Processing math: 30%
Research article Special Issues

Lipschitz continuity of minimizers in a problem with nonstandard growth

  • In this paper we obtain the Lipschitz continuity of nonnegative local minimizers of the functional J(v)=Ω(F(x,v,v)+λ(x)χ{v>0})dx, under nonstandard growth conditions of the energy function F(x,s,η) and 0<λminλ(x)λmax<. This is the optimal regularity for the problem. Our results generalize the ones we obtained in the case of the inhomogeneous p(x)-Laplacian in our previous work. Nonnegative local minimizers u satisfy in their positivity set a general nonlinear degenerate/singular equation divA(x,u,u)=B(x,u,u) of nonstandard growth type. As a by-product of our study, we obtain several results for this equation that are of independent interest.

    Citation: Claudia Lederman, Noemi Wolanski. Lipschitz continuity of minimizers in a problem with nonstandard growth[J]. Mathematics in Engineering, 2021, 3(1): 1-39. doi: 10.3934/mine.2021009

    Related Papers:

    [1] David Cruz-Uribe, Michael Penrod, Scott Rodney . Poincaré inequalities and Neumann problems for the variable exponent setting. Mathematics in Engineering, 2022, 4(5): 1-22. doi: 10.3934/mine.2022036
    [2] Aleksandr Dzhugan, Fausto Ferrari . Domain variation solutions for degenerate two phase free boundary problems. Mathematics in Engineering, 2021, 3(6): 1-29. doi: 10.3934/mine.2021043
    [3] Elena Beretta, M. Cristina Cerutti, Luca Ratti . Lipschitz stable determination of small conductivity inclusions in a semilinear equation from boundary data. Mathematics in Engineering, 2021, 3(1): 1-10. doi: 10.3934/mine.2021003
    [4] François Murat, Alessio Porretta . The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031
    [5] Antonio Vitolo . Singular elliptic equations with directional diffusion. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027
    [6] Alberto Farina . Some results about semilinear elliptic problems on half-spaces. Mathematics in Engineering, 2020, 2(4): 709-721. doi: 10.3934/mine.2020033
    [7] Francesca G. Alessio, Piero Montecchiari . Gradient Lagrangian systems and semilinear PDE. Mathematics in Engineering, 2021, 3(6): 1-28. doi: 10.3934/mine.2021044
    [8] Giovanni Cupini, Paolo Marcellini, Elvira Mascolo . Local boundedness of weak solutions to elliptic equations with $ p, q- $growth. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065
    [9] Antonio Iannizzotto, Giovanni Porru . Optimization problems in rearrangement classes for fractional $ p $-Laplacian equations. Mathematics in Engineering, 2025, 7(1): 13-34. doi: 10.3934/mine.2025002
    [10] Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030
  • In this paper we obtain the Lipschitz continuity of nonnegative local minimizers of the functional J(v)=Ω(F(x,v,v)+λ(x)χ{v>0})dx, under nonstandard growth conditions of the energy function F(x,s,η) and 0<λminλ(x)λmax<. This is the optimal regularity for the problem. Our results generalize the ones we obtained in the case of the inhomogeneous p(x)-Laplacian in our previous work. Nonnegative local minimizers u satisfy in their positivity set a general nonlinear degenerate/singular equation divA(x,u,u)=B(x,u,u) of nonstandard growth type. As a by-product of our study, we obtain several results for this equation that are of independent interest.


    To our dear friend Sandro Salsa on the occasion of his 70th birthday.

    In this paper we study the regularity properties of nonnegative, local minimizers of the functional

    J(v)=Ω(F(x,v,v)+λ(x)χ{v>0})dx, (1.1)

    under nonstandard growth conditions of the energy function F(x,s,η) and 0<λminλ(x)λmax<.

    There has been a great deal of interest in these type of problems. Their study started with the seminal paper of Alt and Caffarelli [2] where the case F(x,s,η)=12|η|2 was considered. Later on, [3] considered the case F(x,s,η)=G(|η|2) under uniform ellipticity assumptions. The general power case F(x,s,η)=1p|η|p with 1<p< was studied in [8], and F(x,s,η)=G(|η|) with G convex under the assumption that G satisfies Lieberman's condition namely, G(t)G(t)/t, was analyzed in [19]. The linear inhomogeneous case F(x,s,η)=12|η|2+f(x)s was addressed in [12] and [15].

    The minimization problem for the functional (1.1) with F(x,s,η)=1p(x)|η|p(x) was first considered in [6] for p(x)2 and then, in [16] and [17] in the inhomogeneous case F(x,s,η)=1p(x)|η|p(x)+f(x)s, for 1<p(x)< and fL(Ω). In [17], among other results, we proved that nonnegative local minimizers u are locally Lipschitz continuous and satisfy

    Δp(x)u:=div(|u(x)|p(x)2u)=fin {u>0}.

    The operator Δp(x), called the p(x)-Laplacian, extends the Laplacian, where p(x)2 and the p-Laplacian, where p(x)p. This is a prototype operator with nonstandard growth. The functional setting for the study of this type of operators are the variable exponent Lebesgue and Sobolev spaces Lp() and W1,p().

    Functionals and PDEs with nonstandard growth have a wide range of applications, such as the modelling of non-Newtonian fluids, as for instance, electrorheological [21] or thermorheological fluids [4]. Other areas of application include non-linear elasticity [24], image reconstruction [1,7], the modelling of electric conductors [25], as well as processes of filtration of gases in non-homogeneous porous media [5].

    As far as we know, no result on the minimization of (1.1) with F(x,s,η) a general function with nonstandard growth has been obtained.

    The main purpose of our work is to prove the local Lipschitz continuity of nonnegative local minimizers of such an energy. We stress that this is the optimal regularity since it is known from the particular cases refered to above that the gradient of a minimizer u jumps across Ω{u>0}.

    We prove that nonnegative minimizers of (1.1) are solutions to the associated equation in their positivity sets. That is, a local minimizer u0 satisfies

    divA(x,u,u)=B(x,u,u) (1.2)

    in {u>0}, where

    A(x,s,η)=ηF(x,s,η),B(x,s,η)=Fs(x,s,η).

    Under our assumptions, the governing equation (1.2) is given by A(x,s,η) satisfying

    λ0|η|p(x)2|ξ|2i,jAiηj(x,s,η)ξiξjΛ0|η|p(x)2|ξ|2,

    and has a right hand side given by B(x,s,η)0 of p(x)-type growth in η. This equation is singular in the regions where 1<p(x)<2 and degenerate in the ones where p(x)>2.

    Our study thus presents new features, needed in order to overcome the deep technical difficulties arising due to the nonlinear degenerate/singular nature and the x and s dependence of this general operator associated to our energy functional (1.1).

    The first part of the paper is devoted to the study of equation (1.2) in a domain Ω, under nonstandard growth conditions of p(x)-type. We prove existence results, a comparison principle, a uniqueness result, a maximum principle and other local L bounds of solutions of this equation. These delicate results are of independent interest.

    Some of these results are obtained under the growth assumption (3.14). We remark that this hypothesis on the functions A and B allows to consider very general equations. This condition not only enables us to get the inequality in Proposition 3.3 that is a main tool for all the proofs in the paper, but also it is invariant under rescalings. All these results are included in Section 3.

    In the second part of the paper we deal with the minimization problem for the functional (1.1). In fact, in Section 4 we first get an existence result for minimizers. We also prove nonnegativity and boundedness, under suitable assumptions. Then, we prove the local Hölder and Lipschitz continuity of nonnegative local minimizers (Theorems 4.3 and 4.5).

    The proofs in Section 4 involve delicate rescalings. One of the main difficulties this problem presents is that it is not invariant under the rescaling u(x)u(tx)k, if tk —rescaling that is a crucial tool in dealing with this type of problems. The rescaled functionals lose the uniform properties and nontrivial modifications are needed to get through the proofs. Even after these modifications, there is in general no limit equation for the rescaled problems due to the growth we are allowing to the function B(x,s,η). Novel arguments are used to complete the proof of Theorem 4.4. In fact, we are able to show that, although there is in general no limit equation for the rescaled problems, there is a limit function and it satisfies Harnack's inequality (see (4.58)).

    A thorough follow up of the dependence of the bounds found in Section 3 with respect to the structural conditions on F,A and B is of most importance as well.

    Let us point out that the results in the paper are new even in the case p(x)p constant.

    Finally, in Section 5 we present some examples of functionals (1.1) where our results can be used.

    Our examples include functionals (1.1) involving energy functions of the form

    F(x,s,η)=a(x,s)|η|p(x)p(x)+f(x,s).

    A possible example of admissible functions a(x,s),f(x,s) is given by

    a(x,s)=a0(x)(1+s)q(x),a0(x)>0,0<q(x)q0(x),

    for s in the range where the nonnegative local minimizer takes values, q0(x) a function depending on p(x) and

    f(x,s)=b(x)|s|τ(x),b(x)0,τ(x)2,

    with τ(x) satisfying (2.7).

    Our results also apply to functionals (1.1) involving energy functions of the form

    F(x,s,η)=G(x,η)+f(x,s).

    Some admissible G(x,η),f(x,s) are

    G(x,η)=a(x)˜G(|η|p(x))a(x)>0,˜G0,
    G(x,η)=˜A(x)ηη|η|p(x)2˜A(x)RN×N uniformly elliptic,
    f(x,s)=g(x)s.

    Also,

    F(x,s,η)=a1(x)F1(x,s,η)+a2(x)F2(x,s,η),ai(x)>0,

    is an admissible function if both F1(x,s,η) and F2(x,s,η) are admissible.

    We begin our paper with a section where we state the hypotheses on F,A, B, λ and p(x) that will be used throught the article. And we end it with an Appendix where we state some properties of the function spaces Lp() and W1,p() where the problem is well posed.

    Let p:Ω[1,) be a measurable bounded function, called a variable exponent on Ω and denote pmax=esssupp(x) and pmin=essinfp(x). We define the variable exponent Lebesgue space Lp()(Ω) to consist of all measurable functions u:ΩR for which the modular ϱp()(u)=Ω|u(x)|p(x)dx is finite. We define the Luxemburg norm on this space by

    uLp()(Ω)=up()=inf{λ>0:ϱp()(u/λ)1}.

    This norm makes Lp()(Ω) a Banach space.

    There holds the following relation between ϱp()(u) and uLp():

    min{(Ω|u|p(x)dx)1/pmin,(Ω|u|p(x)dx)1/pmax}uLp()(Ω)max{(Ω|u|p(x)dx)1/pmin,(Ω|u|p(x)dx)1/pmax}.

    Moreover, the dual of Lp()(Ω) is Lp()(Ω) with 1p(x)+1p(x)=1.

    Let W1,p()(Ω) denote the space of measurable functions u such that u and the distributional derivative u are in Lp()(Ω). The norm

    u1,p():=up()+|u|p()

    makes W1,p()(Ω) a Banach space.

    The space W1,p()0(Ω) is defined as the closure of the C0(Ω) in W1,p()(Ω).

    For the sake of completeness we include in an Appendix at the end of the paper some additional results on these spaces that are used throughout the paper.

