The numerical simulation of several virtual scenarios arising in cardiac mechanics poses a computational challenge that can be alleviated if traditional full-order models (FOMs) are replaced by reduced order models (ROMs). For example, in the case of problems involving a vector of input parameters related, e.g., to material coefficients, projection-based ROMs provide mathematically rigorous physics-driven surrogate ROMs. In this work we demonstrate how, once trained, ROMs yield extremely accurate predictions (according to a prescribed tolerance) – yet cheaper than the ones provided by FOMs – of the structural deformation of the left ventricular tissue over an entire heartbeat, and of related output quantities of interest, such as the pressure-volume loop, for any desired input parameter values within a prescribed parameter range. However, the construction of ROM approximations for time-dependent cardiac mechanics is not straightforward, because of the highly nonlinear and multiscale nature of the problem, and almost never addressed. Our approach relies on the reduced basis method for parameterized partial differential equations. This technique performs a Galerkin projection onto a low-dimensional space for the displacement variable; the reduced space is built from a set of solution snapshots – obtained for different input parameter values and time instances – of the high-fidelity FOM, through the proper orthogonal decomposition technique. Then, suitable hyper-reduction techniques, such as the Discrete Empirical Interpolation Method, are exploited to efficiently handle nonlinear and parameter-dependent terms. In this work we show how a fast and reliable approximation of the time-dependent cardiac mechanical model can be achieved by a projection-based ROM, taking into account both passive and active mechanics for the left ventricle providing all the building blocks of the methodology, and highlighting those challenging aspects that are still open.
Citation: Ludovica Cicci, Stefania Fresca, Stefano Pagani, Andrea Manzoni, Alfio Quarteroni. Projection-based reduced order models for parameterized nonlinear time-dependent problems arising in cardiac mechanics[J]. Mathematics in Engineering, 2023, 5(2): 1-38. doi: 10.3934/mine.2023026
[1] | Stefania Fresca, Federico Fatone, Andrea Manzoni . Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based reduced order models. Mathematics in Engineering, 2023, 5(6): 1-36. doi: 10.3934/mine.2023096 |
[2] | Zaffar Mehdi Dar, M. Arrutselvi, Chandru Muthusamy, Sundararajan Natarajan, Gianmarco Manzini . Virtual element approximations of the time-fractional nonlinear convection-diffusion equation on polygonal meshes. Mathematics in Engineering, 2025, 7(2): 96-129. doi: 10.3934/mine.2025005 |
[3] | Luca Azzolin, Luca Dedè, Antonello Gerbi, Alfio Quarteroni . Effect of fibre orientation and bulk modulus on the electromechanical modelling of human ventricles. Mathematics in Engineering, 2020, 2(4): 614-638. doi: 10.3934/mine.2020028 |
[4] | Luigi C. Berselli, Traian Iliescu, Birgul Koc, Roger Lewandowski . Long-time Reynolds averaging of reduced order models for fluid flows: Preliminary results. Mathematics in Engineering, 2020, 2(1): 1-25. doi: 10.3934/mine.2020001 |
[5] | Simon Lemaire, Julien Moatti . Structure preservation in high-order hybrid discretisations of potential-driven advection-diffusion: linear and nonlinear approaches. Mathematics in Engineering, 2024, 6(1): 100-136. doi: 10.3934/mine.2024005 |
[6] | Francesca Bonizzoni, Davide Pradovera, Michele Ruggeri . Rational-approximation-based model order reduction of Helmholtz frequency response problems with adaptive finite element snapshots. Mathematics in Engineering, 2023, 5(4): 1-38. doi: 10.3934/mine.2023074 |
[7] | Federica Botta, Matteo Calafà, Pasquale C. Africa, Christian Vergara, Paola F. Antonietti . High-order discontinuous Galerkin methods for the monodomain and bidomain models. Mathematics in Engineering, 2024, 6(6): 726-741. doi: 10.3934/mine.2024028 |
[8] | Giulio Ortali, Nicola Demo, Gianluigi Rozza . A Gaussian Process Regression approach within a data-driven POD framework for engineering problems in fluid dynamics. Mathematics in Engineering, 2022, 4(3): 1-16. doi: 10.3934/mine.2022021 |
[9] | Christopher Chong, Andre Foehr, Efstathios G. Charalampidis, Panayotis G. Kevrekidis, Chiara Daraio . Breathers and other time-periodic solutions in an array of cantilevers decorated with magnets. Mathematics in Engineering, 2019, 1(3): 489-507. doi: 10.3934/mine.2019.3.489 |
[10] | Yangyang Qiao, Qing Li, Steinar Evje . On the numerical discretization of a tumor progression model driven by competing migration mechanisms. Mathematics in Engineering, 2022, 4(6): 1-24. doi: 10.3934/mine.2022046 |
