The numerical simulation of several virtual scenarios arising in cardiac mechanics poses a computational challenge that can be alleviated if traditional full-order models (FOMs) are replaced by reduced order models (ROMs). For example, in the case of problems involving a vector of input parameters related, e.g., to material coefficients, projection-based ROMs provide mathematically rigorous physics-driven surrogate ROMs. In this work we demonstrate how, once trained, ROMs yield extremely accurate predictions (according to a prescribed tolerance) – yet cheaper than the ones provided by FOMs – of the structural deformation of the left ventricular tissue over an entire heartbeat, and of related output quantities of interest, such as the pressure-volume loop, for any desired input parameter values within a prescribed parameter range. However, the construction of ROM approximations for time-dependent cardiac mechanics is not straightforward, because of the highly nonlinear and multiscale nature of the problem, and almost never addressed. Our approach relies on the reduced basis method for parameterized partial differential equations. This technique performs a Galerkin projection onto a low-dimensional space for the displacement variable; the reduced space is built from a set of solution snapshots – obtained for different input parameter values and time instances – of the high-fidelity FOM, through the proper orthogonal decomposition technique. Then, suitable hyper-reduction techniques, such as the Discrete Empirical Interpolation Method, are exploited to efficiently handle nonlinear and parameter-dependent terms. In this work we show how a fast and reliable approximation of the time-dependent cardiac mechanical model can be achieved by a projection-based ROM, taking into account both passive and active mechanics for the left ventricle providing all the building blocks of the methodology, and highlighting those challenging aspects that are still open.
Citation: Ludovica Cicci, Stefania Fresca, Stefano Pagani, Andrea Manzoni, Alfio Quarteroni. Projection-based reduced order models for parameterized nonlinear time-dependent problems arising in cardiac mechanics[J]. Mathematics in Engineering, 2023, 5(2): 1-38. doi: 10.3934/mine.2023026
[1] | Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 |
[2] | Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045 |
[3] | Lingrui Zhang, Xue-zhi Li, Keqin Su . Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D. Electronic Research Archive, 2023, 31(11): 6881-6897. doi: 10.3934/era.2023348 |
[4] | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang . Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29(6): 4137-4157. doi: 10.3934/era.2021076 |
[5] | Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126 |
[6] | Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197 |
[7] | Keqin Su, Rong Yang . Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory. Electronic Research Archive, 2023, 31(2): 928-946. doi: 10.3934/era.2023046 |
[8] | Nisachon Kumankat, Kanognudge Wuttanachamsri . Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases. Electronic Research Archive, 2023, 31(3): 1641-1661. doi: 10.3934/era.2023085 |
[9] | Zhiqing Li, Wenbin Zhang, Yuanfei Li . Structural stability for Forchheimer fluid in a semi-infinite pipe. Electronic Research Archive, 2023, 31(3): 1466-1484. doi: 10.3934/era.2023074 |
[10] | Wenlong Sun . The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071 |
The numerical simulation of several virtual scenarios arising in cardiac mechanics poses a computational challenge that can be alleviated if traditional full-order models (FOMs) are replaced by reduced order models (ROMs). For example, in the case of problems involving a vector of input parameters related, e.g., to material coefficients, projection-based ROMs provide mathematically rigorous physics-driven surrogate ROMs. In this work we demonstrate how, once trained, ROMs yield extremely accurate predictions (according to a prescribed tolerance) – yet cheaper than the ones provided by FOMs – of the structural deformation of the left ventricular tissue over an entire heartbeat, and of related output quantities of interest, such as the pressure-volume loop, for any desired input parameter values within a prescribed parameter range. However, the construction of ROM approximations for time-dependent cardiac mechanics is not straightforward, because of the highly nonlinear and multiscale nature of the problem, and almost never addressed. Our approach relies on the reduced basis method for parameterized partial differential equations. This technique performs a Galerkin projection onto a low-dimensional space for the displacement variable; the reduced space is built from a set of solution snapshots – obtained for different input parameter values and time instances – of the high-fidelity FOM, through the proper orthogonal decomposition technique. Then, suitable hyper-reduction techniques, such as the Discrete Empirical Interpolation Method, are exploited to efficiently handle nonlinear and parameter-dependent terms. In this work we show how a fast and reliable approximation of the time-dependent cardiac mechanical model can be achieved by a projection-based ROM, taking into account both passive and active mechanics for the left ventricle providing all the building blocks of the methodology, and highlighting those challenging aspects that are still open.
The delay effect originates from the boundary controllers in engineering. The dynamics of a system with boundary delay could be described mathematically by a differential equation with delay term subject to boundary value condition such as [20]. There are many results available in literatures on the well-posedness and pullback dynamics of fluid flow models with delays especially the 2D Navier-Stokes equations, which can be seen in [1], [2], [8] and references therein. Inspired by these works, in this paper, we study the stability of pullback attractors for 3D Brinkman-Forchheimer (BF) equation with delay, which is also a continuation of our previous work in [6]. The existence and structure of attractors are significant to understand the large time behavior of solutions for non-autonomous evolutionary equations. Furthermore, the asymptotic stability of trajectories inside invariant sets determines many important properties of trajectories. The 3D Brinkman-Forchheimer equation with delay is given below:
{∂u∂t−νΔu+αu+β|u|u+γ|u|2u+∇p=f(t,ut)+g(x,t),∇⋅u=0, u(t,x)|∂Ω=0,u|t=τ=uτ(x), x∈Ω,uτ(θ,x)=u(τ+θ,x)=ϕ(θ), θ∈(−h,0), h>0. | (1) |
Here,
(1). a general delay
or
(2). the special application of
f(t,ut)=F(u(t−ρ(t))) | (2) |
for a smooth function
The BF equation describes the conservation law of fluid flow in a porous medium that obeys the Darcy's law. The physical background of 3D BF model can be seen in [14], [9], [18], [19]. For the dynamic systems of problem
(a) For problem (1) with delay
(b) For problem (1) with special application of
(c) The asymptotic stability of trajectories inside pullback attractors is further research of the results established in [6]. However, the stability of pullback attractors for (1) with infinite delay is still unknown.
In this section, we give some notations and the equivalent abstract form of (1) in this section.
Denoting
By the Helmholz-Leray projection defined above, (1) can be transformed to the abstract equivalent form
{∂u∂t+νAu+P(αu+β|u|u+γ|u|2u)=Pf(t,ut)+Pg(t,x),u|∂Ω=0,u|t=τ=uτ(x),uτ(θ,x)=ϕ(θ,x) for θ∈(−h,0), | (3) |
then we show our results for (3) with
We also define some Banach spaces on delayed interval as
‖ϕ‖CH=supθ∈[−h,0]‖ϕ(θ)‖H, ‖ϕ‖CV=supθ∈[−h,0]‖ϕ(θ)‖V, |
respectively. The Lebesgue integrable spaces on delayed interval can be denoted as
Some assumptions on the external forces and parameters which will be imposed in our main results are the following:
‖f(t,ξ)−f(t,η)‖H≤Lf‖ξ−η‖CH, for ξ,η∈CH. |
∫tτ‖f(r,ur)−f(r,vr)‖2Hdr≤C2f∫tτ−h‖u(r)−v(r)‖2Hdr, for τ≤t. | (4) |
∫t−∞eηs‖g(s,⋅)‖2V′ds<∞. | (5) |
holds for any
Lemma 3.1. (The Gronwall inequality with differential form) Let
ddtm(t)≤v(t)m(t)+h(t), m(t=τ)=mτ, t≥τ. | (6) |
Then
m(t)≤mτe∫tτv(s)ds+∫tτh(s)e∫tsv(σ)dσds, t≥τ. | (7) |
In this part, we shall present some retarded integral inequalities from Li, Liu and Ju [5]. Consider the following retarded integral inequalities:
‖y(t)‖X≤E(t,τ)‖yτ‖X+∫tτK1(t,s)‖ys‖Xds+∫∞tK2(t,s)‖ys‖Xds+ρ, ∀ t≥τ, | (8) |
where
Let
κ(K1,K2)=supt≥τ(∫tτK1(t,s)ds+∫∞tK2(t,s)ds). |
We assume that
limt→+∞E(t+s,s)=0 | (9) |
uniformly with respect to
Lemma 3.2. (The retarded Gronwall inequality) Denoting
(1) If
‖yt‖X<μρ+ε, | (10) |
for
(2) If
‖yt‖X≤M‖y0‖Xe−λt+γρ, t≥τ | (11) |
for all bounded functions
(3) If
Proof. See Li, Liu and Ju [5].