    N spatial dimension

    |S| N-dimensional Lebesgue measure of the set S

    Br(x0) open ball of radius r and center x0

    Br open ball of radius r and center 0

    χS characteristic function of the set S

    u+= max(u,0), u= max(u,0)

    ξ,η and ξη both denote scalar product in RN

    In this section we collect all the assumptions that will be made along the paper.

    Throughout the paper Ω will denote a C1 bounded domain in RN. In addition, the following assumptions will be made:

    We assume that the function p(x) is measurable in Ω and verifies

    1<pminp(x)pmax<,xΩ.

    We assume further that p(x) is Lipschitz continuous in Ω and we denote by L the Lipschitz constant of p(x), namely, pL(Ω)L.

    When we are restricted to a ball Br we use pr and p+r to denote the infimum and the supremum of p(x) over Br.

    We assume that the function λ(x) is measurable in Ω and verifies

    0<λminλ(x)λmax<,xΩ.

    We assume that F is measurable in ¯Ω×R×RN, and for every x¯Ω, F(x,,)C1(R×RN)C2(R×RN{0}).

    We denote A(x,s,η)=ηF(x,s,η) and B(x,s,η)=Fs(x,s,η).

    We assume that AC(¯Ω×R×RN,RN) and for every x¯Ω, A(x,,)C1(R×RN{0},RN). Moreover, there exist positive constants λ0 and Λ0, and β(0,1) such that for every x,x1,x2¯Ω, s,s1,s2R, ηRN{0} and ξRN, the following conditions are satisfied:

    A(x,s,0)=0, (2.1)
    i,jAiηj(x,s,η)ξiξjλ0|η|p(x)2|ξ|2, (2.2)
    i,j|Aiηj(x,s,η)|Λ0|η|p(x)2, (2.3)
    |A(x1,s,η)A(x2,s,η)|Λ0|x1x2|β(|η|p(x1)1+|η|p(x2)1)(1+|log|η||), (2.4)
    |A(x,s1,η)A(x,s2,η)|Λ0|s1s2||η|p(x)1. (2.5)

    We assume that B is measurable in ¯Ω×R×RN and for every x¯Ω, B(x,,)C1(R×RN), and for every (x,s,η)¯Ω×R×RN,

    |B(x,s,η)|Λ0(1+|η|p(x)+|s|τ(x)), (2.6)

    where Λ0 is as in the assumptions on A and

    τ(x)p(x)andτC(¯Ω),τ(x)p(x)=Np(x)Np(x) if pmax<N,τ(x) arbitrary if pmin>N,τ(x)=p(x) if pminNpmax. (2.7)

    Remark 2.1. From (2.1) and (2.3) we get

    |Ai(x,s,η)|=|Ai(x,s,η)Ai(x,s,0)|=|10jAiηj(x,s,tη)ηjdt,|ˉα(pmin)Λ0|η|p(x)1,

    so that

    |A(x,s,η)|ˉα(pmin)NΛ0|η|p(x)1. (2.8)

    From (2.1) and (2.2) we have

    A(x,s,η)η=(A(x,s,η)A(x,s,0))η=10ijAiηj(x,s,tη)ηjηidt,

    so that

    A(x,s,η)ηα(pmax)λ0|η|p(x). (2.9)

    In this section we consider A and B as in Section 2 and we prove results for solutions of the equation

    divA(x,u,u)=B(x,u,u)  in  Ω. (3.1)

    Namely, existence, comparison principle, uniqueness, maximum principle and bounds of solutions.

    Our first result is Proposition 3.1, were we prove existence of a solution to (3.1) with given boundary data. In order to prove the existence of a solution to (3.1) we show that, given uW1,p()(Ω), there exists a minimizer of the functional

    JΩ(v)=ΩF(x,v,v)dx (3.2)

    in u+W1,p()0(Ω), where F is as in Section 2, A(x,s,η)=ηF(x,s,η) and B(x,s,η)=Fs(x,s,η).

    Then, in Proposition 3.2 we get an existence result under a growth assumption on the function F stronger than (3.3) in Proposition 3.1, but without the small oscillation hypothesis there.

    In Proposition 3.4 and Corollary 3.2 we prove comparison and uniqueness for this problem, assuming that condition (3.14) below holds. In Proposition 3.5 we prove that solutions to (3.1) with bounded boundary data are bounded and in Proposition 3.6 we prove a maximum principle for this problem, under suitable assumptions. In Proposition 3.7 we give another existence result of a bounded solution.

    We start with the definition of solution to (3.1).

    Definition 3.1. Let p, A and B be as in Section 2. We say that u is a solution to (3.1) if uW1,p()(Ω) and, for every φC0(Ω), there holds that

    ΩA(x,u,u)φdx=ΩB(x,u,u)φdx.

    We are using that, under the conditions in (2.7), the embedding theorem (see Theorem A.5) applies.

    Our first existence result is

    Proposition 3.1. Let p,F,A,B as in Section 2 and let ΩΩ be a C1 domain. Let uW1,p()(Ω) and let us call p+=supΩp(x), p=infΩp(x). Assume that there exist μ,c1R+, pmin>δ>0 and gL1(Ω) such that

    F(x,s,η)μ|η|p(x)c1|s|p(x)δg(x)inΩ. (3.3)

    Assume, moreover that δ>p+p and that

    F(x,s,η)μ1|η|p(x)+c1|s|τ(x)+g(x)inΩ, (3.4)

    with τ satisfying (2.7).

    Then, there exists a solution vu+W1,p()0(Ω) to (3.1) in Ω.

    Moreover, vW1,p()(Ω)C, for a constant C depending only uW1,p()(Ω), gL1(Ω), |Ω|, diam(Ω), N, p, p+, δ, L, μ, c1, ||τ||L(Ω) and the C1 norm of Ω.

    Proof. We will show that there is a minimizer of JΩ in u+W1,p()0(Ω) where

    JΩ(v)=ΩF(x,v,v)dx.

    This minimizer is a solution to the associated Euler-Lagrange equation (3.1) in Ω.

    We will use the embedding theorem (see Theorem A.5) that states that, under the conditions in (2.7), W1,p()(Ω)Lτ()(Ω) continuously.

    So, let vn be a minimizing sequence. That is, vnu+W1,p()0(Ω) and

    I=limnJΩ(vn)=infu+W1,p()0(Ω)JΩ(v)ΩF(x,u,u)dx.

    Let us show that there is a constant κ>0 such that vnLp()(Ω)κ. In fact, by (3.3), for n large,

    Ω|vn|p(x)dx1+ΩF(x,u,u)dx+c1μΩ|vn|p(x)δdx+1μΩg(x)dx.

    By Poincare's inequality (Theorem A.4)

    vnuLp()(Ω)CΩ(vnu)Lp()(Ω).

    Hence, recalling Proposition A.1,

    vnLp()(Ω)uLp()(Ω)+CΩ[vnLp()(Ω)+uLp()(Ω)]C[uW1,p()(Ω)+max{(Ω|vn|p(x)dx)1/p,(Ω|vn|p(x)dx)1/p+}]ˉC[1+max{(Ω|vn|p(x)δdx)1/p,(Ω|vn|p(x)δdx)1/p+}]

    with ˉC depending on uW1,p()(Ω),gL1(Ω),N,p, p+, δ, |Ω|, diam(Ω), L, ||τ||L(Ω), the C1 norm of Ω, and the constants in (3.3).

    Observe that in case uM, there holds that ΩF(x,u,u)dx is bounded by a constant that depends only on M, τL(Ω) and |Ω|. Hence, in that case ˉC is independent of the regularity of Ω.

    Since we want to find a uniform bound of vnLp()(Ω), we may assume that this norm is larger than 1. Let q be the middle point of the interval [p+δ,p]. By Young's inequality with r(x)=qp(x)δ,

    Ω|vn|p(x)δdxCε+εΩ|vn|qdx,

    for 0<ε<1 with Cε depending only on |Ω|,ε,p,p+ and δ. On the other hand, since vnLq(Ω)CvnLp()(Ω) with C depending only on |Ω|,p,p+ and δ,

    Ω|vn|qdx(CvnLp()(Ω))q.

    So that

    vnLp()(Ω)C[˜Cε+ε1p+(vnLp()(Ω))qp]C[˜Cε+ε1p+vnLp()(Ω)].

    By choosing ε small enough, we find that

    vnLp()(Ω)C (3.5)

    with C depending on |Ω|, diam(Ω), uW1,p()(Ω),p,p+, N, δ, gL1(Ω), L, ||τ||L(Ω), the C1 norm of Ω, μ and c1.

    From the computations above we find that Ω|vn|p(x)δdxC1. So that we have that I> and

    vnLp()(Ω)C2, (3.6)

    with C2 depending on |Ω|, diam(Ω), uW1,p()(Ω),p,p+, N, δ, gL1(Ω), L, ||τ||L(Ω), the C1 norm of Ω, μ and c1.

    From our comment above, we have that in case uM in Ω, the constant C2 is independent of the regularity of Ω.

    Let us proceed with the proof of the existence of a minimizer. By the estimates above, for a subsequence that we still call vn, there holds that there exists vu+W1,p()0(Ω), such that

    vnvinW1,p()(Ω),vnvinLp(Ω)and almost everywhere,

    and such that the bounds (3.5) and (3.6) also hold for v.

    By Egorov's Theorem, for every ε>0 there exists Ωε such that |ΩΩε|<ε and vnv uniformly in Ωε.

    On the other hand, if we set ΩK={xΩ/|v|+|v|K}, there holds that |ΩΩK|0 as K.

    Let Ωε,K=ΩεΩK. Then, |ΩΩε,K|0 as ε0 and K.

    There holds

    lim supnΩε,KF(x,vn,vn)dxI+c1ΩΩε,K|v|p(x)δdx+ΩΩε,Kgdx. (3.7)

    Let us prove that

    Ωε,KF(x,v,v)dxI+c1ΩΩε,K|v|p(x)δdx+ΩΩε,Kgdx.

    In fact,

    Ωε,KF(x,vn,vn)dxΩε,KF(x,v,v)dx=Ωε,K[F(x,vn,vn)F(x,vn,v)]dx+Ωε,K[F(x,vn,v)F(x,v,v)]dx=A+B.

    On the one hand, B0 since F(x,vn,v)F(x,v,v)0 uniformly in Ωε,K and it is uniformly bounded. On the other hand, by the convexity assumption on F(x,s,η) with respect to η,

    AΩε,KA(x,vn,v)(vnv)dx0asn

    since A(x,vn,v)A(x,v,v) uniformly in Ωε,K, they are uniformly bounded and vnv weakly in Lp()(Ωε,K).

    Hence, for every ε,K,

    Ωε,KF(x,v,v)dxI+c1ΩΩε,K|v|p(x)δdx+ΩΩε,Kgdx.

    Now, by letting ε0 and K, we get

    ΩF(x,v,v)dxI,

    and therefore, v is a minimizer of JΩ in u+W1,p()0(Ω) and a solution to (3.1).

    As a corollary of Proposition 3.1 we have the following existence result that will be used in the next section.

    Corollary 3.1. Let p,F,A,B as in Section 2 and let ΩΩ be a C1 domain. Let uW1,p()(Ω) and let us call p+=supΩp(x), p=infΩp(x). Assume that there exist μ,c1R+ and pmin>δ>0 such that

    F(x,s,η)μ|η|p(x)c1(|s|p(x)δ+1)inΩ. (3.8)

    Assume, moreover that δ>p+p and that

    F(x,s,η)μ1|η|p(x)+c1(|s|τ(x)+1)inΩ, (3.9)

    with τ(x) satisfying (2.7).