The numerical simulation of several virtual scenarios arising in cardiac mechanics poses a computational challenge that can be alleviated if traditional full-order models (FOMs) are replaced by reduced order models (ROMs). For example, in the case of problems involving a vector of input parameters related, e.g., to material coefficients, projection-based ROMs provide mathematically rigorous physics-driven surrogate ROMs. In this work we demonstrate how, once trained, ROMs yield extremely accurate predictions (according to a prescribed tolerance) – yet cheaper than the ones provided by FOMs – of the structural deformation of the left ventricular tissue over an entire heartbeat, and of related output quantities of interest, such as the pressure-volume loop, for any desired input parameter values within a prescribed parameter range. However, the construction of ROM approximations for time-dependent cardiac mechanics is not straightforward, because of the highly nonlinear and multiscale nature of the problem, and almost never addressed. Our approach relies on the reduced basis method for parameterized partial differential equations. This technique performs a Galerkin projection onto a low-dimensional space for the displacement variable; the reduced space is built from a set of solution snapshots – obtained for different input parameter values and time instances – of the high-fidelity FOM, through the proper orthogonal decomposition technique. Then, suitable hyper-reduction techniques, such as the Discrete Empirical Interpolation Method, are exploited to efficiently handle nonlinear and parameter-dependent terms. In this work we show how a fast and reliable approximation of the time-dependent cardiac mechanical model can be achieved by a projection-based ROM, taking into account both passive and active mechanics for the left ventricle providing all the building blocks of the methodology, and highlighting those challenging aspects that are still open.
Theoretical modeling of biological processes is an indispensable tool for mathematicians, biologists, and bioengineers to describe and predict the behavior of complex biological systems. In mathematics and computer science, deterministic systems are those in which future states are not influenced by randomness. Consequently, deterministic models consistently yield the same results given identical initial conditions. These models facilitate the precise calculation of future events without unpredictable influence of noise, allowing for confident predictions based on complete data.
In systems biology, models are predominantly deterministic, translating biological problems into systems of equations solvable through numerical simulations. These equations describe the dynamical interactions between biological units, elucidating various biological processes at different levels, from viruses to living organisms. The efficiency of quantitative modeling, including equation-based approaches, is closely related to the quality and abundance of data obtained for the system being modeled. Equation-based modeling not only integrates but also enhances traditional statistical inference methods.
This special issue compiles original contributions focusing on the analytical and numerical studies of difference and differential equations for modeling biological systems. The included papers explore various facets of equation-based modeling, examining their assumptions, strengths, weaknesses, and providing specific examples of simple models.
The issue comprises five contributions, all employing deterministic models to simulate biological dynamics in different contexts: neuron dynamics [1], viral infections [2], bone mineralization [3], cirrhosis evolution [4], and bacterial growth [5]. Three of these studies [1,2,3] utilize fractional-order difference [1] and differential [2,3] equations, while two rely on integer-order differential equations [4,5].
Recent years have seen a growing interest in the application of fractional-order calculus across various fields, including physics, engineering, and biology. The dynamics of fractional-order systems have garnered attention due to the enhanced accuracy of fractional derivatives in various interdisciplinary contexts. One significant advantage of fractional-order systems over classical integer-order models is their infinite memory, which effectively describes the hereditary properties of neural networks. However, the dynamical behavior of fractional-order biological systems requires further investigation.
Vivekanandhan et al. [1] introduced a fractional-order Rulkov map to describe the synchronous dynamics of coupled neurons. Using traditional nonlinear dynamics tools such as phase space analysis, bifurcation diagrams, and Lyapunov exponents, they demonstrate various dynamical regimes, including silence, bursting, and chaotic firing. They also analyzed the stability of fixed points and investigated synchronization of two fractional-order Rulkov maps, concluding that complete synchronization is unattainable.
