing limits on 9€Q.
Let now ¢ : Cg’B(Q) — C%(Q) = {u € C*(Q) : u =0 on dQ} be the inclusion map and eq be the
trivial extension operator outside of Q, i.e.,

in Q,
eqw = 4 1 for every measurable function w : Q — R. 5.4)
0 inR"\ Q,

Let 7T : X — X be defined by T = eq(t o T). Clearly, the solvability of problem (1.4) is equivalent to
the existence of a fixed point for 7.
Thanks to (5.3), the map T is continuous and satisfies

||T[M]||X < C(Ilfllct,@) + ||u||x) for every u € X.

Moreover, since ¢ is compact, 7" is compact as well. Hence, we can show the existence of a fixed-point
for T via the Leray-Schauder Theorem (see [14, Theorem 11.3]), provided we check that

IVllx < Clifllce) for every v € X such that v = A T[v] for some 4 € [0, 1]. (5.5

To see this, we first remark that every such visa C 2(ﬁ) N C°(R™)-solution of the Dirichlet problem
p(=AWV+AgLyv+Ag-Dv=Af inQ,
v=0 onoQ, (5.6)
v=0 inR"\Q.
Hence, by applying Theorem 4.4 to both v and —v, we deduce that

IVllz=@ < diam(€) [[Vllco () < ClIfllz=(@-

Moreover, by (5.3), _

Mlczs@ = ATl s, < C(1llce@ + Mlcaa )
By combining the last two estimates with the interpolation inequality
2

74p
c28(Q)’

B
2+

lIwll

see, e.g., [15, Definition 1.1.1 and Proposition 1.1.3], we obtain that
B

2
_ o 248 748
|ww®sg@mmmﬂmb@wm@y

for some constant Cy > 0 depending on the same quantities as C. Claim (5.5) follows at once, thanks
to the weighted Young’s inequality
5

B 2 1
248 248
I M g < ey + 5 Wlaoa

and the fact that [[Vllx < [Vlle2s)-

We thus proved that there exists a unique C2(Q) N C°(R")-solution to (1.4). Since the C*#
estimate (5.1) also immediately follows from the previous calculations, the proof is complete. O
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5.2. The case s € [%, l)
We establish in this subsection the following proposition, which gives Theorem 1.1 when s > %

Proposition 5.3. Let Q C R" be a bounded open set with boundary of class C*?, for some a € (0,1)
Let k be a kernel satisfying (1.3), for some s € [%, 1) and k; > k1 > 0. Let p,qg € C*Q) be two

non-negative functions, with p satisfying infq p > 0. Let f,g € C*(Q).
Then, problem (1.4) has a unique solution u € C*(Q) N CO(R™). Moreover, u has the following

regularity properties:

o Ifse(5.1) thenue C*¥, Q) c C'*>(Q), with f := min {2 - 25, ), and it satisfies

||ullcif23_l(g) + ”ullcl,z—z.v(ﬁ) < C”f”ca(ﬁ)a

o [fs= 3, thenue CE’ﬁg(Q) C Cl’l‘g(ﬁ)for every € € (0, 1) and it satisfies

L
2’
||u||CE>;fS(Q) + ”uHCmﬁe(ﬁ) < Ca”f”ca(ﬁ),

for some C,. > 0 depending only on n, s, @, k1, k2, Q, ||pllce) infa p, lgllce) 118llce@, and .

In order to prove this result, we need to first investigate the behavior of L, when applied to functions
which qualitatively resemble the sought solution u of (1.4). In light of the Hopf lemma established
in [9] or [5]—at least when p,g = 1, g = 0, and f > O—the graph of u presents corner points at the
boundary of Q. When s > % Liyu will then typically blow-up at those points, no matter how smooth
the function is inside €. The next two lemmas quantify the blow-up rate in the two cases s € (%, 1)
1

and s = 3

Lemma 54. Let Q C R" be a bounded open set with Lipschitz boundary and k be a kernel
satisfying (1.3), for some s € (3,1) and ky > k1 > 0. Let u € C2 (Q) N COR") withu = 0 in R" \ Q.
Then, Lyu € Cgm(Q) for every 8 € (0,2 — 2s], with