    Then, there exists a solution vu+W1,p()0(Ω) to (3.1) in Ω and vW1,p()(Ω)C, for a constant C depending only uW1,p()(Ω), |Ω|, diam(Ω), N, p, p+, δ, L, μ, c1, ||τ||L(Ω) and the C1 norm of Ω.

    With a stronger growth assumption on the s variable for the function F(x,s,η) we get an existence result without the small oscillation assumption of the function p.

    Proposition 3.2. Let p,F,A,B as in Section 2 and let ΩΩ be a C1 domain. Let uW1,p()(Ω). Assume that there exist μ,c1R+, gL1(Ω) and 1q<pmin such that

    F(x,s,η)μ|η|p(x)c1|s|qg(x)inΩ. (3.10)

    Assume, moreover that

    F(x,s,η)μ1|η|p(x)+c1|s|τ(x)+g(x)inΩ, (3.11)

    with τ satisfying (2.7).

    Then, there exists a solution vu+W1,p()0(Ω) to (3.1) in Ω and vW1,p()(Ω)C, for a constant C depending only uW1,p()(Ω), gL1(Ω), |Ω|, diam(Ω), N, pmin, pmax, q, L, μ, c1, ||τ||L(Ω) and the C1 norm of Ω.

    Proof. We proceed as in the proof of Proposition 3.1 and we prove that a minimizing sequence {vn} satisfies

    μΩ|vn|p(x)dxΩF(x,u,u)+1+Ωg(x)dx+c1Ω|vn|qdx. (3.12)

    We want to prove that there is a constant such that Ω|vn|p(x)dxC. So, we can assume that Ω|vn|p(x)dx>1.

    Thus,

    vnLq(Ω)CvnLp()(Ω)C[uW1,p()(Ω)+vnLp()(Ω)]C[uW1,p()(Ω)+(Ω|vn|p(x)dx)1/pmin],

    where C depends on q,pmin,pmax, N, L and |Ω|, diam(Ω). Hence, as q<pmin,

    Ω|vn|qdxC(1+(Ω|vn|p(x)dx)q/pmin)˜C+εΩ|vn|p(x)dx (3.13)

    with C depending only on q,pmin,pmax,N,|Ω|,diam(Ω),L,uW1,p()(Ω), and ˜C depending on the same constants and also on ε.

    Thus, by (3.12) and (3.13),

    Ω|vn|p(x)dxˆC

    with ˆC depending only on q,pmin,pmax,N,μ,|Ω|,diam(Ω),L,Ωg(x)dx, c1, ||τ||L(Ω), the C1 norm of Ω and uW1,p()(Ω).

    Now, as in the proof of Proposition 3.1, we get that there exists a subsequence that we still call {vn} and a function vu+W1,p()0(Ω) such that

    vnvinLpmin(Ω),vnvweakly in W1,p()(Ω).

    Now, the proof follows as that of Proposition 3.1.

    We next prove a result valid for solutions of equation (3.1) that will be of use in the proofs of Hölder and Lipschitz continuity of minimizers of the energy functional (1.1)

    Proposition 3.3. Let p,F,A and B be as in Section 2. Assume moreover that

    2|As(x,s,η)ξw|12i,jAiηj(x,s,η)ξiξj+Bs(x,s,η)w2, (3.14)

    for every (x,s,η)¯Ω×R×RN{0}, ξRN and wR.

    Let uW1,p()(Ω)L(Ω) and let vW1,p()(Ω)L(Ω) be such that

    {divA(x,v,v)=B(x,v,v)inΩ,v=uonΩ. (3.15)

    Then,

    Ω(F(x,u,u)F(x,v,v))dx12αλ0(Ω{p(x)2}|uv|p(x)dx+Ω{p(x)<2}(|u|+|v|)p(x)2|uv|2dx), (3.16)

    where α=α(pmin,pmax) and λ0 is as in (2.2).

    Proof. For 0σ1, let uσ=v+σ(uv). Then, denoting ηF=A and Fs=B, we obtain

    Ω(F(x,u,u)F(x,v,v))dx=10ΩA(x,uσ,uσ)(uσv)1σdxdσ+10ΩB(x,uσ,uσ)(uσv)1σdxdσ=10Ω(A(x,uσ,uσ)A(x,v,v))(uσv)1σdxdσ+10Ω(B(x,uσ,uσ)B(x,v,v))(uσv)1σdxdσ=I+II, (3.17)

    where we have used (3.15). Moreover,

    I=1010|v||uσ|As(x,uστ,uστ)(uσv)(uσv)1σdxdσdτ+1010|v|<|uσ|As(x,uσ(1τ),uσ(1τ))(uσv)(uσv)1σdxdσdτ+1010|v||uσ|i,jAiηj(x,uστ,uστ)(uσv)xi(uσv)xj1σdxdσdτ+1010|v|<|uσ|i,jAiηj(x,uσ(1τ),uσ(1τ))(uσv)xi(uσv)xj1σdxdσdτ=I1+I2+I3+I4. (3.18)

    Now, using (2.2), and the inequality

    |η+t(ηη)|14|ηη|,for|η||η|, 0t14, (3.19)

    we get

    I3+I41010|v||uσ|λ0|uστ|p(x)2|(uσv)|21σdxdσdτ+1010|v|<|uσ|λ0|uσ(1τ)|p(x)2|(uσv)|21σdxdσdταλ0({p(x)2}|uv|p(x)dx+{p(x)<2}(|u|+|v|)p(x)2|uv|2dx), (3.20)

    where α=α(pmin,pmax) and λ0 is as in (2.2). On the other hand,

    II=1010|v||uσ|Bs(x,uστ,uστ)(uσv)21σdxdσdτ+1010|v|<|uσ|Bs(x,uσ(1τ),uσ(1τ))(uσv)21σdxdσdτ+1010|v||uσ|ηB(x,uστ,uστ)(uσv)(uσv)1σdxdσdτ+1010|v|<|uσ|ηB(x,uσ(1τ),uσ(1τ))(uσv)(uσv)1σdxdσdτ. (3.21)

    Finally, using that As(x,s,η)=ηB(x,s,η), the assumption (3.14) and estimates (3.17), (3.18), (3.20) and (3.21), we get (3.16).

    We now prove a comparison principle for equation (3.1), which holds under assumption (3.14).

    Proposition 3.4. Let p,A and B be as in Section 2. Assume moreover that condition (3.14) holds. Let u,vW1,p()(Ω) be such that

    divA(x,u,u)B(x,u,u)inΩ,divA(x,v,v)B(x,v,v)inΩ,uvonΩ. (3.22)

    Then,

    uvinΩ. (3.23)

    Proof. We will use arguments similar to those in Proposition 3.3. In fact, for R>0 we consider the nonnegative function wRW1,p()0(Ω)L(Ω) given by

    wR={0if  uv0,uvif  0<uv<R,Rif  uvR, (3.24)

    and by (3.22) we have

    0Ω(A(x,u,u)A(x,v,v))wRdx+Ω(B(x,u,u)B(x,v,v))wRdx=I+II. (3.25)

    Then, denoting ΩR=Ω{0<uv<R} and, for 0τ1, uτ=v+τ(uv), we get

    I=10ΩR{|v||u|}As(x,uτ,uτ)(uv)(uv)dxdτ+10ΩR{|v|<|u|}As(x,u(1τ),u(1τ))(uv)(uv)dxdτ+10ΩR{|v||u|}i,jAiηj(x,uτ,uτ)(uv)xi(uv)xjdxdτ+10ΩR{|v|<|u|}i,jAiηj(x,u(1τ),u(1τ))(uv)xi(uv)xjdxdτ=I1+I2+I3+I4. (3.26)

    Now, proceeding as in Proposition 3.3, we obtain

    I3+I410ΩR{|v||u|}λ0|uτ|p(x)2|(uv)|2dxdτ+10ΩR{|v|<|u|}λ0|u(1τ)|p(x)2|(uv)|2dxdτ˜αλ0(ΩR{p(x)2}|uv|p(x)dx+ΩR{p(x)<2}(|u|+|v|)p(x)2|uv|2dx), (3.27)

    where ˜α=˜α(pmin,pmax) and λ0 is as in (2.2).

    On the other hand, we observe that the evaluation of (3.14) in ξ=0 implies that Bs(x,s,η)0. Then, we get

    II10ΩR{|v||u|}Bs(x,uτ,uτ)(uv)2dxdτ+10ΩR{|v|<|u|}Bs(x,u(1τ),u(1τ))(uv)2dxdτ+10ΩR{|v||u|}ηB(x,uτ,uτ)(uv)(uv)dxdτ+10ΩR{|v|<|u|}ηB(x,u(1τ),u(1τ))(uv)(uv)dxdτ+10{uv>R}{|v||u|}Bs(x,uτ,uτ)w2Rdxdτ+10{uv>R}{|v|<|u|}Bs(x,u(1τ),u(1τ))w2Rdxdτ+10{uv>R}{|v||u|}ηB(x,uτ,uτ)(uv)wRdxdτ+10{uv>R}{|v|<|u|}ηB(x,u(1τ),u(1τ))(uv)wRdxdτ. (3.28)

    Now, using that As(x,s,η)=ηB(x,s,η), (2.3), (3.19), assumption (3.14) and estimates (3.25), (3.26), (3.27) and (3.28), we get

    012˜αλ0(ΩR{p(x)2}|uv|p(x)dx+ΩR{p(x)<2}(|u|+|v|)p(x)2|uv|2dx)ˆαΛ0({uv>R}{p(x)2}(|u|+|v|)p(x)dx+{uv>R}{p(x)<2}|uv|p(x)dx), (3.29)

    where ˆα=ˆα(pmin,pmax) and Λ0 is as in (2.3). Since R>0 is arbirtrary, we can use that u,vW1,p()(Ω) and let R and we obtain

    012˜αλ0(Ω{p(x)2}|(uv)+|p(x)dx+Ω{p(x)<2}(|u|+|v|)p(x)2|(uv)+|2dx), (3.30)

    which implies that (uv)+=0 in Ω. Since (uv)+W1,p()0(Ω), Poincare's inequality (Theorem A.4) gives (uv)+=0 in Ω. That is, (3.23) holds.

    As a corollary of Propostion 3.4 we obtain the following uniqueness result

    Corollary 3.2. Let p,A and B be as in Section 2. Assume moreover that condition (3.14) holds. Let φW1,p()(Ω) and let u1,u2W1,p()(Ω) be such that

    {divA(x,ui,ui)=B(x,ui,ui)inΩ,ui=φonΩ, (3.31)

    for i=1,2. Then, u1=u2 in \Omega .

    We next prove that solutions to (3.1) with bounded boundary data are bounded, under the assumptions of Proposition 3.1.