In another paper, Alzubaidi et al. [2] employed a fractional-order mathematical model to simulate the dynamics of mpox (formerly monkeypox), a disease caused by a virus of the variola family, which was declared a public health emergency of international concern from July 23, 2022 to May 11, 2023. Their simulations indicated that the new fractal-fractional operator provided deeper biological insights into the disease's dynamics.
The comparison of fractional-order and integer-order models was made by Agarwal et al. [3] in their study of bone mineralization, a complex process of depositing inorganic sediments onto an organic matrix. Modeling this process is crucial for assessing bone stability. Their simulations showed that minerals were detected as an earlier stage in the fractional-order model, a phenomenon not observed in the integer-order model.
Distinct from the aforementioned studies, the remaining two papers focus on deterministic models based on integer-order differential equations. Specifically, Ayala et al. [4] developed a mathematical model of cirrhosis, a disease for which there is currently no effective drug treatment. Instead, herbal remedies, particularly, a mixture of seven popular Mexican plants, are often helpful in curating this disease. The results of numerical simulations using their model with the plants' parameters showed good agreement with experiments carried out on rats with induced cirrhosis.
Lastly, Villa et al. [5] presented a mathematical model for the growth of microbial Geobacter cells. This model provided a comprehensive framework for optimizing the relationships among various variables influencing cellular function. The authors suggested that their model could serve as a theoretical basis for studying microbial growth and have practical applications in optimizing bacterial cultures for specific outcomes.
In conclusion, I believe this special issue will benefit computational biologists and researchers interested in applying mathematical tools to address real-world biological challenges.
[1] |
A. Quarteroni, A. Manzoni, C. Vergara, The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications, Acta Numer., 26 (2017), 365–590. http://doi.org/10.1017/S0962492917000046 doi: 10.1017/S0962492917000046
![]() |
[2] | A. Quarteroni, L. Dede', A. Manzoni, C. Vergara, Mathematical modelling of the human cardiovascular system. data, numerical approximation, clinical applications, Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781108616096 |
[3] |
P. Hauseux, J. Hale, S. Cotin, S. P. A. Bordas, Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters, Appl. Math. Model., 62 (2018), 86–102. https://doi.org/10.1016/j.apm.2018.04.021 doi: 10.1016/j.apm.2018.04.021
![]() |
[4] |
J. Campos, J. Sundnes, R. Dos Santos, B. M. Rocha, Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle, Phil. Trans. R. Soc. A, 378 (2020), 20190381. https://doi.org/10.1098/rsta.2019.0381 doi: 10.1098/rsta.2019.0381
![]() |
[5] |
L. Marx, M. A. F. Gsell, A. Rund, F. Caforio, A. J. Prassl, G. Toth-Gayor, et al., Personalization of electro-mechanical models of the pressure-overloaded left ventricle: fitting of windkessel-type afterload models, Phil. Trans. R. Soc. A, 378 (2020), 20190342. https://doi.org/10.1098/rsta.2019.0342 doi: 10.1098/rsta.2019.0342
![]() |
[6] |
R. Rodríguez-Cantano, J. Sundnes, M. Rognes, Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response, Int. J. Numer. Meth. Biomed. Eng., 35 (2020), e3178. https://doi.org/10.1002/cnm.3178 doi: 10.1002/cnm.3178
![]() |
[7] |
S. Pagani, A. Manzoni, Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning, Int. J. Numer. Meth. Biomed. Eng., 37 (2021), e3450. https://doi.org/10.1002/cnm.3450 doi: 10.1002/cnm.3450