Remark 1. (The special case:
The minimal family of pullback attractors will be stated here in preparation for our main result.
Lemma 3.3. (1) (See [7], [11]) Assume that
(|a|β−2a−|b|β−2b)⋅(a−b)≥γ0|a−b|β, |
where
(2) The following
|xq−yq|≤Cq(|x|q−1+|y|q−1)|x−y| |
for the integer
Theorem 3.4. Assume that the external forces
Proof. Step 1. Existence of local approximate solution.
By the property of the Stokes operator
Awi=λiwi, i=1,2,⋯. | (12) |
Let
{(∂tum,wj)+ν(∇um,∇wj)+(αum+β|um|um+γ|um|2um,wj)=(f(t,umt),wj)+⟨g,wj⟩,um(τ)=Pmuτ=uτm,umτ(θ,x)=Pmϕ(θ)=ϕm(θ) for θ∈[−h,0], | (13) |
Then it is easy to check that (13) is equivalent to an ordinary differential equations with unknown variable function
Step 2. Uniform estimates of approximate solutions.
Multiplying (13) by
12ddt‖um‖2H+ν‖um‖2V+α‖um‖2H+β‖um‖3L3(Ω)+γ‖um‖4L4(Ω)≤|(g(t)+f(s,umt(s)),um)|≤α‖um‖2H+ν2‖um‖2V+12ν‖g(t)‖2V′+14α‖f(t,umt)‖2H. | (14) |
Integrating in time, using the hypotheses on
‖um‖2H+ν∫tτ‖um‖2Vds+2β∫tτ‖um‖3L3(Ω)ds+2γ∫tτ‖um‖4L4(Ω)ds≤‖uτ‖2H+C2f4α∫0−h‖ϕ(s)‖2Hds+12ν∫tτ‖g(s)‖2V′ds+C2f4α∫tτ‖um‖2Hds. | (15) |
Using the Gronwall Lemma of integrable form, we conclude that
{um} is bounded in the spaceL∞(τ,T;H)∩L2(τ−h,T;V)∩L3(τ,T;L3(Ω))∩L4(τ,T;L4(Ω)). |
Step 3. Compact argument and passing to limit for deriving the global weak solutions.
In this step, we shall prove
dumdt=−νAum−αum−β|um|um−γ|um|2um+P(g(t)+f(t,umt) | (16) |
and assumptions
By virtue of the Aubin-Lions Lemma, we obtain that
{um(t)⇀u(t) weakly * in L∞(τ,T;H),um(t)→u(t) stongly in L2(τ,T;H),um(t)⇀u(t) weakly in L2(τ,T;V),dum/dt⇀du/dt weakly in L2(τ,T;V′),f(⋅,um⋅)⇀f(⋅,u⋅) weakly in L2(τ,T;H),um⇀u(t) weakly in L3(τ,T;L3(Ω)),um⇀u(t) weakly in L4(τ,T;L4(Ω)) | (17) |
which coincides with the initial data
For the purpose of passing to limit in (13), denoting
∫Tτ(β|um|um−β|u|u,wj)ds≤Cλ1β‖um‖4L4(τ,T;L4(Ω))‖um−u‖4L4(τ,T;L4(Ω))+Cβ‖um−u‖L∞(τ,T;H)‖u‖2L2(τ−h,T;H) |
and
∫Tτ(γ|um|2um−γ|u|2u,wj)ds≤Cγ‖um‖2L2(τ,T;V)‖um−u‖4L4(τ,T;L4(Ω))+Cγ‖um−u‖4L4(τ,T;L4(Ω))(‖u‖2L2(τ−h,T;V)+‖um‖4L4(τ,T;L4(Ω))) | (18) |
and the convergence of delayed external force
Thus, passing to the limit of (13), we conclude that
Proposition 1. Assume that the external forces
Proof. Taking inner product of (3) with
12ddt‖A1/2u‖2H+ν‖Au‖2H+α‖A1/2u‖2H+β∫Ω|u|u⋅Audx+γ∫Ω|u|2u⋅Audx=(f(t,ut),Au)+(g(t),Au). | (19) |
According to Lemma 3.3, the nonlinear terms have the following estimates
|β(|u|u,Au)|≤ν2‖Au‖2H+β4ν‖u‖4L4 | (20) |
and
γ∫Ω|u|2u⋅Audx=γ2∫Ω|∇(|u|2)|2dx+γ∫Ω|u|2|∇u|2dx | (21) |
and
(f(t,ut),Au)+(g(t),Au)≤12ν‖f(t,ut)‖2H+12ν‖g(t)‖2H+ν2‖Au‖2H, | (22) |
hence, we conclude that
ddt‖A1/2u‖2H+2α‖A1/2u‖2H+γ∫Ω|∇(|u|2)|2dx+2γ∫Ω|u|2|∇u|2dx≤β2ν‖u‖4L4+1ν‖f(t,ut)‖2H+1ν‖g(t)‖2H. | (23) |
Letting
‖A1/2u(t)‖2H+2α∫ts‖A1/2u(r)‖2Hdr≤‖A1/2u(s)‖2H+β2ν∫ts‖u(r)‖4L4dr+2ν∫ts‖f(r,ur)‖2Hdr+2ν∫ts‖g(r)‖2Hdr | (24) |
and
∫ts‖f(r,ur)‖2Hdr≤L2f‖ϕ(θ)‖2L2H+L2f∫ts‖u(r)‖2Hdr. | (25) |
Then integrating with
‖A1/2u(t)‖2H≤∫tt−1‖A1/2u(s)‖2Hds+β2ν∫tt−1‖u(r)‖4L4dr+2L2fν‖ϕ(θ)‖2L2H+2L2fν∫tτ‖u(r)‖2Hdr+2ν∫tt−1‖g(r)‖2Hdr≤C[‖ϕ‖2L2H+‖uτ‖2H]+C∫tτ‖g‖2Hds+2L2fνλ1∫tτ‖u(r)‖2Vdr, | (26) |
which means the uniform boundedness of the global weak solution
Proposition 2. Assume the hypotheses in Theorem 3.4 hold. Then the global weak solution
Proof. Using the same energy estimates as above, we can deduce the uniqueness easily, here we skip the details.
To description of pullback attractors, the functional space
∫tτeηs‖f(s,us)‖2Hds<C2f∫tτ−heηs‖u(s)‖2Hds. | (27) |
for any
Proposition 3. For given
Lemma 3.5. Assume that
‖u(t)‖2H≤e−8ηCfα(t−τ)(‖uτ‖2H+Cf‖ϕ(r)‖2L2H)+e−8ηCfαtν−ηλ−1∫tτeηr‖g(r)‖2V′dr | (28) |
and
ν∫ts‖u(r)‖2Vdr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr, | (29) |
β∫ts‖u(r)‖3L3(Ω)dr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr, | (30) |
γ∫ts‖u(r)‖4L4(Ω)dr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr. | (31) |
Proof. By the energy estimate of (1) and using Young's inequality, we arrive at
ddt‖u‖2H+2ν‖u‖2V+2α‖u‖2H+2β‖u‖3L3(Ω)+2γ‖u‖2L4(Ω)≤1ν−ηλ−1‖g‖2V′+(ν−ηλ−1)‖u‖2V+2α‖u‖2H+8α‖f(t,ut)‖2H, | (32) |
where
Multiplying the above inequality by
ddt(eηt‖u‖2H)+eηtνλ1‖u‖2H+2βeηt‖u‖3L3(Ω)+2γeηt‖u‖2L4(Ω)≤1ν−ηλ−1eηt‖g‖2V′+8Cfαeηt‖f(t,ut)‖2H. |
Thus integrating with respect to time variable, it yields
eηt‖u‖2H+νλ1∫tτeηr‖u(r)‖2Hdr≤eητ(‖uτ‖2H+Cf∫0−h‖ϕ(r)‖2Hdr)+1ν−ηλ−1∫tτeηr‖g(r)‖2V′dr+8Cfα∫tτeηr‖u(r)‖2Hdr | (33) |
and by the Gronwall Lemma, we can derive the estimate in our theorem.