”Lk””cg_v_](m < Cllullc (s

for some constant C > 0 depending only on n, s, k,, and diam(Q).
Proof. We begin with the weighted L™ estimate for Lu, i.e., we claim that

|Leu(x)| < Cliulle2 @y forall x € Q, (5.7)
for some constant C > 0 depending only on n, s, and x,. For x € Q, we write Liu(x) = 1,(x) + O,(x),

with

L(x) = p.V.f (u(x) — u(x + 2))k(z) dz,
B

P

Op(x) = f (u(x) — u(x + 2))k(z) dz,
R™\B,
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and p > 0. Recalling assumption (1.3) on k and choosing p := d,/2, we compute

u(x+2) —u(x) — Du(x) - z
|Ip(x)| = f (l/l(x +2) — u(x) — Du(x) - Z)k(Z) dz| < Ky f | |7|+2s | dz
B, B,
_ dz H"1(0B)) y
Sprg@w%@Q£kwmﬁs%Lﬂ;mwwmm”.

On the other hand, exploiting the fact that u is globally Lipschitz continuous with ||Du||jegy =
|Dul| (), we simply have

|0p(x)| < Kzf ) _Z(;: + 2 dz
R™\B, |z|*=

dz H"1(OB)) 2s
< ko||Dul| o @n f < K lullcz e 7,
) Jomg, R S T 25— 1 2@

and claim (5.7) follows.
We now move to the weighted Holder continuity estimate. Thanks to (5.7) and symmetry
considerations, it is clear that we may restrict to proving that

Ix —yP

|Lk1/t(X) - Lku(y)| < C”u”CEI(Q) d2s—1+,3

d,
forall x,y € Qs.t.d, <dyand |x —y| < 1 (5.8)
for some constant C > 0 depending only on n, s, and k,. To see this, we let as before p := d,/2 and
observe that
|u(x) = u(x + 2) = u(y) + u(x + 2)| < 2l|Dullp=(y min{lzl, |x —y|} forall z € R".
Using this, we compute

|u(x) = u(x + 2) — uy) + u(x + 2)| .

I%m—@wkmf

<
RN\B, |Z|n+2s
dz
< 2k || Dull =1 x —ylf — (5.9)
RM\B, |2+
JHT@B)
>~ s Ky ||U CEI(Q) pzs .

To estimate the difference between the I, terms, we use the second order estimate
JuCx + 2) = u(x) = Du(x) - z = u(y + 2) + u(y) + Du(y) - z| < 2llull2 (g p" |zl min {lel, |x =y},
valid for all z € B,. Thanks to this, we get

— -D o D )
1,0 - L,o)| < Kzf |ux + 2) — u(x) = Du(x) - z = u(y + 2) + u(y) + Du() - | i
BP

|Z|n+2s

<2 ! _dz _dz
S 2K ||u||c31(Q)P 5 |g|n-2+2s +|x =yl |z|n—1+2s

eyl Bo\Bjx—y|
< H"'(9B))
T (1-s52s-1)
This and (5.9) immediately lead to (5.8). The proof of the lemma is thus complete. O

-1 2-2
K2||M||c31(Q)P lx = yI7".
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When s = %, Liu could develop logarithmic singularities at the boundary. With no aim to describe
this behavior with such precision, we state the following result, which can be proved with minor
modifications to the computations presented for Lemma 5.4.

Lemma 5.5. Let Q C R" be a bounded open set with Lipschitz boundary and k be a kernel
satisfying (1.3), with s = } and for some k» > k; > 0. Let u € C* (Q) N CO(R") withu = 0 in R" \ Q.
Then, Liyu € Cg(Q)for every B,e € (0, 1), with

|1Zet]| 5,y < Celltllez s
for some constant C, > 0 depending only on n, k,, 5, diam(Q2), and &.

Next, we include the following result, which addresses the regularity of the gradient of functions
belonging to the space C?,(Q).

Lemma 5.6. Let Q C R” be a bounded open set with Lipschitz boundary and u € C %I(Q). Then, Dju €
Cﬁ(Q)for every je{l,...,n}and B,y € (0, 1), with

1Dl sy < Cllele @,

Jfor some constant C > 0 depending only on n, B, y, and diam(Q).