![]() |
[8] | A. Quarteroni, A. Manzoni, F. Negri, Reduced basis methods for partial differential equations: an Introduction, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-15431-2 |
[9] |
P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483–531. https://doi.org/10.1137/130932715 doi: 10.1137/130932715
![]() |
[10] |
M. Morales, M. van den Boomen, C. Nguyen, J. Kalpathy-Cramer, B. R. Rosen, C. M. Stultz, et al., Deepstrain: A deep learning workflow for the automated characterization of cardiac mechanics, Front. Cardiovasc. Med., 8 (2021), 1041. https://doi.org/10.3389/fcvm.2021.730316 doi: 10.3389/fcvm.2021.730316
![]() |
[11] |
P. Di Achille, A. Harouni, S. Khamzin, O. Solovyova, J. J. Rice, V. Gurev, Gaussian process regressions for inverse problems and parameter searches in models of ventricular mechanics, Front. Physiol., 9 (2018), 1002. https://doi.org/10.3389/fphys.2018.01002 doi: 10.3389/fphys.2018.01002
![]() |
[12] |
U. Noè, A. Lazarus, H. Gao, V. Davies, B. Macdonald, K. Mangion, et al., Gaussian process emulation to accelerate parameter estimation in a mechanical model of the left ventricle: a critical step towards clinical end-user relevance, J. R. Soc. Interface, 16 (2019), 20190114. https://doi.org/10.1098/rsif.2019.0114 doi: 10.1098/rsif.2019.0114
![]() |
[13] |
S. Longobardi, A. Lewalle, S. Coveney, I. Sjaastad, E. K. S. Espe, W. E. Louch, et al., Predicting left ventricular contractile function via gaussian process emulation in aortic-banded rats, Phil. Trans. R. Soc. A, 378 (2019), 20190334. https://doi.org/10.1098/rsta.2019.0334 doi: 10.1098/rsta.2019.0334
![]() |
[14] |
S. Buoso, T. Joyce, S. Kozerke, Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks, Med. Image Anal., 71 (2021), 102066. https://doi.org/10.1016/j.media.2021.102066 doi: 10.1016/j.media.2021.102066
![]() |
[15] |
D. Bonomi, A. Manzoni, A. Quarteroni, A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics, Comput. Meth. Appl. Mech. Eng., 324 (2017), 300–326. https://doi.org/10.1016/j.cma.2017.06.011 doi: 10.1016/j.cma.2017.06.011
![]() |
[16] | A. Manzoni, D. Bonomi, A. Quarteroni, Reduced order modeling for cardiac electrophysiology and mechanics: New methodologies, challenges and perspectives, In: Mathematical and numerical modeling of the cardiovascular system and applications, Cham: Springer, 2018,115–166. https://doi.org/10.1007/978-3-319-96649-6_6 |
[17] |
D. Chapelle, A. Gariah, P. Moireau, J. Sainte-Marie, A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems – analysis, assessments and applications to parameter estimation, ESAIM: M2AN, 47 (2013), 1821–1843. https://doi.org/10.1051/m2an/2013090 doi: 10.1051/m2an/2013090
![]() |
[18] |
M. Pfaller, M. Cruz Varona, J. Lang, C. Bertoglio, W. A. Wall, Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations, Int. J. Numer. Meth. Biomed. Eng., 36 (2020), e3320. https://doi.org/10.1002/cnm.3320 doi: 10.1002/cnm.3320
![]() |
[19] | J. M. Guccione, A. D. McCulloch, Finite element modeling of ventricular mechanics, In: Theory of heart, New York, NY: Springer, 1991,121–144. https://doi.org/10.1007/978-1-4612-3118-9_6 |
[20] |
J. Guccione, A. McCulloch, Mechanics of active contraction in cardiac muscle: Part Ⅰ–Constitutive relations for fiber stress that describe deactivation, J. Biomech. Eng., 115 (1993), 72–81. http://doi.org/10.1115/1.2895473 doi: 10.1115/1.2895473
![]() |
[21] |
K. Costa, J. Holmes, A. McCulloch, Modelling cardiac mechanical properties in three dimensions, Phil. Trans. R. Soc. A, 359 (2001), 1233–1250. https://doi.org/10.1098/rsta.2001.0828 doi: 10.1098/rsta.2001.0828
![]() |
[22] |