    Proposition 3.5. Let p, A and B be as in Section 2 and let {\Omega'}\subset\Omega be a C^1 domain. Assume moreover, that conditions (3.3), (3.4) and (3.14) hold in {\Omega'} for some {p^+}-{p^-} < \delta < p_{\min} where {p^+} = \sup_{{\Omega'}} p and {p^-} = \inf_{{\Omega'}} p and with \tau satisfying (2.7). Let us also assume that there exists a positive constant \Lambda_0 such that the following condition holds:

    \begin{equation} |B(x, s, \eta)|\le \Lambda_0 (1+|s|^{p(x)-1}+|\eta|^{p(x)-1}), \end{equation} (3.32)

    for every (x, s, \eta)\in\overline{\Omega'}\times{\mathbb R}\times{\mathbb R}^N . Let u \in W^{1, p(\cdot)}({\Omega'}) be such that

    \begin{equation} \begin{cases} {\mbox{div}} A(x, u, \nabla u) = B(x, u, \nabla u) \quad \mathit{\mbox{in}}\;{\Omega'}, \\ |u|\le M \quad \mathit{\mbox{on}}\;\partial{\Omega'}, \end{cases} \end{equation} (3.33)

    for some positive constant M . Then, there exists C such that |u|\le C in {\Omega'} , where C depends only on M , |{\Omega'}| , \rm{diam}({\Omega'}) , N, \lambda_0, \Lambda_0, L, {p^-}, {p^+} , \delta , \|g\|_{L^1({\Omega'})} , ||\tau||_{L^{\infty}({\Omega'})} , \mu and c_1 .

    Proof. Let v^+ be the solution to (3.1) with boundary data M . Then, from the proof of Proposition 3.1 it follows that ||v^+||_{W^{1, p(\cdot)}({\Omega'})} depends only on the constants in the structural conditions, on |{\Omega'}| , \rm{diam}({\Omega'}) and M . Since (recall Remark 2.1) we are under the assumptions of Theorem 4.1 in [11], then v^+\in L^{\infty}({\Omega'}) with bounds depending only on the constants in the structural conditions, on |{\Omega'}| , \rm{diam}({\Omega'}) and M . Now, the comparison principle (Proposition 3.4) implies that u\le v^+ in {\Omega'} and the upper bound follows. Proceeding in an analogous way with v^- the solution to (3.1) with boundary data -M , we obtain the lower bound, thus concluding the proof.

    As a corollary of Propositions 3.1 and 3.5 we get

    Corollary 3.3. Let p, F, A and B as in Section 2 and let {\Omega'}\subset\Omega be a C^1 domain. Assume, moreover that F satisfies (3.8) and (3.9) with \tau satisfying (2.7) and A and B satisfy (3.14) and (3.32) in {\Omega'} for some {p^+}-{p^-} < \delta < p_{\min} where {p^+} = \sup_{{\Omega'}} p and {p^-} = \inf_{{\Omega'}} p .

    Let u\in W^{1, p(\cdot)}({\Omega'})\cap L^\infty({\Omega'}) . Then, there exists v\in u+W_0^{1, p(\cdot)}({\Omega'}) a solution to

    {\mbox{div}}A(x, v, \nabla v) = B(x, v, \nabla v)\quad\mathit{\mbox{in}}\quad{\Omega'}.

    Moreover, v\in L^\infty({\Omega'}) and \|v\|_{L^\infty({\Omega'})} is bounded by a constant C that depends only on \|u\|_{L^\infty({\Omega'})} , |{\Omega'}| , \rm{diam}({\Omega'}) , N, \lambda_0, \Lambda_0, L, {p^-}, {p^+} , \delta , ||\tau||_{L^{\infty}({\Omega'})} , \mu and c_1 .

    We also prove the following maximum principle

    Proposition 3.6. Let p, A and B be as in Section 2. Assume moreover that condition (3.14) holds. We also assume that B(x, 0, 0)\equiv 0 for every x\in\overline\Omega . Let u \in W^{1, p(\cdot)}(\Omega) be such that

    \begin{equation} \begin{cases} {\mbox{div}} A(x, u, \nabla u) = B(x, u, \nabla u) \quad \mathit{\mbox{in}}\;\Omega, \\ -M_1\le u\le M_2 \quad \mathit{\mbox{on}}\;\partial\Omega, \end{cases} \end{equation} (3.34)

    for some nonnegative constants M_1, M_2 . Then, -M_1\le u\le M_2 in \Omega .

    Proof. Since condition (3.14) implies that B_s(x, s, \eta)\ge 0 in \overline\Omega\times{\mathbb R}\times{\mathbb R}^N\setminus\{0\} , we have B(x, M_2, 0)\ge 0 and also B(x, -M_1, 0)\le 0 , for every x\in\Omega . Recalling (2.1), we take v^+\equiv M_2 and v^-\equiv -M_1 and observe that \mbox{div} A(x, v^+, \nabla v^+) \le B(x, v^+, \nabla v^+) and \mbox{div} A(x, v^-, \nabla v^-) \ge B(x, v^-, \nabla v^-) in \Omega . Then, we can apply the comparison principle (Proposition 3.4) and obtain -M_1\equiv v^-\le u\le v^+\equiv M_2 in \Omega and the conclusion follows.

    As a corollary of Propositions 3.1 and 3.6 we get

    Corollary 3.4. Let p, F, A and B as in Section 2 and let {\Omega'}\subset\Omega be a C^1 domain. Assume, moreover that F satisfies (3.8) and (3.9) with \tau satisfying (2.7) and A and B satisfy (3.14) in {\Omega'} for some {p^+}-{p^-} < \delta < p_{\min} where {p^+} = \sup_{{\Omega'}} p and {p^-} = \inf_{{\Omega'}} p . We also assume that B(x, 0, 0)\equiv 0 for every x\in\overline{\Omega'} .

    Let u\in W^{1, p(\cdot)}({\Omega'})\cap L^\infty({\Omega'}) . Then, there exists v\in u+W_0^{1, p(\cdot)}({\Omega'}) a solution to

    {\mbox{div}}A(x, v, \nabla v) = B(x, v, \nabla v)\quad\mathit{\mbox{in}}\quad{\Omega'}.

    Moreover, v\in L^\infty({\Omega'}) and \|v\|_{L^\infty({\Omega'})}\le \|u\|_{L^\infty({\Omega'})} .

    We also have the following existence result of a bounded solution

    Proposition 3.7. Let p as in Section 2. Assume that F(x, \cdot, \cdot) is locally Lipschitz in {\mathbb R}\times{\mathbb R}^N for almost every x\in \Omega and that F(x, s, \cdot)\in C^1({\mathbb R}^N)\cap C^2({\mathbb R}^N\setminus\{0\}) for s\in {\mathbb R} and almost every x\in \Omega . Let A = \nabla_\eta F , B = F_s . Assume that A satisfies (2.2) and (2.5),

    |A(x, s, \eta)|,|B(x, s, \eta)| \leq \Lambda_{0}\left(1+|s|^{\tau(x)}+|\eta|^{p(x)}\right) \quad { a.e. \;in }\; \Omega \times \mathbb{R} \times \mathbb{R}^{N},

    and F satisfies (3.3) and (3.4), where \tau satisfies (2.7). Assume moreover that

    \begin{equation} F(x, s, \eta) = G(x, s, \eta)+f(x, s)\ \mathit{\mbox{with}}\;G, \ f\;\mathit{\mbox{measurable functions}} \end{equation} (3.35)

    and,

    \begin{equation} G\ge0\;\mathit{\mbox{in}}\;\Omega\times{\mathbb R}\times{\mathbb R}^N, \quad G(x, s, \eta) = 0\ \iff \eta = 0, \end{equation} (3.36)
    \begin{equation} f(x, \cdot)\mathit{\mbox{monotone decreasing in}}\;(-\infty, 0]\mathit{\mbox{and monotone increasing in}}\;[0, +\infty). \end{equation} (3.37)

    Then, for every {\Omega'}\subset\Omega of class C^1 there holds that, if {p^+}-{p^-} < \delta < p_{\min} where {p^+} = \sup_{{\Omega'}} p and {p^-} = \inf_{{\Omega'}} p for \delta in (3.3), given u\in W^{1, p(\cdot)}({\Omega'}) such that 0\le u\le M in {\Omega'} there exists v that minimizes the functional {\mathcal J}_{{\Omega'}}(v) in u+W_0^{1, p(\cdot)}({\Omega'}) . Moreover, 0\le v\le M in {\Omega'} .

    In addition, if there exists {\varepsilon}_0 > 0 such that for almost every x\in\Omega , F(x, \cdot, \cdot)\in C^1((-{\varepsilon}_0, M+{\varepsilon}_0)\times{\mathbb R}^N) , then there holds that v is a solution to

    \begin{equation} \begin{cases} {\mbox{div}} A(x, v, \nabla v) = B(x, v, \nabla v) &\quad \mathit{\mbox{in}}\;{\Omega'}, \\ v = u&\quad \mathit{\mbox{on}}\;\partial{\Omega'}. \end{cases} \end{equation} (3.38)

    Proof. To begin with, the existence of a minimizer v follows proceeding as in Proposition 3.1. Let us prove that a minimizer satisfies 0\le v\le M . In fact, both w_1 = v-(v-M)^+ and w_2 = v+v^- are admissible functions. So that on the one hand,

    \begin{aligned} 0&\le \int_{{\Omega'}}F(x, w_1, \nabla w_1)-F(x, v, \nabla v) = \int_{v \gt M}F(x, M, 0)-F(x, v, \nabla v)\\ & = \int_{v \gt M}f(x, M)-f(x, v)-\int_{v \gt M}G(x, v, \nabla v)\\ &\le -\int_{v \gt M}G(x, v, \nabla v)\le 0. \end{aligned}

    Hence, G(x, v, \nabla v) = 0 in \{v > M\} . So that, \nabla (v-M)^+ = 0 in {\Omega'} . As (v- M)^+ = 0 on \partial{\Omega'} , we deduce that v\le M in {\Omega'} .

    On the other hand, proceeding in a similar way with w_2 ,

    \begin{aligned} 0&\le \int_{{\Omega'}}F(x, w_2, \nabla w_2)-F(x, v, \nabla v) = \int_{v \lt 0}F(x, 0, 0)-F(x, v, \nabla v)\\ & = \int_{v \lt 0}f(x, 0)-f(x, v)-\int_{v \lt 0}G(x, v, \nabla v)\\ &\le -\int_{v \lt 0}G(x, v, \nabla v)\le 0, \end{aligned}

    and we deduce as before that v^- = 0 . This is, v\ge0 in {\Omega'} .

    Now, in order to proceed with the proof we assume further regularity of F for -{\varepsilon}_0\le s\le M+{\varepsilon}_0 . Let 0\le\varphi\in C_0^\infty({\Omega'}) and 0 < {\varepsilon} < {\varepsilon}_0/\|\varphi\|_{L^\infty} . Then, w = v+{\varepsilon}\varphi is an admissible function, -{\varepsilon}_0 < w < M+{\varepsilon}_0 and we deduce that

    \mbox{div} A(x, v, \nabla v) \le B(x, v, \nabla v) \quad \mbox{in }{\Omega'}.

    Replacing \varphi by -\varphi we reverse the inequality. So that, v is a solution to (3.38).

    In this section we prove properties of nonnegative local minimizers of the energy functional (1.1). We prove that nonnegative local minimizers are locally Hölder continuous (Theorem 4.3) and are solutions to

    \begin{equation*} \mbox{div} A(x, u, \nabla u) = B(x, u, \nabla u) \quad \mbox{in }\{u \gt 0\}, \end{equation*}

    where A(x, s, \eta) = \nabla_\eta F(x, s, \eta) and B(x, s, \eta) = F_s(x, s, \eta) . In particular we prove our main result which is the local Lipschitz continuity on nonnegative local minimizers (Theorem 4.5).