Proof. On the one hand, we have that

sup (dY |Dju(x)|) < diam(Q)|| Dull =@ < diam(Q)|lullc2 - (5.10)
x€Q

On the other hand, given any x € Qandy € B & (x), by Lagrange’s mean value theorem there exists a
point z = z(x,y) € B%x(x) such that

|Dju(x) = Dju(y)| = |DDju(2) - (x = y)| < lx =) sup |ID*u(w)| < 2ullc2 qdy'1x = ).

weB 4,(x)
2
Hence,
Dju(x) — Dju Dju(x) — Dju
up ( dg;ﬂ ju(x) j<y>|): up ( dﬁy(l ju(x) j<y>|)ﬂ|Dju(x)_ Dju(y)ll_ﬁ]
x,yeQ ’ |X - )’|ﬁ x,yeQ |X - )’|
O<lr—yl<% O<lx—yl<%
. 1— .
< 2diam(Q)lulll; o IDull; g, < 2 diam(Q)lulle2, o

Since the supremum of the above quantity with respect to points x,y € Q with |x—y| > % can be easily
estimated using (5.10), the proof of the lemma is complete. O

With these preparatory results in hand, we are ready to show the claims contained in Proposition 5.3.

Proof of Proposition 5.3. The general strategy of the proof is the same adopted to establish
Proposition 5.1. The differences lie in the functional spaces that we employ and the estimates that
we take advantage of.
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First of all, we write

2s — 1 ifse(%,l),
B := min {a, 2 - 2s} and vy =

1
ifs= .
£ if s 5
where, in the case s = %, € is any fixed number in (0, 1). In what follows, C indicates a general

positive constant depending at most on n, s, @, ki, k2, €2, ”P”cw(ﬁ)’ infq p, ||q”cw<§)’ ||g||c(,@, and also
on £ when s = %

As in the proof of Proposition 5.1, we plan to obtain the existence of a solution of (1.4) through the
Leray-Schauder fixed-point theorem applied to an affine endomorphism 7" in a Banach space X. The

domain of 7 is now
X:={ueC(@QnC'®):u=0eR"\Q,

with flully = |lullc ), While the map T is formally defined as before. That is, T = eq (1o T),
where T is exactly as in (5.2), eq is the extension operator (5.4), and ¢ is now the inclusion of C Ef y(Q)
into C EI(Q). Of course, this map is well-defined provided we check that T maps X in C Ef y(Q). This is
a consequence of Lemma 5.4 (when s > %) or Lemma 5.5 (when s = %), Lemma 5.6, and Theorem 3.1,
whose combined use yields in particular the continuity of 7 and 7 via the estimates

|7l < C||T[u]||czﬁ o < C(Ifllce, + llully)  for every u € X. (5.11)
()

Next, we observe that T is compact, as a consequence of the compactness of ¢ warranted by
Lemma 2.3. Hence, in order to obtain a fixed-point for 7 (and thus a solution of (1.4)), we only
need to check the validity of the a priori estimate (5.5). As in the proof of Proposition 5.1, any v € X
satisfying v = A T'[v] for some A € [0, 1] solves in particular the Dirichlet problem (5.6). By applying
to it (5.11), the interpolation inequality of Lemma 2.1, and the weighted L™ estimate of Theorem 4.4,
we deduce that

||v||cz€y(g) =41 ||T[V]||Ci,ffy(g) < C(”f”ca(ﬁ) + ”v”CEl(Q))

B 248 B 248
2(1+B) 2(1+p) 2(1+p8) 2(1+p)
<C (||f||cn(g) v ||v||cgl(g)||v||df(m) <C (Ilfllca(g) v ||f||Lm(Q)||v||Cify(m),

from which claim (5.5) follows after an application of the weighted Young’s inequality.

We have thus proved that problem (1.4) admits a solution u € sz y(Q). Of course, its uniqueness
is granted by Proposition 4.3, while its unweighted global fractional regularity follows from the
embedding of Lemma 2.2. O

6. Sharpness of the boundary regularity

Proof of Theorem 1.2. Given s € (0, 1), we consider the one-dimensional fractional Laplace operator

u(x) — u(y)
R |.X _ y|1+2s

(—=A)'u(x) = C, p.v.