Using the energy estimate of (1) again, we can check that
ddt‖u‖2H+2ν‖u‖2V+2α‖u‖2H+2β‖u‖3L3(Ω)+2γ‖u‖2L4(Ω)≤1ν‖g‖2V′+ν‖u‖2V+2α‖u‖2H+8α‖f(t,ut)‖2H, | (34) |
Integrating from
Based on Lemma 3.5, we can present the pullback dissipation based on the following universes for the tempered dynamics.
Definition 3.6. (Universe). (1) We will denote by
limτ→−∞(eητsup(ξ,ζ)∈D(τ)‖(ξ,ζ)‖2MH)=0. | (35) |
(2)
Remark 2. The universes
Proposition 4. (The
D0(t)=¯BH(0,ρH(t))×(¯BL2V(0,ρL2H(t))∩¯BCH(0,ρCH(t))) |
is the pullback
ρ2H(t)=1+e−8ηCfα(t−h)ν−ηλ−1∫t−∞eηr‖g(r)‖2V′dr,ρ2L2V(t)=1ν[1+‖uτ‖2H+8Cfα‖ϕ‖2L2H+‖g(r)‖2L2(t−h,t;V′)ν+8Cfhαρ2H(t)]. |
Moreover, the pullback
Proof. Using the estimates in Lemma 3.5, choosing any
‖u(t,τ;uτ,ϕ)‖2H≤ρ2H(t)=1+e−8ηCfα(t−h)ν−ηλ−1∫t−∞eηr‖g(r)‖2V′dr | (36) |
holds for any
Theorem 3.7. Assume that
Proof. Step 1. Weak convergence of the sequence
For arbitrary fixed
By using the similar energy estimate in Theorem 3.4 and technique in Proposition 4, there exists a pullback time
‖(un)′‖L2(t−h−1,t;V′)≤ν‖un‖L2(t−h−1,t;V)+αλ−11‖un‖L2(t−h−1,t;V)+β‖un‖L4(t−h−1,t;L4(Ω))+Cλ1,|Ω|γ‖un‖L2(t−h−1,t;V)+Cα‖f(t,unt)‖L2(t−h−1,t;H)+Cν‖g‖L2(t−h−1,t;V′). | (37) |
From the hypotheses
{un⇀u weakly * in L∞(t−3h−1,t;H),un⇀u weakly in L2(t−2h−1,t;V),(un)′⇀u′ weakly in L2(t−h−1,t;V′),um⇀u(t) weakly in L3(t−2h−1,t;L3(Ω)),um⇀u(t) weakly in L4(t−2h−1,t;L4(Ω)),un→u stongly in L2(t−h−1,t;H),un(s)→u(s) stongly in H, a.e. s∈(t−h−1,t). | (38) |
By Theorem 3.4, from the hypothesis on
f(⋅,un⋅)⇀f(⋅,u⋅) weakly in L2(t−h−1,t;H). | (39) |
Thus, from (38) and (39), we can conclude that
From the uniform bounded estimate of
un→u strongly in C([t−h−1,t];H). | (40) |
Therefore, we can conclude that
un(sn)⇀u(s) weakly in H | (41) |
for any
lim infn→∞‖un(sn)‖H≥‖u(s)‖H. | (42) |
Step 2. The strong convergence of corresponding sequences via energy equation method:
The asymptotic compactness of sequence
‖un(sn)−u(s)‖H→0 as n→+∞, | (43) |
which is equivalent to prove (42) combining with
lim supn→∞‖un(sn)‖H≤‖u(s)‖H | (44) |
for a sequence
Using the energy estimate to all
‖un(s2)‖2H+ν∫s2s1‖un(r)‖2Vdr+2β∫s2s1‖un(r)‖3L4(Ω)dr+2γ∫s2s1‖un(r)‖4L4(Ω)≤2C2fα∫s2s2‖unr‖2Hdr+8ν∫s2s1‖g(r)‖2V′dr | (45) |
and
‖u(s2)‖2H+ν∫s2s1‖u(r)‖2Vdr+2β∫s2s1‖u(r)‖3L4(Ω)dr+2γ∫s2s1‖u(r)‖4L4(Ω)≤2C2fα∫s2s2‖ur‖2Hdr+8ν∫s2s1‖g(r)‖2V′dr. | (46) |
Then, we define the functionals
Jn(s)=12‖un‖2H−∫st−h−1⟨g(r),un(r)⟩dr−∫st−h−1(f(r,unr),un(r))dr | (47) |
and
J(t)=12‖u(s)‖2H−∫st−h−1⟨g(r),u(r)⟩dr−∫st−h−1(f(r,ur),u(r))dr. | (48) |
Combining the convergence in (38), observing that
∫tt−h−1⟨g(r),un(r)⟩dr→2∫tt−h−1⟨g(r),u(r)⟩dr | (49) |
and
∫tt−h−1(f(r,unr),un(r))dr→2∫tt−h−1(f(r,ur),u(r))dr | (50) |
as
Jn(s)→J(s) a.e.s∈(t−h−1,t), | (51) |
i.e., for
|Jn(sk)−J(sk)|≤ε2. | (52) |
Since
\begin{eqnarray} |J(s_{k})-J(s)|\leq \frac{\varepsilon}{2}, \end{eqnarray} | (53) |
Choosing
\begin{eqnarray} |J_n(s_n)-J(s)|\leq |J_n(s_n)-J(s_n)|+|J(s_n)-J(s)| < \varepsilon. \end{eqnarray} | (54) |
Therefore, for any
\begin{eqnarray} \limsup\limits_{n\rightarrow\infty}J_n(s_n)\leq J(s), \end{eqnarray} | (55) |
which implies
\begin{eqnarray} \limsup\limits_{n\rightarrow \infty}\|u^n(s_n)\|_H \leq \|u(s)\|_H. \end{eqnarray} | (56) |
we conclude the strong convergence
Step 3. The strong convergence:
Combining the energy estimates in (45) and (46), noting the energy functionals
\begin{eqnarray} \|u^n(s)\|_{L^2(t-h,t;V)}\rightarrow \|u(s)\|_{L^2(t-h,t;V)}. \end{eqnarray} | (57) |
Hence jointing with the weak convergence in (38), we can derive that
Step 4. The
By using the results from Steps 2 to 4 and noting the definition of universe, we can conclude that the processes is
Remark 3. Using the similar technique, we can derive the processes
Theorem 3.8. Assume that
\begin{eqnarray} \mathcal{A}_{\mathcal{D}^{M_H}_{F}}(t) \subset \mathcal{A}_{\mathcal{D}^{M_H}_{\eta}}(t). \end{eqnarray} | (58) |
Proof. From Proposition 3, we observe that the process
Based on the universes defined in Definition 3.6, the relation between
Definition 3.9. The pullback attractors is asymptotically stable if the trajectories inside attractor reduces to a single orbit as
Theorem 3.10. Assume that
\mathit{\mbox{G}}(t)\leq K_0, |
where
\begin{equation} K_0 = \Big\{[\nu^2\lambda_1(2\nu\lambda_1+\alpha)]\Big/\Big[4C_{|\Omega|}\beta \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\Big]\Big\}^{1/2},\nonumber \end{equation} |
here
Proof. Let
\begin{eqnarray} u(\tau+\theta)|_{\theta\in [-h,0]} = \phi(\theta),\ \ \ u|_{t = \tau} = u_{\tau} \end{eqnarray} | (59) |
and
\begin{eqnarray} v(\tau+\theta)|_{\theta\in [-h,0]} = \tilde{\phi}(\theta), \ \ v|_{t = \tau} = \tilde{u}_{\tau} \end{eqnarray} | (60) |
respectively. Denoting
\begin{eqnarray} (u,u_t) = U(t,\tau)(u_{\tau},\varphi)\ \ \mbox{and}\ \ (v,v_t) = U(t,\tau)(\tilde{u}_{\tau},\tilde{\varphi}) \end{eqnarray} | (61) |
as two trajectories inside the pullback attractors, letting
\begin{equation} \begin{cases} \frac{\partial w}{\partial t}+\nu A w +P\Big(\alpha w+\beta(|u|u-|v|v)+\gamma (|u|^2u-|v|^2v)\Big)&\\ \quad = P(f(t, u_t)-f(t,v_t)),& \\ w|_{\partial\Omega} = 0,& \\ w(t = \tau) = u_{\tau}-\tilde{u}_{\tau},&\\ w(\tau+\theta) = \phi(\theta)-\tilde{\phi}(\theta),\ \theta\in [-h,0].& \end{cases} \end{equation} | (62) |
Taking inner product of (62) with
\begin{eqnarray} \gamma(|u|^2u-|v|^2v, u-v)\geq \gamma \gamma_0 \|u-v\|^4_{\bf{L}^4} \end{eqnarray} | (63) |
and
\begin{eqnarray} &&\frac{1}{2}\frac{d}{d t}\|w\|^2_H+\nu\|w\|^2_V+\alpha \|w\|_H^2+\gamma \gamma_0 \|w\|^4_{\bf{L}^4}\\ &\leq& \Big|\beta(|u|u-|v|v,w)\Big|+\Big|(f(t,u_t)-f(t,v_t),w)\Big|\\ &\leq&\beta\Big(\int_{\Omega}|u|^2|w|dx+\int_{\Omega}|w||v|^2dx\Big)+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H \end{eqnarray} |