    We start with a definition, some related remarks and an existence result of a minimizer. We also prove nonnegativity and boundedness, under suitable assumptions.

    Definition 4.1. Let p, F and \lambda be as in Section 2. Assume that F satisfies (3.3) and (3.4) with \tau satisfying (2.7). We say that u\in W^{1, p(\cdot)}(\Omega) is a local minimizer in \Omega of

    \begin{equation*} J(v) = J_{\Omega}(v) = \int_\Omega\big( F(x, v, \nabla v)+\lambda(x)\chi_{\{v \gt 0\}}\big)\, dx \end{equation*}

    if for every \Omega'\subset\subset\Omega and for every v\in W^{1, p(\cdot)}(\Omega) such that v = u in \Omega\setminus{\Omega'} there holds that J(v)\ge J(u) .

    We point out that the energy J is well defined in W^{1, p(\cdot)}(\Omega) since, under the conditions in (2.7), the embedding theorem (see Theorem A.5) applies.

    Remark 4.1. Let u be as in Definition 4.1. Let \Omega'\subset\subset\Omega and w-u\in W_0^{1, p(\cdot)}(\Omega') . If we define

    \begin{equation*} \bar w = \begin{cases} w & \mbox{in }\Omega', \\ u & \mbox{in }\Omega\setminus{\Omega'}, \end{cases} \end{equation*}

    then \bar w\in W^{1, p(\cdot)}(\Omega) and therefore J(\bar w)\ge J(u) . If we now let

    \begin{equation*} J_{\Omega'}(v) = \int_{\Omega'}\big( F(x, v, \nabla v)+\lambda(x)\chi_{\{v \gt 0\}}\big)\, dx \end{equation*}

    it follows that J_{\Omega'}(w)\ge J_{\Omega'}(u) .

    Remark 4.2. Let J be as in Definition 4.1. If u\in W^{1, p(\cdot)}(\Omega) is a minimizer of J among the functions v\in u+W_0^{1, p(\cdot)}(\Omega) , then u is a local minimizer of J in \Omega .

    We start with an existence result of a minimizer to (1.1).

    Theorem 4.1. Let p, F, A, B and \lambda be as in Section 2. Let \phi\in W^{1, p(\cdot)}(\Omega) and assume moreover that F satisfies (3.10) and (3.11) with \tau satisfying (2.7).

    Then, there exists a minimizer u\in \phi +W_0^{1, p(\cdot)}(\Omega) to (1.1) and there holds that \|u\|_{W^{1, p(\cdot)}(\Omega)}\le C , for a constant C depending only on \|\phi\|_{W^{1, p(\cdot)}(\Omega)} \; \|g\|_{L^1(\Omega)} , \lambda_{\max} , |\Omega| , \rm{diam}(\Omega) , N , p_{\min} , p_{\max} , q , L , \mu , c_1 , ||\tau||_{L^{\infty}(\Omega)} and the C^1 norm of \partial\Omega .

    Proof. The proof is immediate from the computations in the proof of Proposition 3.2.

    We also have,

    Theorem 4.2. Let p and \lambda be as in Section 2. Let F, A and B be as in Propostion 3.7, except for the fact that we require that F satisfies (3.10) and (3.11) with \tau satisfying (2.7), instead of (3.3) and (3.4), and with no oscillation assumption on p . Let \phi\in W^{1, p(\cdot)}(\Omega) such that 0\le \phi\le M , for some M > 0 .

    Then, there exists a minimizer u\in \phi +W_0^{1, p(\cdot)}(\Omega) to (1.1) and 0\le u\le M in \Omega .

    Proof. Proceeding as in the proof of Proposition 3.2 we obtain that there exists a minimizer u\in \phi +W_0^{1, p(\cdot)}(\Omega) to (1.1). The proof that 0\le u\le M is similar to that of Proposition 3.7. We only have to observe that

    \begin{align*} \{u-(u-M)^+ \gt 0\} = \{u \gt 0\}\qquad\mbox{and}\qquad \{u+u^- \gt 0\} = \{u \gt 0\}. \end{align*}

    For local minimizers of (1.1) we first have

    Lemma 4.1. Let p, F, A, B and \lambda be as in Section 2. Assume that F satisfies (3.3) and (3.4) with \tau satisfying (2.7). Let u\in W^{1, p(\cdot)}(\Omega) be a local minimizer of

    \begin{equation*} J(v) = \int_\Omega\big( F(x, v, \nabla v)+\lambda(x)\chi_{\{v \gt 0\}}\big)\, dx. \end{equation*}

    Then

    \begin{equation} {\mbox{div}} A(x, u, \nabla u)\ge B(x, u, \nabla u) \quad \mathit{\mbox{in}}\;\Omega, \end{equation} (4.1)

    where A(x, s, \eta) = \nabla_\eta F(x, s, \eta) and B(x, s, \eta) = F_s(x, s, \eta) .

    Proof. In fact, let t > 0 and 0\le\xi\in C^{\infty}_0(\Omega) . Using the minimality of u we have

    \begin{equation*} 0 \leq \frac{1}{t} (J(u-t \xi)-J(u)) \le \frac{1}{t} \int_{\Omega}\big(F(x, u-t\xi, \nabla u-t \nabla \xi)-F(x, u, \nabla u)\big)\, dx \end{equation*}

    and if we take t\rightarrow 0 , we obtain

    \begin{equation} 0\leq -\int_{\Omega} \nabla_ \eta F(x, u, \nabla u)\cdot\nabla \xi\, dx-\int_{\Omega}F_s(x, u, \nabla u)\xi\, dx, \end{equation} (4.2)

    which gives (4.1).

    From now on we will deal with nonnegative, bounded, local minimizers of (1.1). Next we will prove that they are locally Lipschitz continuous.

    We first prove that nonnegative, bounded, local minimizers are locally Hölder continuous.

    Theorem 4.3. Let p, F, A, B and \lambda be as in Section 2. Assume that F satisfies (3.3) and (3.4) with \tau satisfying (2.7). Let x_0\in\Omega , \hat r_0 > 0 such that B_{\hat r_0}(x_0)\subset\subset\Omega . Assume that A, B satisfy condition (3.14) in B_{\hat r_0}(x_0) and either B(x, 0, 0)\equiv0 for x\in B_{\hat r_0}(x_0) or B satisfies (3.32) for x\in B_{\hat r_0}(x_0) . Let u\in W^{1, p(\cdot)}(\Omega)\cap L^\infty(\Omega) be a nonnegative local minimizer of (1.1). Then, there exist 0 < \gamma < 1 , \gamma = \gamma(N, p_{\min}) and 0 < \hat\rho_0 < \hat r_0 , such that u\in C^{\gamma}(\overline{B_{\hat\rho_0}(x_0)}) . Moreover, \|u\|_{C^{\gamma}(\overline{B_{\hat\rho_0}(x_0)})}\leq C with \hat \rho_0 and C depending only on \beta, p_{\max}, p_{\min}, N, L, \hat r_0, \lambda_0, \Lambda_0 , \|g\|_{L^1(B_{\hat r_0}(x_0))} , \mu , c_1 , \lambda_{\max} , \|u\|_{L^\infty(B_{\hat r_0}(x_0))} , ||\tau||_{L^{\infty}(B_{\hat r_0}(x_0))} and \delta .

    Proof. We will prove that there exist 0 < \gamma < 1 and 0 < \rho_0 < r_0 < \hat r_0 such that, if B_{r_0}(y)\subset B_{\hat r_0}(x_0) and \rho\leq \rho_0 , then

    \begin{equation} \Big({\operatorname {–\!\!\!\!\!\int\!\!\!\!\!–}}_{B_\rho(y)}|\nabla u|^{p_-}\, dx\Big)^{1/{p_-}}\le C \rho^{\gamma-1}, \end{equation} (4.3)

    where p_- = \inf\{p(x), x\in B_{r_0}(y)\} . Without loss of generality we will assume that y = 0 .

    In fact, let 0 < r_0\le \min\{\frac{\hat r_0}{2}, 1\} , 0 < r\leq r_0 and v the solution of

    \begin{equation} {\rm div}\, A(x, v, \nabla v) = B(x, v, \nabla v) \quad\mbox{in }B_r, \qquad v-u\in W_0^{1, p(\cdot)}(B_r). \end{equation} (4.4)

    Observe that, under our assumptions we can apply either Proposition 3.1 and Proposition 3.5 or Proposition 3.6 and deduce that such a solution exists and it is bounded in \overline{B}_r if r_0 is small enough depending on \delta and L = \|\nabla p\|_{L^\infty(\Omega)} . Hence, by Proposition 3.3, we have

    \begin{equation} \begin{aligned} &\int_{B_r} \big(F(x, u, \nabla u)-F(x, v, \nabla v)\big)\, dx\ge\\ &\quad\quad \frac12 \alpha\lambda_0\Big(\int_{B_r\cap\{{{p(x)}}\geq 2\} } |\nabla { u}-\nabla v|^{{p}(x)} \, dx+ \int_{B_r\cap\{{{p(x)}} \lt 2\} } \Big(|\nabla {u}|+|\nabla v|\Big)^{{{ p}(x)}-2}|\nabla {u}-\nabla v|^2\, dx\Big), \end{aligned} \end{equation} (4.5)

    where \alpha = \alpha(p_{\min}, p_{\max}) and \lambda_0 is as in (2.2).

    By the minimality of u , we have (if A_1 = B_r\cap\{p(x) < 2\} and A_2 = B_r\cap\{p(x)\geq 2\} )

    \begin{align} &\int_{ A_2} |\nabla u-\nabla v|^{p(x)} \, dx\leq C r^N, \end{align} (4.6)
    \begin{align} &\int_{A_1}|\nabla u-\nabla v|^2(|\nabla u|+|\nabla v|)^{p(x)-2} \, dx\leq C r^N, \end{align} (4.7)

    where C = C(p_{\min}, p_{\max}, N, {\lambda_{\max}}, \lambda_0) .

    Let {\varepsilon} > 0 . Take \rho = r^{1+{\varepsilon}} and suppose that r^{{\varepsilon}}\leq 1/2 . Take 0 < \eta < 1 to be chosen later. Then, by Young's inequality, the definition of A_1 and (4.7), we obtain

    \begin{equation} \begin{aligned} \int_{A_1\cap B_{\rho}} |\nabla u-\nabla v|^{p(x)}\, dx \leq& \frac{C}{{\eta}^{2/{p_{\min}}}}\int_{A_1\cap B_{r}}(|\nabla u|+|\nabla v|)^{p(x)-2}|\nabla u-\nabla v|^2 \, dx\\ &+ C\eta\int_{ B_{\rho}\cap A_1} (|\nabla u|+|\nabla v|)^{p(x)}\, dx\\ \leq& \frac{C}{{\eta}^{2/{p_{\min}}}} r^{N}+ C\eta\int_{ B_{\rho}\cap A_1} (|\nabla u|+|\nabla v|)^{p(x)}\, dx. \end{aligned} \end{equation} (4.8)

    Therefore, by (4.6) and (4.8), we get

    \begin{equation} \int_{B_{\rho}}|\nabla u-\nabla v|^{p(x)}\, dx \leq \frac{C}{{\eta}^{2/{p_{\min}}}} r^N+C\eta\int_{B_{\rho}\cap A_1}(|\nabla u|+|\nabla v|)^{p(x)}\, dx, \end{equation} (4.9)

    where C = C(p_{\min}, p_{\max}, N, {\lambda_{\max}}, \lambda_0) .