)
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2s 1+2s
with C; = 2 V;r((zis)) s(1 — ), as well as the mixed local-nonlocal operator —u” + (—A)*u.

In order to construct u; and f; as sought in the statement of Theorem 1.2, we consider the following
auxiliary functions. Given « € (0,+c0) and j € N, let uy 0,4, ; € L(R) N C°(R) N C*((0, 1)) be the
functions defined by

0 if x € (=0, 0], )
‘ 0 if x € (—00,0] U [1, 4+00),
Ugo(X) =3 x¥ ifxe0,1), Uy, j(x) =

“(logx)  ifxe(0,1).
1 ifxell,+oo), ¥(logx)?ifxe O, 1)

In the following, in order to reduce and shorten the notation, we are going to write log’x instead
of (log x)’. In the next lemma, we compute the fractional Laplacian of these functions inside the
interval (0, %)

Lemma 6.1. Let s € (0, 1), @ € (0, +0), and j € NU{0}. Then, there exist constants a? av*V e R

and a function f, ; € C°°([(), %]) such that a0 Qg

j+1
1
(=01t () = X2 )" @ logx + fo(x)  forevery x e (0, E) : (6.1)
k=0

Furthermore, a;{;]) =0when a—2s ¢ NU{0} and agf)j = 0when a—2s € NU{0}. In addition, a(l(’)()) 0
ifsi%anda(ll’())i()ifs: %

Proof. Changing variables appropriately, for x € (0, %) we compute

a-2s 1 j 2 1 Jv _ s 1 j a-2s 1 J
C (=AY g () = X 0gX a2 f og’/x — t*log’ (xt) X og’/x
0

2s [1 — z]1+2s 2s
1 x*log/x . (1" log/(x0) 1 x*log/x 1 &)
Td-0r Y ), a-n YT 0 —0r 25—
= {l + p.V.f2 L= dt} X7 Jog/x
5 NRTESPTESY 6.2)
Jj-1 . 2 -k
_ Z {(li) py- | —ltl l_oinzi dt} x* > loghx

>~
Il

0

ot

[\ [ v logihy Y 1 dj
—1)/7* R— T a=ss] - — .
{( ) (k)fx (1 —w)l+& Ay (1 —x)2

In order to expand in x the integral function appearing on the last line, we observe that

k=0

1 ifi=0,
1 o (i +2s) . B -1
- = ., where,forBeR, [ ]:=31 7
(1_v)]+2s ;( i ) ﬁ (l) —'l—[(ﬁ—f) ifi e N.
i

T =0
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Hence, by Lebesgue’s dominated convergence theorem,

. . 1
3 y2smima ogiky 28\ (7 o aniy ek
j; de:;‘ i fxv *log/ ™y dv.

To evaluate the last integral, we distinguish between the two cases @ —2s € N U {0} and a — 2s ¢

N U {0}. In the first case, there exists a unique i, € N U {0} such that 25 — @ + i, = 0. As a result, after
a few integration by parts, we find that

1 : —k ,
2 y2s-l-ajogiThy , i+2s (= k) logi ™2
- °  dv=(-1 J—k 201—2s—t

fx o W=V ) ( i ) ;;

ieIO0D\fis ) 2s—a+i

. jk 00 s
~ Z (z +,25)x23_“+i (=1)"'(j = k) log/i™*x

_ NE+1
ieIOON\ iy} i (2s—a+i)

N (i* + 2s) ((_1)j—k+1 log/ 12 logj_k”x)

j—k+1 j—k+1
where (m), = (”:’j!é,)! indicates the descending Pochhammer symbol. Combining this with (6.2), we get

C7 (=) g (%)

1 2 1 - a=2s j O ] 2 " logj_kt a=2s k
= {; + pVL mdt}x logjx— Z 1 p.v. . mdt X log X

k=0

Ly

o . ik . j—k—C . j—k+1
+2 - — k), log/ ™2 + 2s\log’ 2
_ (li){ Z (l . S)za—Zs—l Z (.]2 )t’ og = - (l* . S) Og - l}xa—Zs logkx
=0 e @UO\iy) VL =0 2s —a+1) e JJ—RF
J . . j—k lr s
) 2 -1 —k . )
Sl g S e
k=0 k e @OON\iy) VL =0 2s—a+i)
i+ 25\ 0 (A G| a1 6
+ -~ 7 a Sl _]+ _ .