G. Holzapfel, R. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Phil. Trans. R. Soc. A, 367 (2009), 3445–3475. https://doi.org/10.1098/rsta.2009.0091 doi: 10.1098/rsta.2009.0091
![]() |
[23] |
D. Nordsletten, S. Niederer, M. Nash, P. J. Hunter, N. P. Smith, Coupling multi-physics models to cardiac mechanics, Prog. Biophys. Mol. Biol., 104 (2011), 77–88. https://doi.org/10.1016/j.pbiomolbio.2009.11.001 doi: 10.1016/j.pbiomolbio.2009.11.001
![]() |
[24] |
H. M. Wang, H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden, et al., Structure-based finite strain modelling of the human left ventricle in diastole, Int. J. Numer. Meth. Biomed. Eng., 29 (2013), 83–103. https://doi.org/10.1002/cnm.2497 doi: 10.1002/cnm.2497
![]() |
[25] |
L. Barbarotta, S. Rossi, L. Dede', A. Quarteroni, A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation, Int. J. Numer. Meth. Biomed. Eng., 34 (2018), e3137. https://doi.org/10.1002/cnm.3137 doi: 10.1002/cnm.3137
![]() |
[26] | L. Dede', A. Gerbi, A. Quarteroni, Segregated algorithms for the numerical simulation of cardiac electromechanics in the left human ventricle, In: The mathematics of mechanobiology, Cham: Springer, 2020, 81–116. https://doi.org/10.1007/978-3-030-45197-4_3 |
[27] |
D. Lin, F. Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus, J. Biomech. Eng., 120 (1998), 504–517. https://doi.org/10.1115/1.2798021 doi: 10.1115/1.2798021
![]() |
[28] |
D. Ambrosi, S. Pezzuto, Active stress vs. active strain in mechanobiology: constitutive issues, J. Elast., 107 (2012), 199–212. https://doi.org/10.1007/s10659-011-9351-4 doi: 10.1007/s10659-011-9351-4
![]() |
[29] | G. A. Holzapfel, Nonlinear solid mechanics. A continuum approach for engineering, Chichester: Wiley, 2001. |
[30] |
C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19 (1965), 577–593. https://doi.org/10.1090/S0025-5718-1965-0198670-6 doi: 10.1090/S0025-5718-1965-0198670-6
![]() |
[31] |
A. Radermacher, S. Reese, POD-based model reduction with empirical interpolation applied to nonlinear elasticity, Int. J. Numer. Meth. Eng., 107 (2016), 477–495. https://doi.org/10.1002/nme.5177 doi: 10.1002/nme.5177
![]() |
[32] |
J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming, 1 (1971), 127–136. https://doi.org/10.1007/BF01584082 doi: 10.1007/BF01584082
![]() |
[33] | C. Farhat, S. Grimberg, A. Manzoni, A. Quarteroni, Computational bottlenecks for proms: precomputation and hyperreduction, In: Model order reduction, Berlin: De Gruyter, 2020,181–244. https://doi.org/10.1515/9783110671490-005 |
[34] |
M. Barrault, Y. Maday, N. Nguyen, A. T. Patera, An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339 (2004), 667–672. https://doi.org/10.1016/j.crma.2004.08.006 doi: 10.1016/j.crma.2004.08.006
![]() |
[35] |
M. Grepl, Y. Maday, N. Nguyen, A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: M2AN, 41 (2007), 575–605. https://doi.org/10.1051/m2an:2007031 doi: 10.1051/m2an:2007031
![]() |
[36] |
Y. Maday, N. Nguyen, A. Patera, S. H. Pau, A general multipurpose interpolation procedure: The magic points, Commun. Pure Appl. Anal., 8 (2008), 383–404. https://doi.org/10.3934/cpaa.2009.8.383 doi: 10.3934/cpaa.2009.8.383
![]() |
[37] |
S. Chaturantabut, D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), 2737–2764. https://doi.org/10.1137/090766498 doi: 10.1137/090766498
![]() |
[38] |
D. Wirtz, D. Sorensen, B. Haasdonk. A posteriori error estimation for DEIM reduced nonlinear dynamical systems, SIAM J. Sci. Comput., 36 (2014), A311–A338. https://doi.org/10.1137/120899042 doi: 10.1137/120899042
![]() |
[39] |
K. Carlberg, R. Tuminaro, P. Boggs, Preserving lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. Comput., 37 (2015), B153–B184. https://doi.org/10.1137/140959602 doi: 10.1137/140959602
![]() |
[40] |