    Since, |\nabla u|^q\leq C(|\nabla u-\nabla v|^q+|\nabla v|)^q) , for any q > 1 , with C = C(q) , we have, by (4.9), choosing \eta small, that

    \begin{equation} \int_{B_{\rho}} |\nabla u|^{p(x)}\, dx \leq {C} r^N+C\int_{B_{\rho}} |\nabla v|^{p(x)}\, dx, \end{equation} (4.10)

    where C = C(p_{\min}, p_{\max}, N, {\lambda_{\max}}, \lambda_0) .

    Now let M\ge 1 such that ||v||_{L^{\infty}(B_{r})}\le M and define

    w(x) = \frac{v(rx)}{M} \quad {\rm in} \quad B_1.

    Observe that M depends only on \|u\|_{L^\infty(B_{\hat r_0}(x_0))} if B(x, 0, 0)\equiv 0 or it depends also on the structural conditions on F , A and B , on \hat r_0 and on the bound L of \|\nabla p\|_{L^\infty} if not.

    There holds that,

    {\rm div}\bar A(x, w, \nabla w) = \bar B(x, w, \nabla w)\quad\mbox{in}\quad B_1

    where

    \bar A(x, s, \eta) = A(rx, Ms, \frac Mr\eta), \qquad \bar B(x, s, \eta) = rB(rx, Ms, \frac Mr\eta).

    Now, let

    \begin{aligned} \widetilde A(x, s, \eta) = \Big(\frac rM\Big)^{{p^-}_r-1}\bar A(x, s, \eta), \qquad \widetilde B(x, s, \eta) = \Big(\frac rM\Big)^{{p^-}_r-1} \bar B(x, s, \eta). \end{aligned}

    Observe that w\in W^{1, \bar p(\cdot)}(B_1)\cap L^\infty(B_1) satisfies

    \begin{equation} {\rm div}\widetilde A(x, w, \nabla w) = \widetilde B(x, w, \nabla w)\quad\mbox{in}\quad B_1, \end{equation} (4.11)

    where \bar p(x) = p(rx) .

    Let us see that (4.11) is under the conditions of Theorem 1.1 in [10].

    First, we clearly have \widetilde A(x, s, 0) = 0 . Moreover, as 1\le r^{{p^-}_r-{p^+}_r}\le C_L < \infty if r\le 1 and we have assumed that M\ge1 ,

    \begin{equation} \begin{aligned} \sum\limits_{ij}\frac{\partial\widetilde A_i}{\partial\eta_j}(x, s, \eta)\xi_i\xi_j& = \Big(\frac rM\Big)^{{p^-}_r-1}\Big(\frac Mr\Big) \sum\limits_{ij}\frac{\partial A_i}{\partial\eta_j}(rx, Ms, \frac Mr\eta)\xi_i\xi_j\\ &\ge \lambda_0 \Big(\frac rM\Big)^{{p^-}_r-1}\Big(\frac Mr\Big)^{p(rx)-1}|\eta|^{\bar p(x)-2}|\xi|^2 \ge\lambda_0 |\eta|^{\bar p(x)-2}|\xi|^2. \end{aligned} \end{equation} (4.12)

    On the other hand,

    \begin{equation} \sum\limits_{ij}\Big|\frac{\partial\widetilde A_i}{\partial\eta_j}(x, s, \eta)\Big|\le\Lambda_0 \Big(\frac rM\Big)^{{p^-}_r-1}\Big(\frac Mr\Big)^{p(rx)-1}|\eta|^{\bar p(x)-2}\le\Lambda_0C_LM^{p_{\max}-p_{\min}}|\eta|^{\bar p(x)-2}. \end{equation} (4.13)

    Then, assuming without loss of generality that p(rx_1)\ge p(r x_2) ,

    \begin{equation} \begin{aligned} |&\widetilde A(x_1, s, \eta)-\widetilde A(x_2, s, \eta)|\le \Big(\frac rM\Big)^{{p^-}_r-1} \big|A(rx_1, Ms, \frac Mr\eta)-A(rx_2, Ms, \frac Mr\eta)\big|\\ &\le \Big(\frac rM\Big)^{{p^-}_r-1}\Lambda_0\Big( \Big(\frac Mr\Big)^{p(rx_1)-1}|\eta|^{p(rx_1)-1}+ \Big(\frac Mr\Big)^{p(rx_2)-1}|\eta|^{p(rx_2)-1}\Big)\\ &\qquad\big(1+\big|\log\big( \frac Mr|\eta|\big)|\big)r^{\beta}|x_1-x_2|^{\beta}\\ &\le \Lambda_0 C_LM^{p_{\max}-p_{\min}}\big(|\eta|^{\bar p(x_1)-1}+|\eta|^{\bar p(x_2)-1}\big)\big(1+\big|\log|\eta|\big|\big)|x_1-x_2|^{\beta} \end{aligned} \end{equation} (4.14)

    if r\le r_{M, \beta} .

    Similarly,

    |\widetilde A(x, s_1, \eta)-\widetilde A(x, s_2, \eta)|\le \Lambda_4 |s_1-s_2||\eta|^{\bar p(x)-1}

    with \Lambda_4 = \Lambda_0C_L M^{p_{\max}-p_{\min}+1} .

    On the other hand, denoting \bar\tau(x) = \tau (rx) ,

    \begin{aligned} |\widetilde B(x, s, \eta)|&\le \Lambda_0 r \Big(\frac rM\Big)^{{p^-}_r-1}+\Lambda_0 C_L M^{p_{\max}-p_{\min}+1}|\eta|^{\bar p(x)} +\Lambda_0 r \Big(\frac rM\Big)^{{p^-}_r-1} |Ms|^{\bar \tau(x)}\\ &\le \Lambda_5 \big(1+|\eta|^{\bar p(x)}+|s|^{\bar \tau(x)}\big) \end{aligned}

    with \Lambda_5 depending on \Lambda_0 , L , p_{\max} , p_{\min} , M and ||\tau||_{L^{\infty}(B_{\hat r_0}(x_0))} .

    Since |w|\le 1 , we may assume that

    \widetilde B(x, s, \eta)\le \Lambda_6\big(1+|\eta|^{\bar{p}(x)}\big),

    with \Lambda_6 depending on \Lambda_0 , L , p_{\min} , p_{\max} , M and ||\tau||_{L^{\infty}(B_{\hat r_0}(x_0))} .

    From Theorem 1.1 in [10], it follows that w\in C^{1, \alpha}_{\rm loc}(B_1) for some 0 < \alpha < 1 and that

    \begin{equation*} \sup\limits_{B_{1/2}} |\nabla w|\le C, \end{equation*}

    with C depending only on \beta, p_{\max}, p_{\min}, N, L, \lambda_0, \Lambda_0 , M and ||\tau||_{L^{\infty}(B_{\hat r_0}(x_0))} , which implies

    \begin{equation} \sup\limits_{B_{r/2}} |\nabla v|\le \frac{CM}{r}. \end{equation} (4.15)

    Therefore, from (4.10) and (4.15), we deduce that if r is small depending on M and \beta ,

    \begin{equation} \int_{B_{\rho}} |\nabla u|^{p(x)}\, dx \leq C r^N + C{\rho}^N r^{-p_+}, \end{equation} (4.16)

    with p_+ = \sup\{p(x), x\in B_{r_0}\} and C depending on \beta, p_{\max}, p_{\min}, N, L, \lambda_0, \Lambda_0 , \lambda_{\max} , M and ||\tau||_{L^{\infty}(B_{\hat r_0}(x_0))} .

    Then, if we take {\varepsilon}\le\frac{p_{\min}}{N} , we have by (4.16) and by our election of \rho , that

    \begin{aligned}{\operatorname {–\!\!\!\!\!\int\!\!\!\!\!–}}_{B_{\rho}} |\nabla u|^{p_-}\, dx&\leq {\operatorname {–\!\!\!\!\!\int\!\!\!\!\!–}}_{B_{\rho}} |\nabla u|^{p(x)}\, dx+\frac{1}{|B_{\rho}|}\int_{B_{\rho}\cap\{|\nabla u| \lt 1\}} |\nabla u|^{p_-}\, dx \\&\leq {\operatorname {–\!\!\!\!\!\int\!\!\!\!\!–}}_{B_{\rho}} |\nabla u|^{p(x)}\, dx+ 1\\ &\leq 1+C \Big(\frac{r}{\rho}\Big)^N + C r^{-p_+}\\ & \leq 1+Cr^{-{\varepsilon} N}+C r^{-p_+} \\ & \leq C r^{-p_+} = C \rho^{-\frac{p_+}{(1+{\varepsilon})}}. \end{aligned}

    Now let r_0\le r_0({\varepsilon}, p_{\min}, L) so that

    \frac{p_+}{p_-} = \frac{p_+(B_{r_0})}{p_-(B_{r_0})}\leq 1+\frac{{\varepsilon}}{2},

    and small enough so that, in addition, r_0^{{\varepsilon}}\leq 1/2 . Then, if \rho\leq \rho_0 = r_0^{1+{\varepsilon}} and moreover, r_0 is small depending on M and \beta ,

    \begin{equation*} {\operatorname {–\!\!\!\!\!\int\!\!\!\!\!–}}_{B_{\rho}} |\nabla u|^{p_-}\, dx\leq C \rho^{-\frac{(1+\frac{{\varepsilon}}{2})}{(1+{\varepsilon})}p_-} = C \rho^{-(1-\gamma)p_-}, \end{equation*}

    where \gamma = \frac{\frac{{\varepsilon}}{2}}{(1+{\varepsilon})} = \gamma(N, p_{\min}) . That is, if \rho\leq \rho_0 = r_0^{1+{\varepsilon}}

    \Big({\operatorname {–\!\!\!\!\!\int\!\!\!\!\!–}}_{B_{\rho}} |\nabla u|^{p_-}\, dx\Big)^{1/p_-}\leq C \rho^{\gamma-1}.

    Thus (4.3) holds, with C depending only on \beta, p_{\max}, p_{\min}, N, L, \hat r_0, \lambda_0, \Lambda_0 , \|g\|_{L^1(B_{\hat r_0}(x_0))} , \mu , c_1 , \lambda_{\max} , \|u\|_{L^\infty(B_{\hat r_0}(x_0))} , ||\tau||_{L^{\infty}(B_{\hat r_0}(x_0))} and \delta .

    Applying Morrey's Theorem, see e.g., [18], Theorem 1.53, we conclude that u\in C^{\gamma}(B_{\rho_0}(x_0)) and \|u\|_{C^{\gamma}(\overline{B_{{\rho_0}/2}(x_0)})}\leq {C} for C depending only on \beta, p_{\max}, p_{\min}, N, L, \hat r_0, \lambda_0, \Lambda_0 , \|g\|_{L^1(B_{\hat r_0}(x_0))} , \mu , c_1 , \lambda_{\max} , \|u\|_{L^\infty(B_{\hat r_0}(x_0))} , ||\tau||_{L^{\infty}(B_{\hat r_0}(x_0))} and \delta .