Notice now that, by changing indices as m = j — k and exchanging the order of summation,

j . . i+ 2 J—k -1 tes k) ) .
Z{(_ly_k(l]{) Z }(l +i s) (=D'G =k p logj_gx}

_ N+1
k=0 i€(NU{OD\{i =0 (2S @+ l)

+ 25\ & (< : ot
= Z (l | s) Z {Z ( _] )(—1)m—f(m)€} %
T A A=t A AR Pp—
— ]' (l + 2S) xl
7 g — o+ L

i L) @s—a+iy

where for the last identity we used that (J. _jm)(m)g = o ;im)! (m’f![)! = (jf !{,)!(H) to deduce that, shifting
the index of summation,

m—{

J

. 7 j—C i ¢ . i .
2, (J—J m)(_l)m_g(’")" v 2. (] k )“”kw = Goa Y
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Accordingly, the claim of the lemma follows with

a(o)_ — 0,

a@,j
. 2 @ik . ik . j—k—t
® J t*log’™"t i+28\ ., 0 O (J—k)log/™ "2
= —Cy V. ——dt + E 2 g
aa,J ‘(k){p v L |1 _ t|l+2s i v (2S —a+ i)€+1

iE(NU{OD\{ix}
iy + 2s) 1ogf—k+12}

j—k+1

Ix

, 1 21— 25\ 202 +2
al=CA-+pv.| —mdt— ) h2s) 2T (2 10gal,
@) S [1 — g]1+2s i |2s—a+i i
0 i€(MNU{0})\fix) *
. i i
a0 = c( ' 28) 3 (J)ﬂ
J Iy — {)j—C+1

2 ' j . .
1" log’t +2 log/~(2
fa,j(x) = - CS{(pV i dr + (l s)zaf 2s—i (‘])KL
0 D\ i}

— #]1+2s _ NE+1
1=z - i (25 —a+ i)
i+2s x . 1 bj
AN Qs —a+i)tt  2s(1=x)>)’

forevery k = 1,...,j— 1. Note that afS )] is equal to zero since the corresponding term in the sum (6.1)
has been incorporated into the smooth remainder f, ;, as @ — 2s € N U {0}.

When a — 2s ¢ N U {0}, then no such i, exists. Nevertheless, the above computations are still valid,
provided that the terms involving i, are neglected and the sums over (N U {0}) \ {i,} are understood to
be over the non-negative integers. The resulting values for the coeflicients a( )’s and the function f, ;

are
a® = f rlog™t +i T Y (=K log™ 2
@.j 1 - t|1+2$ 2s—a+ )€+1 ’

{=

0

(J) = l+2S 2&231
-+

{ pvf|1—t|1+2v Z(z 2s—a+i

1=

=]

(i* + 2s) logf”Z) s .
- : x0T =l
J+1 e

Ix

(=]

G+ _ =0

a,j

~ o (i +2s X' 1 djp
fa,j(-x) - { Z( i )(2S —a+ l)J+1 B 2S(1 - X)zs} ’

i=0

a

foreveryk=1,...,j— 1.
Finally, the statement concerning the non-vanishing nature of the coefficients a(o) (when s # 2)
and a(l) (when s = %) follows from a direct inspection of identity (6.2) when @ = 1 and j = 0.

Indeed in thlS case claim (6.1) holds true with a(o) ZS(ijS), a(ll()) 0, and flo(x) — 5 2S)(l —x)I=%
when s # 5 and with a(O) 0, a(l) Cu and fio(x) = —C% log(1 — x) when s = 5. O

Thanks to this result, we may now proceed with the following proof.
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Proof of Theorem 1.2. We distinguish between the two cases s ¢ Q and s € Q. In the first case, we
let M € N\ {1} and set

M
v (x) = Z b uy1-s)ir1,0(x),
i=0

for some coefficients b; € R to be determined. For x € (O, %), taking advantage of Lemma 6.1 we have
that