\begin{eqnarray} &\leq& \beta(\|u\|^2_{\bf{L}^4}+\|v\|^2_{\bf{L}^4})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|v\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H. \end{eqnarray} | (64) |
Using the Poincaré inequality and Lemma 3.1, noting that if
\begin{eqnarray} 2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V) > 0, \end{eqnarray} | (65) |
then we can obtain
\begin{eqnarray} \|w\|^2_H&\leq& e^{\int^t_{\tau}[2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)-(2\nu\lambda_1+\alpha)]ds}\Big[\|u_{\tau}-\tilde{u}_{\tau}\|^2_H+\\ &&+\frac{L_f^2}{\alpha}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}\|w_t\|^2_Hds\Big]. \end{eqnarray} | (66) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds} \end{eqnarray} | (67) |
and
\begin{eqnarray} K_1(t,s) = \frac{L_f^2}{\alpha}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma} \end{eqnarray} | (68) |
and
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (69) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|w_t\|^2_H&\leq& M\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\lambda (t-\tau)}. \end{eqnarray} | (70) |
Substituting (70) into (64), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|w\|^2_H &\leq& \|u_{\tau}-\tilde{u}_{\tau}\|^2_He^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds}\\ &&+\frac{L_f^2}{\alpha}M\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\lambda (t-\tau)}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}ds.\\ \end{eqnarray} | (71) |
From (70) and (71), if we fixed
\begin{equation} 2\nu\lambda_1+\alpha > 2C_{|\Omega|}\beta \langle \|u\|^2_V+\|v\|^2_V\rangle_{\leq t}, \end{equation} | (72) |
where
\begin{equation} \langle h \rangle_{\leq t} = \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}h(r)dr. \end{equation} | (73) |
Since
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\|u\|^2_H+\nu\|A^{1/2}u\|^2_H+\alpha\|u\|^2_H+\beta \|u\|^3_{\bf{L}^3}+\gamma \|u\|^4_{\bf{L}^4}\\ &\leq&\alpha \|u\|^2_H+\frac{1}{2\alpha}\Big[\|f(t,u_t)\|^2_H+\|g\|^2_{H}\Big]\\ &\leq&\alpha \|u\|^2_H+\frac{L_f^2}{2\alpha}\|u_t\|^2_H+\frac{1}{2\alpha}\|g\|^2_{H}. \end{eqnarray} | (74) |
Using the Poincaré inequality and Lemma 3.1, then we can obtain
\begin{eqnarray} \|u\|^2_H&\leq& e^{-2\nu\lambda_1(t-\tau)}\|u_{\tau}\|^2_H+\\ &&+\frac{L_f^2}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|u_s\|^2_Hds+\frac{1}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds. \end{eqnarray} | (75) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-2\nu\lambda_1(t-\tau)} \end{eqnarray} | (76) |
and
\begin{eqnarray} K_1(t,s) = \frac{L_f^2}{\alpha}e^{-2\nu\lambda_1(t-s)} \end{eqnarray} | (77) |
and
\begin{equation} \rho = \frac{1}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds, \end{equation} | (78) |
letting
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (79) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|u_t\|^2_H&\leq& \hat{M}\|u_{\tau}\|^2_H e^{-\lambda (t-\tau)}+\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds\\ &\leq& \hat{M}\|u_{\tau}\|^2_H e^{-\lambda (t-\tau)}+\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}\int^t_{\tau}\|g\|^2_Hds. \end{eqnarray} | (80) |
Substituting (80) into (75), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|u\|^2_H &\leq& C\|u_{\tau}\|^2_He^{-\lambda (t-\tau)}+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_Hds. \end{eqnarray} | (81) |
Integrating (74) from
\begin{eqnarray} &&\|u\|^2_H+2\nu\int^t_{\tau}\|u\|^2_Vds+2\beta\int^t_{\tau} \|u\|^3_{\bf{L}^3}ds+2\gamma \int^t_{\tau}\|u\|^4_{\bf{L}^4}ds\\ &\leq& \Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\frac{L_f^2}{\alpha}\int^{t}_{\tau}\|u_t(s)\|^2_Hds+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds. \end{eqnarray} | (82) |
By the estimate of (80) and (81), we derive
\begin{eqnarray} \int^t_{\tau}\|u(r)\|^4_{\bf{L}^4}dr\leq C\Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_{H}ds \end{eqnarray} | (83) |
and
\begin{eqnarray} \int^t_{\tau}\|u(r)\|^2_{V}dr\leq C\Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_{H}ds. \end{eqnarray} | (84) |
Combining (72), (73) with (84), we conclude that
\begin{eqnarray} && \langle \|u\|^2_V+\|v\|^2_V\rangle|_{\leq t}\leq 2 \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\langle \|g\|^2_H\rangle|_{\leq t} \end{eqnarray} | (85) |
and hence the asymptotic stability holds provided that
\begin{eqnarray} 4C_{|\Omega|}\beta \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\langle \|g\|^2_H\rangle|_{\leq t} \leq 2\nu\lambda_1+\alpha. \end{eqnarray} | (86) |
If we define the generalized Grashof number as
\begin{eqnarray} G(t)\leq \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[4C_{|\Omega|}\nu^2\beta\lambda_1 \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\Big]\Big\}^{1/2} = K_0, \end{eqnarray} | (87) |
which completes the proof for our first result.
Remark 4. Theorem 3.10 is a further research for the existence of pullback attractor in [6].
We first state some hypothesis on the external forces and sub-linear operator.
\Big|\frac{d\rho}{dt}\Big|\leq\rho^{\ast} < 1, \ \ \forall t\geq 0. |
\begin{eqnarray} \|F(y)\|^2_H\leq a(t)\|y\|^2_H+b(t), \ \ \forall t\geq\tau, y\in H. \end{eqnarray} | (88) |
\begin{eqnarray} \|F(u)-F(v)\|_H\leq L(R)\kappa^\frac{1}{2}(t)\|u-v\|_H, \ u,v\in H. \end{eqnarray} | (89) |
holds for
\begin{eqnarray} \int^{t}_{-\infty}e^{ms}\|g(s,\cdot)\|^{2}_Hds < \infty, \ \ \forall t\in\mathbb{R}. \end{eqnarray} | (90) |
\begin{eqnarray} \frac{\nu}{2}-\frac{\|a\|_{L^q_{loc}(\mathbb{R})}}{1-\rho^\ast} > 0. \end{eqnarray} | (91) |
In this part, the well-posedness and pullback attractors for problem (1) with sub-linear operator will be stated for our discussion in sequel.