    As a corollary we obtain

    Corollary 4.1. Let p, F, A, B and \lambda be as in Section 2. Assume that F satisfies (3.8) and (3.9) with \tau satisfying (2.7). Assume that A, B satisfy condition (3.14) and either B(x, 0, 0)\equiv0 for x\in \Omega or B satisfies (3.32) for x\in \Omega . Let u\in W^{1, p(\cdot)}(\Omega)\cap L^\infty(\Omega) be a nonnegative local minimizer of (1.1). Then, there exists 0 < \gamma < 1 , \gamma = \gamma(N, p_{\min}) such that u\in C^{\gamma}(\Omega) . Moreover, if \Omega'\subset\subset\Omega , then \|u\|_{C^{\gamma}(\overline{\Omega'})}\leq C with C depending only on {\rm dist}(\Omega', \partial\Omega) , \beta , N , p_{\min} , p_{\max} , L , {\lambda_{\max}} , \lambda_0 , \Lambda_0 , \mu , c_1 , \|u\|_{L^{\infty}(\Omega)} , ||\tau||_{L^{\infty}(\Omega)} and \delta .

    Then, under the assumptions of the previous corollary we have that u is continuous in \Omega and therefore, \{u > 0\} is open. We can now prove the following property for nonnegative local minimizers of (1.1).

    Lemma 4.2. Let p, F, A, B and \lambda be as in Corollary 4.1. If u\in W^{1, p(\cdot)}(\Omega)\cap L^{\infty}(\Omega) is a nonnegative local minimizer of

    \begin{equation*} J(v) = \int_\Omega\big( F(x, v, \nabla v)+\lambda(x)\chi_{\{v \gt 0\}}\big)\, dx, \end{equation*}

    there holds that,

    \begin{equation} {\mbox{div}} A(x, u, \nabla u) = B(x, u, \nabla u) \quad \mathit{\mbox{in}}\{u \gt 0\}, \end{equation} (4.17)

    where A(x, s, \eta) = \nabla_\eta F(x, s, \eta) and B(x, s, \eta) = F_s(x, s, \eta) .

    Proof. From Lemma 4.1 we already know that (4.1) holds. In order to obtain the opposite inequality in \{u > 0\} , we let 0\le\xi\in C^{\infty}_0(\{u > 0\}) and consider u-t\xi , for t < 0 , with |t| small.

    Using the minimality of u we have

    \begin{equation*} 0 \ge \frac{1}{t} (J(u-t \xi)-J(u)) = \frac{1}{t} \int_{\Omega}\big(F(x, u-t\xi, \nabla u-t \nabla \xi)-F(x, u, \nabla u)\big)\, dx \end{equation*}

    and if we take t\rightarrow 0 , we obtain

    \begin{equation*} 0\ge -\int_{\Omega} \nabla_ \eta F(x, u, \nabla u)\cdot\nabla \xi\, dx-\int_{\Omega}F_s(x, u, \nabla u)\xi\, dx, \end{equation*}

    which gives the desired inequality, so (4.17) follows.

    We will next prove the Lipschitz continuity of nonnegative local minimizers of (1.1).

    Before getting the Lipschitz continuity we prove the following result

    Theorem 4.4. Let p, F, A, B , \lambda and u be as in Corollary 4.1. Let \Omega'\subset\subset\Omega . There exist constants C > 0 , r_0 > 0 such that if x_0\in \Omega'\cap\partial\{u > 0\} and r\le r_0 then

    \sup\limits_{B_{r}(x_0)} u\leq C r.

    The constants depend only on {\rm dist}(\Omega', \partial\Omega) , \beta , N , p_{\min} , p_{\max} , L , {\lambda_{\max}} , \lambda_0 , \Lambda_0 , \mu , c_1 , \|u\|_{L^{\infty}(\Omega)} , ||\tau||_{L^{\infty}(\Omega)} and \delta .

    Proof. Let us suppose by contradiction that there exist a sequence of nonnegative local minimizers u_k corresponding to functionals J_k given by

    \begin{equation*} J_k(v) = \int_\Omega\big( F_k(x, v, \nabla v)+\lambda_k(x)\chi_{\{v \gt 0\}}\big)\, dx, \end{equation*}

    with u_k\in W^{1, p_k(\cdot)}(\Omega)\cap L^{\infty}(\Omega) , p_{\min}\leq p_k(x)\leq p_{\max} , \|\nabla p_k\|_{L^{\infty}}\leq L , 0\le\lambda_k(x)\le{\lambda_{\max}} , ||u_k||_{L^{\infty}(\Omega)}\le M , for some M\ge 1 , and points \bar x_k\in\Omega'\cap\partial\{u_k > 0\} , such that

    \sup\limits_{B_{r_k/4}(\bar x_k)} u_k\geq k r_k\quad \mbox{ and } \quad r_k\le \frac{1}{k}.

    We denote A_k(x, s, \eta) = \nabla_\eta F_k(x, s, \eta) and B_k(x, s, \eta) = (F_k)_s(x, s, \eta) and we also suppose that p_k, F_k, A_k, B_k and \tau_k satisfy the assumptions in Section 2 with constants \lambda_0 , \Lambda_0 and \beta , we assume that A_k, B_k satisfy condition (3.14) and F_k satisfy (3.8) and (3.9) with {\tau}_k satisfying (2.7) and either and B_k(x, 0, 0)\equiv0 for x\in \Omega or B_k satisfy (3.32) for x\in \Omega . All these conditions with exponent p_k and constants independent of k and with ||{\tau}_k||_{L^{\infty}(\Omega)}\le \tau_0 , for some \tau_0 > 0 .

    Without loss of generality we will assume that \bar x_k = 0 .

    Let us define in B_1 , for k large, \bar u_k(x) = \frac1{r_k}u_k(r_k x) , {\bar p}_k(x) = p_k(r_k x) and {\bar \lambda}_k(x) = {\lambda}_k(r_k x) . Then p_{\min}\leq {\bar p}_k(x)\leq p_{\max} , \|\nabla {\bar p}_k\|_{L^{\infty}(B_1)}\leq L r_k and 0\le{\bar\lambda}_k(x)\le{\lambda_{\max}} . Moreover, \bar u_k is a nonnegative minimizer in \bar u_k + W_0^{1, \bar p_k(\cdot)}(B_1) of the functional

    \begin{equation} {\bar J}_k(v) = \int_{B_1}\Big( \bar{F}_k(x, v, \nabla v)+{\bar\lambda}_k(x)\chi_{\{v \gt 0\}}\Big)\, dx, \end{equation} (4.18)

    where

    \begin{equation*} \bar{F}_k(x, s, \eta) = {F}_k(r_k x, r_k s, \eta), \end{equation*}

    with

    \bar u_k(0) = 0\qquad \mbox{ and } \qquad { }\max\limits_{\overline{B}_{1/4}}\bar u_k(x) \gt k.

    Let d_k(x) = { }\mbox{dist}(x, \{\bar u_k = 0\}) and \mathcal{O}_k = { }\Big\{x\in B_1: d_k(x)\leq \frac{1-|x|}{3}\Big\} . Since \bar u_k(0) = 0 then \overline{B}_{1/4}\subset \mathcal{O}_k , therefore

    m_k: = \sup\limits_{\mathcal{O}_k}(1-|x|) \bar u_k(x)\geq \max\limits_{\overline{B}_{1/4}}(1-|x|) \bar u_k(x)\geq \frac{3}{4} \max\limits_{\overline{B}_{1/4}} \bar u_k(x) \gt \frac{3}{4} k.

    For each fixed k , \bar u_k is bounded, then (1-|x|) \bar u_k(x)\rightarrow 0 \mbox{ when } |x|\rightarrow 1 which means that there exists x_k\in {\mathcal{O}_k} such that (1-|x_k|) \bar u_k(x_k) = \sup_{\mathcal{O}_k}(1-|x|) \bar u_k(x) , and then

    \begin{equation} \bar u_k(x_k) = \frac{m_k}{1-|x_k|}\geq m_k \gt \frac{3}{4} k \end{equation} (4.19)

    as x_k\in \mathcal{O}_k . Observe that \delta_k: = d_k(x_k)\leq \frac{1-|x_k|}{3} . Let y_k\in \partial\{\bar u_k > 0\}\cap B_1 such that |y_k-x_k| = \delta_k . Then,

    \begin{array}{ll}{ } (1)\ B_{2\delta_k}(y_k)\subset B_1, \\\\ { } \mbox{ since if } y\in B_{2\delta_k}(y_k) \Rightarrow |y| \lt 3\delta_k + |x_k|\leq 1, \\\\ { } (2)\ B_{\frac{\delta_k}{2}}(y_k)\subset \mathcal{O}_k, \\{ } \mbox{ since if } y\in B_{\frac{\delta_k}{2}}(y_k) \Rightarrow |y|\leq \frac{3}{2}\delta_k + |x_k|\leq 1-\frac{3}{2} \delta_k \Rightarrow d_k(y)\leq \frac{\delta_k}{2}\leq \frac{1-|y|}{3} \ \ \ \mbox{ and }\\\\{ } (3) \mbox{ if } z\in B_{\frac{\delta_k}{2}}(y_k) \Rightarrow 1-|z|\geq 1-|x_k|-|x_k-z|\geq 1-|x_k|-\frac{3}{2} \delta_k\geq \frac{1-|x_k|}{2}. \end{array}

    By (2) we have

    \max\limits_{\mathcal{O}_k}(1-|x|) \bar u_k(x)\geq \max\limits_{\overline{B_{\frac{\delta_k}{2}}}(y_k)}(1-|x|) \bar u_k(x)\geq \max\limits_{\overline{B_{\frac{\delta_k}{2}}}(y_k)}\frac{(1-|x_k|)}{2} \bar u_k(x),

    where in the last inequality we are using (3). Then,

    \begin{equation} 2 \bar u_k(x_k)\geq \max\limits_{\overline{B_{\frac{\delta_k}{2}}}(y_k)} \bar u_k(x). \end{equation} (4.20)

    As B_{\delta_k}(x_k)\subset \{\bar u_k > 0\} , then B_{r_k\delta_k}(r_k x_k)\subset \{u_k > 0\} . Hence, {\rm div} {A}_k(x, u_k, \nabla u_k) = {B}_k(x, u_k, \nabla u_k) in B_{r_k\delta_k}(r_k x_k) . Recalling that ||u_k||_{L^{\infty}(B_{r_k\delta_k}(r_k x_k))}\le {M} , we can replace |s|^{{\tau}_k(x)} in (2.6) for B_k by M^{{\tau}_0} . Then we can apply Harnack's inequality (Theorem 3.2 in [23]) and we thus have

    \begin{equation} \max\limits_{\overline{B_{\frac{3}{4}r_k\delta_k}}(r_k x_k)} u_k(x)\le C\big[\min\limits_{\overline{B_{\frac{3}{4}r_k\delta_k}}(r_k x_k)} u_k(x) +r_k \delta_k\big], \end{equation} (4.21)

    with C a positive constant depending only on N, p_{\min}, p_{\max}, L , M , \lambda_0 , \Lambda_0 and {\tau}_0 .