M
— V) + (CAYVa() = bl =t o) + (=AU gie1.0(0)]
i=0

, , 21-s)i-1 , (0 21-s)i+1-2
b,-{—2(1 — §)i2(1 — s)i + DP9 4 a(Z()l—s)Hl,O'x (I=)il=2s f2(1—s)i+1,0(x)}

INGERINGE

Ul
—_

{al i yero bi-t = 201 = £)i2(1 = $)i + 1) by} 217!

l
M
0 2(1-5)(M+1)-1
+ a(Z()l—s)M+1,0 by KM Z bi fo1-5)ir1.0(X).
i=0

Here we used the fact that 2(1 — s)i + 1 —2s ¢ N U {0} for every i € N U {0}, as s ¢ Q. By choosing

by =1,

0)
Ay(1—5)(i-1)+1,0 bi-

i mia(-sizn orietlh...M),

we obtain that

M
1
—Viy(x) + (=A)* vy (x) = ara-sym+1,0 bu UMD Z bi foa1-g)i+1,0(x) forall x € (O, 5) .
i=0

Notice that the right-hand side of this equation belongs to Ck([O, %]) if we take, say, M = M,(k) =
[k“ W Observe that the function wu; = vy, thus constructed lies in C3’2‘([0, %]), but is not of

2(1-9)|"
class C372*¢ at 0 for any & > 0. Indeed,

©)

u(x) = x + i s)lé(; 2y X4 0(x3_25) asx — 0", (6.3)

and a(l(’)()) # 0, thanks to Lemma 6.1.

We now address the case of s € Q. To handle it, we need a more refined construction. Let p,g > 1
be the two unique coprime integers such that 2(1 — s) = ’—; Then, 2(1 — s)i + 1 — 2s € N U {0} for some
non-negative integer i if and only if i + 1 € gN. Given any M € N\ {1}, we define

M q m
wy(x) = Z Z Z b g j Ua(1=s)img—1+0)+1,(X),

m=0 =1 j=0
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for some coefficients b,, ¢ ; € R to be determined. Lemma 6.1 yields that

M g

W) + (=AY wy(x) = Z Z Z b j {_M,Z,(l—s)(mq—]+€)+l,j(x) + (_A)SMZ(I—S)(mq—1+€)+l,j(x)}

m=0 (=1 j=0

M q m
=A1(x) + Az(x) + Az(x) + Z Z Z binc.j Fo(1-s5)mg-1+0+1,j(X), (6.4)

m=0 (=1 j=0
for every x € (O, %), with
gq-1
A1) = ) boco {a(Z(E)I—s)(é’—l)H,O 21— ) (- DA - )1 + 1)x2(1_3)([_1)_1}
(=1

+bo.q0 {a(Zl()]—s)(q—l)+],0 U og x —2(1 = s)(g — D1 - s)(g— D + 1)x2(1_“')(‘1_1)_1} ,
1 m

250 {_xm_sxmqw”(2<1 — $)mg — 1+ OQ(1 = 5)mg — 1+ + 1) logx

+(4(1 = s)mg — 1+ )+ 1)jlog" " x + j(j — 1) log’ )

J

2(1-5)(mg+0)—1 ®) K

X Z Ay(1—s)mg-1+0)+1,j log x} )
k=0

M m
As(0) = D D bug; {—xzﬂ-”«m“q-”-‘(2(1 —$)((m+ Dg - D1 = s)((m+ g — 1) + 1) log'x

+ (41 = $)((m + g — 1) + 1)jlog/ " x + j(j - 1) log/ x)

j+l

2(1-s)(m+1)g—1 (k) &

T Z a2(1—3)((m+1)q—1)+1,j log x} >
k=1

forme{0,..., M}.
We begin by analyzing A;, which can be dealt with similarly to what we did in the case of
irrational s. By splitting it into two sums and shifting indices, we have

q-1
Ai(x) = Z {a(zcz)l—s)(f—l)ﬂ,o boco —2(1 = )21 — 5)¢ + 1) bo,m,o}xz(l‘s)"‘l
» (6.5)