Assume that the initial date
\begin{equation} \begin{cases} u(t)+\int^t_\tau P(\nu Au+\alpha u+\beta|u|u+\gamma |u|^2u)ds &\\ \quad = u(\tau) +\int^t_\tau P\Big(F\big(u(s-\rho(s))\big)+g(s,x)\Big)ds,& \\ w|_{\partial\Omega} = 0,& \\ u(t = \tau) = u_{\tau},&\\ u(\tau+t) = \phi(t),\ t\in [-h,0],& \end{cases} \end{equation} | (92) |
which possesses a global mild solution as the following theorem.
Theorem 4.1. Assume that the external forces
\begin{eqnarray} &&\|u(t)\|^{2}_H+2\nu\int^t_{\tau}\|u(s)\|^{2}_Vds+2\alpha \int^t_{\tau}\|u(s)\|^{2}_Hds\\ &&+2\beta\int^t_{\tau}\|u(s)\|^{3}_{\bf{L}^3}ds+2\gamma\int^t_{\tau}\|u(s)\|^{4}_{\bf{L}^4}ds\\ & = &\|u_{\tau}\|^{2}_H+2\int^t_{\tau}\Big[\big(F(u(s-\rho(s))),u(s)\big)+2(g(s,x),u(s))\Big]ds. \end{eqnarray} | (93) |
Moreover, we can define a continuous process
Proof. Using the Galerkin method and compact argument as in Section 3.3, we can easily derive the result.
After obtaining the existence of the global well-posedness, we establish the existence of the pullback attractors to (1) with sub-linear operator.
Theorem 4.2. (The pullback attractors in
Proof. Using the similar technique as in Section3.3, we can obtain the existence of pullback attractors, here we skip the details.
Theorem 4.3. We assume that the external forces
Then the trajectories inside pullback attractors
\begin{equation} \mathit{\mbox{G}}(t)\leq \tilde{K}_0, \end{equation} | (94) |
where
\begin{equation} \tilde{K}_0 = \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[2C_{|\Omega|}\beta\nu\lambda_1 (\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})\Big]\Big\}^{1/2} > 0,\nonumber \end{equation} |
here
Proof. Step 1. The inequality for asymptotic stability of trajectories.
Let
\begin{eqnarray} u(\theta+\tau)|_{\theta\in [-h,0]} = \phi(\theta)|_{\theta\in[-h,0]},\ \ u|_{t = \tau} = u_{\tau} \end{eqnarray} | (95) |
and
\begin{eqnarray} v(\theta+\tau)|_{\theta\in [-h,0]} = \tilde{\phi}(\theta)|_{\theta\in[-h,0]},\ \ v|_{t = \tau} = \tilde{u}_{\tau} \end{eqnarray} | (96) |
respectively, then
\begin{eqnarray} (u,u_t) = (U(t,\tau)u_{\tau},U(t,\tau)\phi),\ \ (v,v_t) = (U(t,\tau)\tilde{u}_{\tau},U(t,\tau)\tilde{\phi}). \end{eqnarray} | (97) |
If we denote
\begin{equation} \begin{cases} \frac{\partial w}{\partial t}+\nu A w +P\Big(\alpha w+\beta(|u|u-|v|v)+\gamma (|u|^2u-|v|^2v)\Big)&\\ \quad = P\Big(F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big)\Big),& \\ w|_{\partial\Omega} = 0,& \\ w(t = \tau) = u_{\tau}-\tilde{u}_{\tau},&\\ w(\tau+\theta) = \phi(\theta)-\tilde{\phi}(\theta),\ \theta\in [-h,0].& \end{cases} \end{equation} | (98) |
Multiplying (98) with
\begin{eqnarray} &&\frac{1}{2}\frac{d}{d t}\|w\|^2_H+\nu\|w\|^2_V+\alpha \|w\|_H^2+\gamma \gamma_0 \|w\|^4_{\bf{L}^4}\\ &\leq& |\beta(|u|u-|v|v,w)|+\Big|\Big(F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big),w\Big)\Big|\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|u\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H\\ &&+\frac{1}{\alpha}\|F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big)\|^2_H\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|u\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H\\ &&+\frac{L^2(R)\kappa(t)}{\alpha}\|w(t-\rho(t))\|^2_H. \end{eqnarray} | (99) |
Using the Poincaré inequality and Lemma 3.1, noting that if
\begin{eqnarray} 2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V) > 0, \end{eqnarray} | (100) |
then we can obtain
\begin{eqnarray} \|w\|^2_H&\leq& e^{\int^t_{\tau}[2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)-(2\nu\lambda_1+\alpha)]ds}\Big[\|u_{\tau}-\tilde{u}_{\tau}\|^2_H+\\ &&+\frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}\\ && \quad \times\|w(t-\rho(t))\|^2_Hds\Big]. \end{eqnarray} | (101) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds} \end{eqnarray} | (102) |
and
\begin{eqnarray} K_1(t,s) = \frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma} \end{eqnarray} | (103) |
and
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (104) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|w(t-\rho(t))\|^2_H&\leq& \tilde{M}\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\tilde{\lambda} (t-\tau)}. \end{eqnarray} | (105) |
Substituting (105) into (99), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|w\|^2_H &\leq& \|u_{\tau}-\tilde{u}_{\tau}\|^2_He^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds}\\ &&+\frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}\tilde{M}\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\tilde{\lambda} (t-\tau)}\\ && \quad \times\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}ds. \end{eqnarray} | (106) |
From the result in last section, we can find that the pullback attractors is asymptotically stable as
\begin{equation} 2\nu\lambda_1+\alpha > 2C_{|\Omega|}\beta \langle \|u\|^2_V+\|v\|^2_V\rangle_{\leq t}. \end{equation} | (107) |
Step 2.Some energy estimate for (1) with sub-linear operator.
Multiplying (3) with
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\|u\|^2_H+\nu\|A^{1/2}u\|^2_H+\alpha\|u\|^2_H+\beta \|u\|^3_{\bf{L}^3}+\gamma \|u\|^4_{\bf{L}^4}\\ &\leq&\alpha \|u\|^2_H+\frac{1}{2\alpha}\Big[\|f\big(t,u(t-\rho(t))\big)\|^2_H+\|g\|^2_{H}\Big]. \end{eqnarray} | (108) |
Moreover, let
\begin{equation} d\theta = (1-\rho'(s))ds,\ a(t)\rightarrow \tilde{a}(\bar{t})\in L^p(\tau,T), \end{equation} | (109) |
which means
\begin{align} &\int^t_\tau\|f(s,u(s-\rho(s)))\|^2_Hds\\ \leq&\int^t_\tau a(s)\|u(s-\rho(s))\|^2_Hds+\int^T_\tau b(s)ds\\ \leq& \ \dfrac{1}{1-\rho^*}\int_{\tau-\rho(\tau)}^{t-\rho(t)} \tilde{a}(s)\|u(s)\|^2_Hds+\int^t_\tau b(s)ds\\ \leq& \ \dfrac{1}{1-\rho^*}\left(\int_{-\rho(\tau)}^{0}\tilde{a}(t+\tau)\|\phi(t)\|^2_Hdt +\int^t_\tau\tilde{a}(s)\|u(s)\|^2_Hds\right)+\int^t_\tau b(s)ds\\ \leq& \dfrac{1}{1-\rho^*}\left(\|\phi(t)\|^2_{L^{2q}_{H}}\|\tilde{a}\|_{L^q(\tau-h,\tau)} +\int^t_\tau\tilde{a}(s)\|u(s)\|^2_Hds\right)+\int^t_\tau b(s)ds, \end{align} | (110) |
Integrating (108) with time variable from
\begin{eqnarray} &&\|u\|^2_H+2\nu\int^t_{\tau}\|u\|^2_Vds+2\beta\int^t_{\tau} \|u\|^3_{\bf{L}^3}ds+2\gamma \int^t_{\tau}\|u\|^4_{\bf{L}^4}ds\\ &\leq& \dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H+\frac{1}{\alpha(1-\rho^*)}\int^{t}_{\tau}\tilde{a}(s)\|u(s)\|^2_Hds\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds+\frac{1}{\alpha}\int^t_\tau b(s)ds, \end{eqnarray} | (111) |
then we can achieve that
\begin{eqnarray} \|u(t)\|^2_H&\leq& \Big[\dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\Big]e^{-\chi_{\sigma}(t,\tau)}\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}e^{-\chi_{\sigma}(t,s)}ds+\frac{1}{\alpha}\int^t_{\tau}b(s)e^{-\chi_{\sigma}(t,s)}ds, \end{eqnarray} | (112) |
where the new variable index
\begin{eqnarray} \chi_{\sigma}(t,s) = (2\nu\lambda_1-\sigma)(t-s)-\frac{1}{\alpha(1-\rho^*)}\int^t_{s}\tilde{a}(r)dr, \end{eqnarray} | (113) |
which satisfies the relations
\begin{eqnarray} \chi_{\sigma}(0,t)-\chi_{\sigma}(0,s) = -\chi_{\sigma}(t,s) \end{eqnarray} | (114) |
and
\begin{eqnarray} \chi_{\sigma}(0,r)\leq \chi_{\sigma}(0,t)+\Big(2\nu\lambda_1-\delta\Big)h,\ \ \mbox{if}\ 2\nu\lambda_1+\alpha-\delta > 0 \end{eqnarray} | (115) |
for
Moreover, using the variable index introduced above, we can conclude that
\begin{eqnarray} &&2\nu\int^t_{\tau}\|u(r)\|^2_{V}dr\\ &\leq& \dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds+\frac{1}{\alpha}\int^t_\tau b(s)ds\\ &&+\frac{1}{\alpha(1-\rho^*)}\Big[\dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\Big]\int^t_{\tau}\tilde{a}(s)e^{-\chi_{\sigma}(s,\tau)}ds\\ &&+\frac{1}{\alpha^2(1-\rho^*)}\int^t_{\tau}\|g(s)\|^2_{H}ds\int^t_{\tau}\tilde{a}(s)ds+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\int^t_{\tau}\tilde{a}(s)ds. \end{eqnarray} | (116) |
Step 3. The sufficient condition for asymptotic stability of trajectories inside pullback attractors.