F. Negri, A. Manzoni, D. Amsallem, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J. Comput. Phys., 303 (2015), 431–454. https://doi.org/10.1016/j.jcp.2015.09.046 doi: 10.1016/j.jcp.2015.09.046
![]() |
[41] |
P. Astrid, S. Weiland, K. Willcox, T. Backx, Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Contr., 53 (2008), 2237–2251. https://doi.org/10.1109/TAC.2008.2006102 doi: 10.1109/TAC.2008.2006102
![]() |
[42] |
K. Carlberg, C. Bou-Mosleh, C. Farhat, Efficient non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations, Int. J. Numer. Meth. Eng., 86 (2011), 155–181. https://doi.org/10.1002/nme.3050 doi: 10.1002/nme.3050
![]() |
[43] |
M. Drohmann, B. Haasdonk, M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34 (2012), A937–A969. https://doi.org/10.1137/10081157X doi: 10.1137/10081157X
![]() |
[44] |
D. Amsallem, M. Zahr, C. Farhat, Nonlinear model order reduction based on local reduced-order bases, Int. J. Numer. Meth. Eng., 92 (2012), 891–916. https://doi.org/10.1002/nme.4371 doi: 10.1002/nme.4371
![]() |
[45] | P. Tiso, D. J. Rixen, Discrete empirical interpolation method for finite element structural dynamics, In: Topics in nonlinear dynamics, volume 1, New York, NY: Springer, 2013,203–212. https://doi.org/10.1007/978-1-4614-6570-6_18 |
[46] |
F. Ghavamian, P. Tiso, A. Simone, POD-DEIM model order reduction for strain-softening viscoplasticity, Comput. Meth. Appl. Mech. Eng., 317 (2017), 458–479. https://doi.org/10.1016/j.cma.2016.11.025 doi: 10.1016/j.cma.2016.11.025
![]() |
[47] |
S. Land, V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, et al., Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour, Proc. R. Soc. A, 471 (2015), 20150641. https://doi.org/10.1098/rspa.2015.0641 doi: 10.1098/rspa.2015.0641
![]() |
[48] |
D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, et al., The deal.Ⅱ library, version 9.2, J. Numer. Math., 28 (2020), 131–146. https://doi.org/10.1515/jnma-2020-0043 doi: 10.1515/jnma-2020-0043
![]() |
[49] |
J. Bayer, R. Blake, G. Plank, N. A. Trayanova, A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Eng., 40 (2012), 2243–2254. https://doi.org/10.1007/s10439-012-0593-5 doi: 10.1007/s10439-012-0593-5
![]() |
[50] |
J. Wong, E. Kuhl, Generating fibre orientation maps in human heart models using poisson interpolation, Comput. Meth. Biomech. Biomed. Eng., 17 (2014), 1217–1226. https://doi.org/10.1080/10255842.2012.739167 doi: 10.1080/10255842.2012.739167
![]() |
[51] |
R. Doste, D. Soto-Iglesias, G. Bernardino, A. Alcaine, R. Sebastian, S. Giffard-Roisin, et al., A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts, Int. J. Numer. Meth. Biomed. Eng., 35 (2019), e3185. http://doi.org/10.1002/cnm.3185 doi: 10.1002/cnm.3185
![]() |
[52] |
R. Piersanti, P. Africa, M. Fedele, C. Vergara, L. Dedè, A. F. Corno, et al., Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations, Comput. Meth. Appl. Mech. Eng., 373 (2021), 113468. https://doi.org/10.1016/j.cma.2020.113468 doi: 10.1016/j.cma.2020.113468
![]() |
[53] |
S. Rossi, T. Lassila, R. Ruiz-Baier, A. Sequeira, A. Quarteroni, Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics, Eur. J. Mech-A/Solids, 48 (2014), 129–142. https://doi.org/10.1016/j.euromechsol.2013.10.009 doi: 10.1016/j.euromechsol.2013.10.009
![]() |
[54] | A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al., Global sensitivity analysis: the primer, John Wiley & Sons, 2008. https://doi.org/10.1002/9780470725184 |
[55] |
F. Regazzoni, L. Dede', A. Quarteroni, Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics, Comput. Meth. Appl. Mech. Eng., 370 (2020), 113268. https://doi.org/10.1016/j.cma.2020.113268 doi: 10.1016/j.cma.2020.113268
![]() |