1)
T Ay g-1)+1,0

_ a(l)
= Ay _5)(g-1)+1,0

bO,q,O x2(1—s)q—1 log X

bO,q,O x2(1—s)q—1 10g X,
provided we choose the by ,’s recursively as follows:

bo1po =1,

©)
A1 _sye-1y+1,0 P0.LO

2(1 - )61 - s) + 1)

bo,[+1,0: fOI'fG{l,...,q—l}.
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We then move to the A, term. Our goal is to rearrange it and factor out the different terms of the
form x2(1-90ma=1+0-119g/x__much like what we just did for A;, but now with logarithms involved as
well. After some tedious computations involving shifts in the sum indices and exchanges of the orders
of summation, we find that

M q m
Ay(x) = Z Z Z o 2090041401 g0 3

m=1 =1 j=0
with
Cnij= =21 =521 - s)mg+ 1)mq by, ; — (4(1 — s)mgq + 1)(j + Dby 41
—(+ DG+ Dbmijea  forjef0,....m—2},
Cotm1 = — m(2(1 - )20 = s)mq + 1)q by m-1 + (4(1 — $)mg + l)bm,l,m),
Coam = —2(1 =521 = s)mq + 1)mq b1 m,

Consj = Z as)_ —omg-2styeis mec1k =200 = $)(mg = 1+ 0201 = $)(mg = 1+ &) + Dby

- (4(1 —8)mg =1+ 0+ 1)+ Dbpejr = G+ DG+ Dbpejr for je{0,...,m—2},

m

Conemr = ) a ) s pers i = 21 = )mg = 1+ OQ( = $)omg = 1+ 6) + Dby pny
k=m—1

-4 =s)(mg—1+) + V)mbym,
Contm = a;;"; omg-25011m D=1 = 2(1 = $)mg = 1+ O2(1 = $)mg = 1+ ) + Dby em,

()] .
Cing.j Zaz(l m+1)g-2)+ 1k Pmg-1k for j € {0,...,m},

forme{l,...,M}and { € {2,...,q—1}. We make the majority of these coeflicients vanish by choosing
(m)
b 3 Ay (1—5)mg—2+0)+1,m b e-1.m
"1 = s)mg — 1+ O - s)mg—1+€) + 1)’
z a;’("l o ma-2styiis mecrk = (41 = $)mg = 1+ )+ D)mbysm

biem-1 = 2(1 = s)(mg — 1+ O)(2(1 = s)(mg -1 + ) + 1) ’

)
kz_ Ay (1—s)mg-2+0)+1,k bin,e-1x
=j

biej = 2(1 = s)(mg— 1+ 021 — s)(mg — 1 + £) + 1)

(41 = 5)mg = 1+ 0 + 1) + Dbpejer + G+ DG + Dbigjeo
2(1 = s)(mg -1+ 0O —s)(mg—1+¢)+ 1) ’

forme{l,...,M},€e{2,...,q—1},and j € {0,...,m}. This leaves us with

Ay(x) = Z Z Cpt X279 og/x + Z Z Cppg X901 000 (6.6)

m=1 j=0 m=1 j=0
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and b, j, by, 4 ; still free to choose, form € {1,..., M} and j € {0,...,m}.
In order to get rid of these terms, we now inspect A;. By rearranging the logarithmic terms, we
write it as

M m M m+1
As(x) = Z Z Dy H2A=9)(m+1g=1)-1 log/x + Z Z Dy K2(A=9)m+1)g-1 log’x,
m=1 j=0 m=1 j=1

with

Dygj==21=s)((m+1)g—-1)2(1 =s)((m+1)g—1)+1)b,,;
—(41 = s)((m+ g — 1)+ D)+ D bpg i
-+ DG +2)bygjr for jel0,...,m—-2},
Dygm-1 =21 =s)(m+ 1)g - 1)2(1 = s)((m+ 1)g = 1) + 1) by gm—1
—(4 = s)((m+1)g— 1)+ 1)m by g,
Dygm = -2(1 - H((m+ 1)g-1)R2A -s)((m+1)g—1)+ l)bm,q,m,

m

- ") .
Dingirj = D @5 mengryois Pmgic for j € (1...,m+1},
k=j-1

form e {1,..., M}. As aresult, recalling (6.4)—(6.6), we have

= Wiy (%) + (=AY war(x)