Combining (107) with (116), we conclude that
\begin{eqnarray} &&2C_{|\Omega|}\beta\langle \|u\|^2_V+\|v\|^2_V\rangle|_{\leq t}\\ &\leq& \frac{2C_{|\Omega|}\beta}{\nu}\Big[\Big(\frac{1}{\alpha^2(1-\rho^*)}+\int^t_{\tau}\tilde{a}(s)ds\Big)\langle \|g(t)\|_H^2\rangle|_{\leq t} \\ &&+\frac{1}{\alpha}\langle \|b(t)\|_{L^1}\rangle|_{\leq t}+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\langle \|\tilde{a}(t)\|_{L^1}\rangle|_{\leq t}\Big]. \end{eqnarray} | (117) |
and hence the asymptotic stability holds provided that
\begin{eqnarray} &&\Big(\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1}\Big)\langle \|g(t)\|_H^2\rangle|_{\leq t}+\frac{1}{\alpha}\langle \|b(t)\|_{L^1}\rangle|_{\leq t}+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\langle \|\tilde{a}(t)\|_{L^1}\rangle|_{\leq t}\\ &&\leq \frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta}. \end{eqnarray} | (118) |
If we define the generalized Grashof number as
\begin{eqnarray} G(t)\leq \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[2C_{|\Omega|}\beta\nu\lambda_1 (\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})\Big]\Big\}^{1/2} = \tilde{K}_0, \end{eqnarray} | (119) |
which completes the proof for our first result.
Remark 5. If we denote
\begin{eqnarray} \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}b(r)dr = b_0\in [0,+\infty) \end{eqnarray} | (120) |
and
\begin{eqnarray} \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}\tilde{a}(r)dr = \tilde{a}_0\in [0,+\infty), \end{eqnarray} | (121) |
such that there exists some
\begin{eqnarray} \frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta} > \frac{b_0}{\alpha}+\frac{\|b\|_{L^1(\tau,T)}\tilde{\alpha}_0}{\alpha^2(1-\rho^*)}+\delta \end{eqnarray} | (122) |
holds. Then more precise sufficient condition for the asymptotic stability of pullback attractors is
\begin{eqnarray} G(t)\leq \Big[\frac{\frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta}-\frac{b_0}{\alpha}-\frac{\|b\|_{L^1(\tau,T)}\tilde{\alpha}_0}{\alpha^2(1-\rho^*)}}{\nu^2\lambda_1(\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})}\Big]^{1/2} \end{eqnarray} | (123) |
which has smaller upper boundedness than (119).
The structure and stability of 3D BF equations with delay are investigated in this paper. A future research in the pullback dynamics of (1) is to study the geometric property of pullback attractors, such as the fractal dimension.
Xin-Guang Yang was partially supported by the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039) and Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2020003). Xinjie Yan was partly supported by Excellent Innovation Team Project of "Analysis Theory of Partial Differential Equations" in China University of Mining and Technology (No. 2020QN003). Ling Ding was partly supported by NSFC of China (Grant No. 1196302).
The authors want to express their most sincere thanks to refrees for the improvement of this manuscript. The authors also want to thank Professors Tomás Caraballo (Universidad de Sevilla), Desheng Li (Tianjin University) and Shubin Wang (Zhengzhou University) for fruitful discussion on this subject.
[1] |
A. Quarteroni, A. Manzoni, C. Vergara, The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications, Acta Numer., 26 (2017), 365–590. http://doi.org/10.1017/S0962492917000046 doi: 10.1017/S0962492917000046
![]() |
[2] | A. Quarteroni, L. Dede', A. Manzoni, C. Vergara, Mathematical modelling of the human cardiovascular system. data, numerical approximation, clinical applications, Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781108616096 |
[3] |
P. Hauseux, J. Hale, S. Cotin, S. P. A. Bordas, Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters, Appl. Math. Model., 62 (2018), 86–102. https://doi.org/10.1016/j.apm.2018.04.021 doi: 10.1016/j.apm.2018.04.021
![]() |
[4] |
J. Campos, J. Sundnes, R. Dos Santos, B. M. Rocha, Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle, Phil. Trans. R. Soc. A, 378 (2020), 20190381. https://doi.org/10.1098/rsta.2019.0381 doi: 10.1098/rsta.2019.0381
![]() |
[5] |
L. Marx, M. A. F. Gsell, A. Rund, F. Caforio, A. J. Prassl, G. Toth-Gayor, et al., Personalization of electro-mechanical models of the pressure-overloaded left ventricle: fitting of windkessel-type afterload models, Phil. Trans. R. Soc. A, 378 (2020), 20190342. https://doi.org/10.1098/rsta.2019.0342 doi: 10.1098/rsta.2019.0342
![]() |
[6] |
R. Rodríguez-Cantano, J. Sundnes, M. Rognes, Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response, Int. J. Numer. Meth. Biomed. Eng., 35 (2020), e3178. https://doi.org/10.1002/cnm.3178 doi: 10.1002/cnm.3178
![]() |
[7] |
S. Pagani, A. Manzoni, Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning, Int. J. Numer. Meth. Biomed. Eng., 37 (2021), e3450. https://doi.org/10.1002/cnm.3450 doi: 10.1002/cnm.3450
![]() |
[8] | A. Quarteroni, A. Manzoni, F. Negri, Reduced basis methods for partial differential equations: an Introduction, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-15431-2 |
[9] |
P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483–531. https://doi.org/10.1137/130932715 doi: 10.1137/130932715
![]() |
[10] |
M. Morales, M. van den Boomen, C. Nguyen, J. Kalpathy-Cramer, B. R. Rosen, C. M. Stultz, et al., Deepstrain: A deep learning workflow for the automated characterization of cardiac mechanics, Front. Cardiovasc. Med., 8 (2021), 1041. https://doi.org/10.3389/fcvm.2021.730316 doi: 10.3389/fcvm.2021.730316
![]() |
[11] |
P. Di Achille, A. Harouni, S. Khamzin, O. Solovyova, J. J. Rice, V. Gurev, Gaussian process regressions for inverse problems and parameter searches in models of ventricular mechanics, Front. Physiol., 9 (2018), 1002. https://doi.org/10.3389/fphys.2018.01002 doi: 10.3389/fphys.2018.01002
![]() |
[12] |
U. Noè, A. Lazarus, H. Gao, V. Davies, B. Macdonald, K. Mangion, et al., Gaussian process emulation to accelerate parameter estimation in a mechanical model of the left ventricle: a critical step towards clinical end-user relevance, J. R. Soc. Interface, 16 (2019), 20190114. https://doi.org/10.1098/rsif.2019.0114 doi: 10.1098/rsif.2019.0114
![]() |
[13] |
S. Longobardi, A. Lewalle, S. Coveney, I. Sjaastad, E. K. S. Espe, W. E. Louch, et al., Predicting left ventricular contractile function via gaussian process emulation in aortic-banded rats, Phil. Trans. R. Soc. A, 378 (2019), 20190334. https://doi.org/10.1098/rsta.2019.0334 doi: 10.1098/rsta.2019.0334
![]() |
[14] |