[56] | Zygote solid 3d heart generation ii development report, Zygote Media Group Inc., 2014. |
[57] |
F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dedè, A. Quarteroni, A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation, J. Comput. Phys., 457 (2022), 111083. https://doi.org/10.1016/j.jcp.2022.111083 doi: 10.1016/j.jcp.2022.111083
![]() |
[58] |
F. Regazzoni, L. Dede', A. Quarteroni, Biophysically detailed mathematical models of multiscale cardiac active mechanics, PLoS Comput. Biol., 16 (2020), e1008294. https://doi.org/10.1371/journal.pcbi.1008294 doi: 10.1371/journal.pcbi.1008294
![]() |
[59] |
N. Halko, P. Martinsson, J. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), 217–288. https://doi.org/10.1137/090771806 doi: 10.1137/090771806
![]() |
1. | Pasquale Claudio Africa, life: A flexible, high performance library for the numerical solution of complex finite element problems, 2022, 20, 23527110, 101252, 10.1016/j.softx.2022.101252 | |
2. | Ludovica Cicci, Stefania Fresca, Andrea Manzoni, Deep-HyROMnet: A Deep Learning-Based Operator Approximation for Hyper-Reduction of Nonlinear Parametrized PDEs, 2022, 93, 0885-7474, 10.1007/s10915-022-02001-8 | |
3. | Marco Fedele, Roberto Piersanti, Francesco Regazzoni, Matteo Salvador, Pasquale Claudio Africa, Michele Bucelli, Alberto Zingaro, Luca Dede’, Alfio Quarteroni, A comprehensive and biophysically detailed computational model of the whole human heart electromechanics, 2023, 410, 00457825, 115983, 10.1016/j.cma.2023.115983 | |
4. | Pasquale Claudio Africa, Ivan Fumagalli, Michele Bucelli, Alberto Zingaro, Marco Fedele, Luca Dede', Alfio Quarteroni, lifex-cfd: An open-source computational fluid dynamics solver for cardiovascular applications, 2024, 296, 00104655, 109039, 10.1016/j.cpc.2023.109039 | |
5. | Ludovica Cicci, Stefania Fresca, Andrea Manzoni, Alfio Quarteroni, Efficient approximation of cardiac mechanics through reduced‐order modeling with deep learning‐based operator approximation, 2024, 40, 2040-7939, 10.1002/cnm.3783 | |
6. | Ludovica Cicci, Stefania Fresca, Elena Zappon, Stefano Pagani, Francesco Regazzoni, Luca Dede', Andrea Manzoni, Alfio Quarteroni, 2023, 9780323899673, 403, 10.1016/B978-0-32-389967-3.00028-7 | |
7. | Xuan Tang, ChaoJie Wu, A predictive surrogate model for hemodynamics and structural prediction in abdominal aorta for different physiological conditions, 2024, 243, 01692607, 107931, 10.1016/j.cmpb.2023.107931 | |
8. | Pasquale Claudio Africa, Roberto Piersanti, Francesco Regazzoni, Michele Bucelli, Matteo Salvador, Marco Fedele, Stefano Pagani, Luca Dede’, Alfio Quarteroni, lifex-ep: a robust and efficient software for cardiac electrophysiology simulations, 2023, 24, 1471-2105, 10.1186/s12859-023-05513-8 | |
9. | Chang Ruan, Jingyuan Zhou, Zhuo Zhang, Tao Li, Lu Chen, Zhongyou Li, Yu Chen, Numerical simulation progress of whole-heart modeling: A review, 2024, 36, 1070-6631, 10.1063/5.0238853 | |
10. | Feng Wang, Wensheng Shi, Haibin Zhang, Haozheng Hou, Ning Li, Linear Surrogate Modelling for Predicting Hemodynamic in Carotid Artery Stenosis During Exercise Conditions, 2025, 05779073, 10.1016/j.cjph.2025.01.006 | |
11. | Nicola Farenga, Stefania Fresca, Simone Brivio, Andrea Manzoni, On latent dynamics learning in nonlinear reduced order modeling, 2025, 08936080, 107146, 10.1016/j.neunet.2025.107146 | |
12. | Mostafa Barzegar Gerdroodbary, Sajad Salavatidezfouli, A predictive surrogate model of blood haemodynamics for patient-specific carotid artery stenosis, 2025, 22, 1742-5662, 10.1098/rsif.2024.0774 | |
13. | Jacopo Bonari, Lisa Kühn, Max von Danwitz, Alexander Popp, 2024, Towards Real-Time Urban Physics Simulations with Digital Twins, 979-8-3315-2721-1, 18, 10.1109/DS-RT62209.2024.00013 |