_ (D 2(1-s5)g-1
= (aZ(l—s)(q—l)-H,O bo g0 + C1,1,1) X log x

M M m
+ Z Cm,l,O xZ(l—s)mq—l + Z Z (Cm,l,j + Dm—l,q+1,j) x2(1—s)mq—l IOgJX
=1

m=2 j=1

+

M=
M=

(Cm oi+ Dy ,-) K= Dg=D=1 150y

3
~

I

[«

=1 j
1

M q m
2(1=$)(M+1)g—1 1~ j
+ Y Dyrgerj X OMDe oglx + Z Z Z bie.j fr-s\mg-1+0)+1,j(X).

= m=0 (=1 j=0

=

—_

By setting recursively
(D
R @y g-1y+1.0 P0.00 P (41 = s5)g+1)by 1,
T - 9230 - 5+ g’ PO - 920 - g + g’

(1
Ag(1-s5)(g-1)+1,1 byg-1.1

- 2(1 = 5)2g - D21 =s)2g—1) + l)’
—(41 = 9)2g - 1)+ 1) by g1 + ai(z)l—s)(q—l)+l,0 byg-10 + aEl(z)l—s)(q—l)H,l byg-1.1
2(1 - 9)(2g - 1)(2(1 = 5)(2g - 1) + 1) ’
(m)
_ D-s)mg-D+1,m-1 bin-1,4m-1
2(1 = $)(2(1 — s)mg + 1)mgq’

bl,q,l

1,g.0 =

bm,l,m
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2(1-5)(mg—1)+1,k b'11—1,q,k
bm,l m—-1 = )

2(1 = 9)(2(1 = s)mq + 1)mq

m—1
_(4(1 - s)mq + l)m bm,l,m + Z a(m—l)
k=m-2

m—1 .
(41 = 9mg + DG + Db jer = G+ DU+ Db jez+ Py 50\ ma-tye 1 DLk

2(1 = $)(2(1 = s)mg + 1)mgq ’
b _ (4(1 — s)mq + 1)bm’1’1 + 2bm,1,2
T = 9230 - symg + Dmg
(m)
b _ a2(1—s)((m+l)q—2)+l,m bm,q—l,m
(1 = ) ((m+ Dg = DR = s)((m+ Dg-1)+1)
—(@(1 = )(m + g = 1) + Dm by gm + ) > la;’(";_‘;)«mﬂ)q_z)ﬂ,k g1k
bm m— = Bl 2
m=1 20 = s)((m+ g —-1)RA =s)((m+ 1g-1)+1)
A _(4(1 =) ((m+Dg—=1)+ 1)+ Dbug i+ G+ DG +2) by sz
e 2(1 = s)((m + Dg - 1)2(1 = s)((m+ 1)g — 1) + 1)
< ()
kgj a2j(1—s)((m+1)q—2)+1,k bing-14
+ ,
21 = s)((m+ g - 1D)RA =s)((m+ 1)g—-1)+1)
—(@4(1 =) (m+1)g = 1)+ 1) bygy = 2bpgn + kzo A3 o Dg2ys 14 D1k
bm,q,O = .

2(1 = s)((m+ 1)g—1)2A = s)((m+ 1)g—1)+1) ’

forme{2,...,M}and j € {1,...,m— 2}, the previous expression further simplifies to

M+1 M q m
2(1=s)(M+1)g=1 1o
Wi () + (A wy(x) = Z Dy g1 j x2I79MED o0l x4 Z Z Z bugj fr-s)mg—1+0)+1,j(X).
Jj=1 m=0 £=1 j=0

If we now take M = My(k) = |-2(’{:)q-|, the right-hand side of the above identity belongs

to Ck([O, %]) Moreover, the function u; = wyy,x) just constructed has the regularity claimed in the

statement of the theorem. Indeed, if s # %, then ¢ > 2 and it is therefore easy to see that the

expansion (6.3) holds true. If, on the other hand, s = %, then ¢ = 1 and we have

(1)
up(x) = x + %’0 x*log x + O(xZ) as x — 0%,

with a(ll’()) # 0 in view of Lemma 6.1. The proof is thus complete. O
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