S. Buoso, T. Joyce, S. Kozerke, Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks, Med. Image Anal., 71 (2021), 102066. https://doi.org/10.1016/j.media.2021.102066 doi: 10.1016/j.media.2021.102066
![]() |
[15] |
D. Bonomi, A. Manzoni, A. Quarteroni, A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics, Comput. Meth. Appl. Mech. Eng., 324 (2017), 300–326. https://doi.org/10.1016/j.cma.2017.06.011 doi: 10.1016/j.cma.2017.06.011
![]() |
[16] | A. Manzoni, D. Bonomi, A. Quarteroni, Reduced order modeling for cardiac electrophysiology and mechanics: New methodologies, challenges and perspectives, In: Mathematical and numerical modeling of the cardiovascular system and applications, Cham: Springer, 2018,115–166. https://doi.org/10.1007/978-3-319-96649-6_6 |
[17] |
D. Chapelle, A. Gariah, P. Moireau, J. Sainte-Marie, A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems – analysis, assessments and applications to parameter estimation, ESAIM: M2AN, 47 (2013), 1821–1843. https://doi.org/10.1051/m2an/2013090 doi: 10.1051/m2an/2013090
![]() |
[18] |
M. Pfaller, M. Cruz Varona, J. Lang, C. Bertoglio, W. A. Wall, Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations, Int. J. Numer. Meth. Biomed. Eng., 36 (2020), e3320. https://doi.org/10.1002/cnm.3320 doi: 10.1002/cnm.3320
![]() |
[19] | J. M. Guccione, A. D. McCulloch, Finite element modeling of ventricular mechanics, In: Theory of heart, New York, NY: Springer, 1991,121–144. https://doi.org/10.1007/978-1-4612-3118-9_6 |
[20] |
J. Guccione, A. McCulloch, Mechanics of active contraction in cardiac muscle: Part Ⅰ–Constitutive relations for fiber stress that describe deactivation, J. Biomech. Eng., 115 (1993), 72–81. http://doi.org/10.1115/1.2895473 doi: 10.1115/1.2895473
![]() |
[21] |
K. Costa, J. Holmes, A. McCulloch, Modelling cardiac mechanical properties in three dimensions, Phil. Trans. R. Soc. A, 359 (2001), 1233–1250. https://doi.org/10.1098/rsta.2001.0828 doi: 10.1098/rsta.2001.0828
![]() |
[22] |
G. Holzapfel, R. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Phil. Trans. R. Soc. A, 367 (2009), 3445–3475. https://doi.org/10.1098/rsta.2009.0091 doi: 10.1098/rsta.2009.0091
![]() |
[23] |
D. Nordsletten, S. Niederer, M. Nash, P. J. Hunter, N. P. Smith, Coupling multi-physics models to cardiac mechanics, Prog. Biophys. Mol. Biol., 104 (2011), 77–88. https://doi.org/10.1016/j.pbiomolbio.2009.11.001 doi: 10.1016/j.pbiomolbio.2009.11.001
![]() |
[24] |
H. M. Wang, H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden, et al., Structure-based finite strain modelling of the human left ventricle in diastole, Int. J. Numer. Meth. Biomed. Eng., 29 (2013), 83–103. https://doi.org/10.1002/cnm.2497 doi: 10.1002/cnm.2497
![]() |
[25] |
L. Barbarotta, S. Rossi, L. Dede', A. Quarteroni, A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation, Int. J. Numer. Meth. Biomed. Eng., 34 (2018), e3137. https://doi.org/10.1002/cnm.3137 doi: 10.1002/cnm.3137
![]() |
[26] | L. Dede', A. Gerbi, A. Quarteroni, Segregated algorithms for the numerical simulation of cardiac electromechanics in the left human ventricle, In: The mathematics of mechanobiology, Cham: Springer, 2020, 81–116. https://doi.org/10.1007/978-3-030-45197-4_3 |
[27] |
D. Lin, F. Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus, J. Biomech. Eng., 120 (1998), 504–517. https://doi.org/10.1115/1.2798021 doi: 10.1115/1.2798021
![]() |
[28] |
D. Ambrosi, S. Pezzuto, Active stress vs. active strain in mechanobiology: constitutive issues, J. Elast., 107 (2012), 199–212. https://doi.org/10.1007/s10659-011-9351-4 doi: 10.1007/s10659-011-9351-4
![]() |
[29] | G. A. Holzapfel, Nonlinear solid mechanics. A continuum approach for engineering, Chichester: Wiley, 2001. |
[30] |
C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19 (1965), 577–593. https://doi.org/10.1090/S0025-5718-1965-0198670-6 doi: 10.1090/S0025-5718-1965-0198670-6
![]() |
[31] |
A. Radermacher, S. Reese, POD-based model reduction with empirical interpolation applied to nonlinear elasticity, Int. J. Numer. Meth. Eng., 107 (2016), 477–495. https://doi.org/10.1002/nme.5177 doi: 10.1002/nme.5177
![]() |
[32] |
J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming, 1 (1971), 127–136. https://doi.org/10.1007/BF01584082 doi: 10.1007/BF01584082
![]() |
[33] | C. Farhat, S. Grimberg, A. Manzoni, A. Quarteroni, Computational bottlenecks for proms: precomputation and hyperreduction, In: Model order reduction, Berlin: De Gruyter, 2020,181–244. https://doi.org/10.1515/9783110671490-005 |
[34] |
M. Barrault, Y. Maday, N. Nguyen, A. T. Patera, An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339 (2004), 667–672. https://doi.org/10.1016/j.crma.2004.08.006 doi: 10.1016/j.crma.2004.08.006
![]() |
[35] |
M. Grepl, Y. Maday, N. Nguyen, A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: M2AN, 41 (2007), 575–605. https://doi.org/10.1051/m2an:2007031 doi: 10.1051/m2an:2007031
![]() |
[36] |
Y. Maday, N. Nguyen, A. Patera, S. H. Pau, A general multipurpose interpolation procedure: The magic points, Commun. Pure Appl. Anal., 8 (2008), 383–404. https://doi.org/10.3934/cpaa.2009.8.383 doi: 10.3934/cpaa.2009.8.383
![]() |
[37] |
S. Chaturantabut, D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), 2737–2764. https://doi.org/10.1137/090766498 doi: 10.1137/090766498
![]() |
[38] |
D. Wirtz, D. Sorensen, B. Haasdonk. A posteriori error estimation for DEIM reduced nonlinear dynamical systems, SIAM J. Sci. Comput., 36 (2014), A311–A338. https://doi.org/10.1137/120899042 doi: 10.1137/120899042
![]() |
[39] |
K. Carlberg, R. Tuminaro, P. Boggs, Preserving lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. Comput., 37 (2015), B153–B184. https://doi.org/10.1137/140959602 doi: 10.1137/140959602
![]() |
[40] |
F. Negri, A. Manzoni, D. Amsallem, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J. Comput. Phys., 303 (2015), 431–454. https://doi.org/10.1016/j.jcp.2015.09.046 doi: 10.1016/j.jcp.2015.09.046
![]() |
[41] |
P. Astrid, S. Weiland, K. Willcox, T. Backx, Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Contr., 53 (2008), 2237–2251. https://doi.org/10.1109/TAC.2008.2006102 doi: 10.1109/TAC.2008.2006102
![]() |
[42] |
K. Carlberg, C. Bou-Mosleh, C. Farhat, Efficient non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations, Int. J. Numer. Meth. Eng., 86 (2011), 155–181. https://doi.org/10.1002/nme.3050 doi: 10.1002/nme.3050
![]() |
[43] |
M. Drohmann, B. Haasdonk, M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34 (2012), A937–A969. https://doi.org/10.1137/10081157X doi: 10.1137/10081157X
![]() |
[44] |
D. Amsallem, M. Zahr, C. Farhat, Nonlinear model order reduction based on local reduced-order bases, Int. J. Numer. Meth. Eng., 92 (2012), 891–916. https://doi.org/10.1002/nme.4371 doi: 10.1002/nme.4371
![]() |
[45] | P. Tiso, D. J. Rixen, Discrete empirical interpolation method for finite element structural dynamics, In: Topics in nonlinear dynamics, volume 1, New York, NY: Springer, 2013,203–212. https://doi.org/10.1007/978-1-4614-6570-6_18 |
[46] |
F. Ghavamian, P. Tiso, A. Simone, POD-DEIM model order reduction for strain-softening viscoplasticity, Comput. Meth. Appl. Mech. Eng., 317 (2017), 458–479. https://doi.org/10.1016/j.cma.2016.11.025 doi: 10.1016/j.cma.2016.11.025
![]() |
[47] |
S. Land, V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, et al., Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour, Proc. R. Soc. A, 471 (2015), 20150641. https://doi.org/10.1098/rspa.2015.0641 doi: 10.1098/rspa.2015.0641
![]() |
[48] |
D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, et al., The deal.Ⅱ library, version 9.2, J. Numer. Math., 28 (2020), 131–146. https://doi.org/10.1515/jnma-2020-0043 doi: 10.1515/jnma-2020-0043
![]() |
[49] |
J. Bayer, R. Blake, G. Plank, N. A. Trayanova, A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Eng., 40 (2012), 2243–2254. https://doi.org/10.1007/s10439-012-0593-5 doi: 10.1007/s10439-012-0593-5
![]() |
[50] |
J. Wong, E. Kuhl, Generating fibre orientation maps in human heart models using poisson interpolation, Comput. Meth. Biomech. Biomed. Eng., 17 (2014), 1217–1226. https://doi.org/10.1080/10255842.2012.739167 doi: 10.1080/10255842.2012.739167
![]() |
[51] |
R. Doste, D. Soto-Iglesias, G. Bernardino, A. Alcaine, R. Sebastian, S. Giffard-Roisin, et al., A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts, Int. J. Numer. Meth. Biomed. Eng., 35 (2019), e3185. http://doi.org/10.1002/cnm.3185 doi: 10.1002/cnm.3185
![]() |
[52] |
R. Piersanti, P. Africa, M. Fedele, C. Vergara, L. Dedè, A. F. Corno, et al., Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations, Comput. Meth. Appl. Mech. Eng., 373 (2021), 113468. https://doi.org/10.1016/j.cma.2020.113468 doi: 10.1016/j.cma.2020.113468
![]() |
[53] |
S. Rossi, T. Lassila, R. Ruiz-Baier, A. Sequeira, A. Quarteroni, Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics, Eur. J. Mech-A/Solids, 48 (2014), 129–142. https://doi.org/10.1016/j.euromechsol.2013.10.009 doi: 10.1016/j.euromechsol.2013.10.009
![]() |
[54] | A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al., Global sensitivity analysis: the primer, John Wiley & Sons, 2008. https://doi.org/10.1002/9780470725184 |
[55] |
F. Regazzoni, L. Dede', A. Quarteroni, Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics, Comput. Meth. Appl. Mech. Eng., 370 (2020), 113268. https://doi.org/10.1016/j.cma.2020.113268 doi: 10.1016/j.cma.2020.113268
![]() |
[56] | Zygote solid 3d heart generation ii development report, Zygote Media Group Inc., 2014. |
[57] |
F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dedè, A. Quarteroni, A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation, J. Comput. Phys., 457 (2022), 111083. https://doi.org/10.1016/j.jcp.2022.111083 doi: 10.1016/j.jcp.2022.111083
![]() |
[58] |
F. Regazzoni, L. Dede', A. Quarteroni, Biophysically detailed mathematical models of multiscale cardiac active mechanics, PLoS Comput. Biol., 16 (2020), e1008294. https://doi.org/10.1371/journal.pcbi.1008294 doi: 10.1371/journal.pcbi.1008294
![]() |
[59] |
N. Halko, P. Martinsson, J. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), 217–288. https://doi.org/10.1137/090771806 doi: 10.1137/090771806
![]() |
1. | Qiangheng Zhang, Yangrong Li, Regular attractors of asymptotically autonomous stochastic 3D Brinkman-Forchheimer equations with delays, 2021, 20, 1534-0392, 3515, 10.3934/cpaa.2021117 | |
2. | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang, Pullback dynamics of a 3D modified Navier-Stokes equations with double delays, 2021, 29, 2688-1594, 4137, 10.3934/era.2021076 | |
3. | Shu Wang, Mengmeng Si, Rong Yang, Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains, 2023, 31, 2688-1594, 904, 10.3934/era.2023045 | |
4. | Yang Liu, Chunyou Sun, Inviscid limit for the damped generalized incompressible Navier-Stokes equations on \mathbb{T}^2 , 2021, 14, 1937-1632, 4383, 10.3934/dcdss.2021124 | |
5. | Shu Wang, Mengmeng Si, Rong Yang, Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains, 2022, 21, 1534-0392, 1621, 10.3934/cpaa.2022034 | |
6. | Wenjing Liu, Rong Yang, Xin-Guang Yang, Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay, 2021, 20, 1553-5258, 1907, 10.3934/cpaa.2021052 | |
7. | Ling-Rui Zhang, Xin-Guang Yang, Ke-Qin Su, Asymptotic Stability for the 2D Navier–Stokes Equations with Multidelays on Lipschitz Domain, 2022, 10, 2227-7390, 4561, 10.3390/math10234561 | |
8. | Xiaona Cui, Wei Shi, Xuezhi Li, Xin‐Guang Yang, Pullback dynamics for the 3‐D incompressible Navier–Stokes equations with damping and delay, 2021, 44, 0170-4214, 7031, 10.1002/mma.7239 | |
9. | Zhengwang Tao, Xin-Guang Yang, Yan Lin, Chunxiao Guo, Determination of Three-Dimensional Brinkman—Forchheimer-Extended Darcy Flow, 2023, 7, 2504-3110, 146, 10.3390/fractalfract7020146 | |
10. | Yonghai Wang, Minhui Hu, Yuming Qin, Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation, 2021, 2021, 1687-2770, 10.1186/s13661-021-01532-7 | |
11. | Xueli SONG, Xi DENG, Baoming QIAO, Dimension Estimate of the Global Attractor for a 3D Brinkman- Forchheimer Equation, 2023, 28, 1007-1202, 1, 10.1051/wujns/2023281001 | |
12. | Songmao He, Xin-Guang Yang, Asymptotic behavior of 3D Ladyzhenskaya-type fluid flow model with delay, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024135 | |
13. | Lingrui Zhang, Xue-zhi Li, Keqin Su, Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D, 2023, 31, 2688-1594, 6881, 10.3934/era.2023348 | |
14. | Xinfeng Ge, Keqin Su, Stability of thermoelastic Timoshenko system with variable delay in the internal feedback, 2024, 32, 2688-1594, 3457, 10.3934/era.2024160 | |
15. | Keqin Su, Xin-Guang Yang, Alain Miranville, He Yang, Dynamics and robustness for the 2D Navier–Stokes equations with multi-delays in Lipschitz-like domains, 2023, 134, 18758576, 513, 10.3233/ASY-231845 | |
16. | Lingrui Zhang, Xue-zhi Li, Keqin Su, Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D, 2023, 31, 2688-1594, 6881, 10.3934/era.20233348 |