    It follows that

    \begin{equation} \max\limits_{\overline{B_{\frac{3}{4}\delta_k}}(x_k)}\bar u_k(x)\le C\big[\min\limits_{\overline{B_{\frac{3}{4}\delta_k}}(x_k)} \bar u_k(x) +\delta_k\big]. \end{equation} (4.22)

    Recalling (4.19), we get from (4.22), for k large,

    \begin{equation} \min\limits_{\overline{B_{\frac{3}{4}\delta_k}}(x_k)} \bar u_k(x)\geq c \bar u_k(x_k), \end{equation} (4.23)

    with c a positive constant depending only on N, p_{\min}, p_{\max}, L \; M , \lambda_0 , \Lambda_0 and {\tau}_0 . As \overline{B_{\frac{3}{4}\delta_k}}(x_k)\cap \overline{B_{\frac{\delta_k}{4}}}(y_k)\neq \emptyset we have by (4.23)

    \begin{equation} \max\limits_{\overline{B_{\frac{\delta_k}{4}}}(y_k)} \bar u_k(x)\geq c \bar u_k(x_k). \end{equation} (4.24)

    Let w_k(x) = { }\frac{\bar u_k(y_k+\frac{\delta_k}{2} x)}{\bar u_k(x_k)} . Then, w_k(0) = 0 and, by (4.20) and (4.24), we have

    \begin{align} \max\limits_{\overline{B_1}}w_k\leq 2 &\qquad \max\limits_{\overline{B_{1/2}}} w_k\geq c \gt 0. \end{align} (4.25)

    Now, recalling that \bar u_k is a nonnegative minimizer in \bar u_k + W_0^{1, \bar p_k(\cdot)}(B_1) of the functional {\bar J}_k in (4.18) and that B_{\frac{\delta_k}{2}}(y_k)\subset B_1 , we see that w_k is a nonnegative minimizer of \hat J_k in w_k + W^{1, {\bar p}_k(y_k+\frac{\delta_k}{2} x)}_0(B_1) , where

    {\hat J}_k(v) = \int_{B_1}\Big( {\hat F}_k(x, v, \nabla v) +{\hat\lambda}_k(x)\chi_{\{v \gt 0\}}\Big)\, dx,
    {\hat F}_k(x, s, \eta) = \bar{F}_k\big(y_k+\frac{\delta_k}{2} x, \bar u_k(x_k) s, \frac{2 \bar u_k(x_k)}{\delta_k}\eta\big)\qquad \mbox{ and } \qquad {\hat\lambda}_k(x) = {\bar\lambda}_k(y_k+\frac{\delta_k}{2} x).

    We let c_k = \frac{2 \bar u_k(x_k)}{\delta_k} and we notice that c_k\rightarrow\infty . So we define {{\tilde p}_k(x)} = {\bar p}_k(y_k+\frac{\delta_k}{2} x) and divide the functional \hat J_k by c_k^{{\tilde p}_k^{-}} , with {{\tilde p}_k^{-}} = \inf_{B_1}{\tilde p}_k . Then, it follows that w_k is a nonnegative minimizer of \tilde J_k in w_k + W^{1, \tilde p_k(\cdot)}_0(B_1) , where

    {\tilde J}_k(v) = \int_{B_1}\Big( {\tilde F}_k(x, v, \nabla v)+{\tilde\lambda}_k(x)\chi_{\{v \gt 0\}}\Big)\, dx,
    {\tilde F}_k(x, s, \eta) = c_k^{-{{\tilde p}_k^{-}}}{\hat F}_k(x, s, \eta) \qquad \mbox{ and } \qquad {\tilde\lambda}_k(x) = c_k^{-{{\tilde p}_k^{-}}}{\hat\lambda}_k(x).

    We claim that

    \begin{equation} {{\tilde\lambda}_k}\rightarrow 0 \quad\mbox {uniformly in }B_1, \end{equation} (4.26)
    \begin{equation} {c_k^{{{\tilde p}_k(x)}-{{\tilde p}_k^{-}}}}\rightarrow 1 \ \mbox{ uniformly, } \quad 1\le {c_k^{{{\tilde p}_k(x)}-{{\tilde p}_k^{-}}}}\le M_1\quad\mbox {in }B_1, \end{equation} (4.27)
    \begin{equation} {\tilde p}_k\rightarrow p_0 \ \mbox{ uniformly}\quad\mbox{and}\quad p_{\min}\le p_0\le p_{\max} \quad\mbox {in }B_1, \end{equation} (4.28)

    up to a subsequence, for some constants M_1 and p_0 , where M_1 = M_1(M, L) .

    On the one hand, 0 < {{\tilde\lambda}_k}(x)\le {\lambda_{\max}} c_k^{-1}\to 0 gives (4.26).

    In addition, in B_1 there holds, for k large, that 1\le {c_k^{{{\tilde p}_k(x)}-{{\tilde p}_k^{-}}}}\le e^{2 \|\nabla \tilde p_k\|_{L^{\infty}}\log c_k} . But we have \|\nabla \tilde p_k\|_{L^{\infty}}\log c_k\le L r_k\frac{\delta_k}{2}\log \big(\frac{2M}{r_k \delta_k}\big)\to 0 , which implies (4.27).

    To see (4.28) we observe that p_{\min}\leq p_k(x)\leq p_{\max} and \|\nabla p_k\|_{L^{\infty}(\Omega)}\leq L and then, for a subsequence, {p}_k\rightarrow p uniformly on compacts of \Omega , so {\tilde p}_k(x) = {p}_k(r_k(y_k+\frac{\delta_k}{2} x))\rightarrow p_0 = p(0) uniformly in B_1 .

    We define \tilde{A}_k = \nabla_\eta \tilde{F}_k and \tilde{B}_k = (\tilde{F}_k)_s and we observe that

    \begin{equation*} {\tilde p}_k(x) = p_k(r_k(y_k+\frac{\delta_k}{2} x)), \qquad {\tilde \tau}_k(x) = {\tau}_k(r_k(y_k+\frac{\delta_k}{2} x)), \end{equation*}
    \begin{equation*} \begin{aligned} {\tilde F}_k(x, s, \eta)& = c_k^{-{{\tilde p}_k^{-}}}{\hat F}_k(x, s, \eta) = c_k^{-{{\tilde p}_k^{-}}}\bar{F}_k\big(y_k+\frac{\delta_k}{2} x, \bar u_k(x_k) s, \frac{2 \bar u_k(x_k)}{\delta_k}\eta\big)\\ & = c_k^{-{{\tilde p}_k^{-}}}{F}_k\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big), \end{aligned} \end{equation*}
    \begin{equation*} {\tilde A}_k(x, s, \eta) = c_k^{-{{\tilde p}_k^{-}}}c_k{A}_k\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big), \end{equation*}
    \begin{equation*} {\tilde B}_k(x, s, \eta) = c_k^{-{{\tilde p}_k^{-}}}r_k\bar u_k(x_k){B}_k\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big). \end{equation*}

    There holds that {\tilde p}_k , {\tilde F}_k , {\tilde A}_k , {\tilde B}_k and {\tilde\tau}_k are under the assumptions of Section 2, with constants independent of k . In fact, recalling (4.27), we get for k large

    \begin{equation*} p_{\min}\leq {\tilde p}_k(x)\leq p_{\max}, \quad \|\nabla {\tilde p}_k\|_{L^{\infty}(\Omega)}\leq L, \quad {\tilde p}_k(x)\leq {\tilde \tau}_k(x)\leq \tau_0, \end{equation*}
    \begin{equation*} {\tilde A}_k(x, s, 0) = 0, \end{equation*}
    \begin{equation} \begin{aligned} \sum\limits_{i, j}\frac{\partial({\tilde A}_k)_i}{\partial \eta_j}(x, s, \eta)\xi_i\xi_j = &c_k^{-{{\tilde p}_k^{-}}}c^2_k \sum\limits_{i, j}\frac{\partial({A}_k)_i}{\partial \eta_j}\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big)\xi_i\xi_j\\ \ge& \lambda_0 {c_k^{{{\tilde p}_k(x)}-{{\tilde p}_k^{-}}}}|\eta|^{{\tilde p}_k(x)-2}|\xi|^2\ge \lambda_0 |\eta|^{{\tilde p}_k(x)-2}|\xi|^2, \end{aligned} \end{equation} (4.29)
    \begin{equation} \begin{aligned} \sum\limits_{i, j}\Big|\frac{\partial ({\tilde A}_k)_i}{\partial \eta_j}(x, s, \eta)\Big| = &c_k^{-{{\tilde p}_k^{-}}}c^2_k \sum\limits_{i, j}\Big|\frac{\partial({A}_k)_i}{\partial \eta_j}\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big)\Big|\\ \le &\Lambda_0 {c_k^{{{\tilde p}_k(x)}-{{\tilde p}_k^{-}}}}|\eta|^{{\tilde p}_k(x)-2}\le \Lambda_0 M_1|\eta|^{{\tilde p}_k(x)-2}. \end{aligned} \end{equation} (4.30)

    Assuming, without loss of generality, that {\tilde p}_k(x_1)\ge {\tilde p}_k(x_2) and using that (r_k\frac{\delta_k}{2})^{{\beta}_1}\log c_k\le (r_k\frac{\delta_k}{2})^{{\beta}_1}\log \big(\frac{2M}{r_k \delta_k}\big)\to 0 , we get

    \begin{equation} \begin{aligned} \big|{\tilde A}_k(x_1, s, \eta)-&{\tilde A}_k(x_2, s, \eta)\big|\le c_k^{-{{\tilde p}_k^{-}}}c_k \Lambda_0 (r_k\frac{\delta_k}{2})^{{\beta}_1} |x_1-x_2|^{\beta} \big(|c_k\eta|^{{\tilde p}_k(x_1)-1}+|c_k\eta|^{{\tilde p}_k(x_2)-1}\big)\\ &\big(1+\big|\log |c_k\eta|\big|\big)\le 2M_1 \Lambda_0 |x_1-x_2|^{\beta} \big(|\eta|^{{\tilde p}_k(x_1)-1}+|\eta|^{{\tilde p}_k(x_2)-1}\big)\big(1+\big|\log |\eta|\big|\big). \end{aligned} \end{equation} (4.31)

    Finally, recalling that r_k\bar u_k(x_k)\le M , we obtain

    \begin{equation} \begin{aligned} \big|{\tilde A}_k(x, s_1, \eta)-{\tilde A}_k(x, s_2, \eta)\big|\le &c_k^{-{{\tilde p}_k^{-}}}c_k \Lambda_0 r_k\bar u_k(x_k)|s_1-s_2||c_k\eta|^{{\tilde p}_k(x)-1}\\ \le &\Lambda_0 M_1M|s_1-s_2||\eta|^{{\tilde p}_k(x)-1}, \end{aligned} \end{equation} (4.32)
    \begin{equation} \begin{aligned} \big|{\tilde B}_k(x, s, \eta)\big|\le &c_k^{-{{\tilde p}_k^{-}}}r_k\bar u_k(x_k)\Lambda_0\Big( 1+|c_k\eta|^{{\tilde p}_k(x)}+ |r_k\bar u_k(x_k)s|^{{\tilde \tau}_k(x)}\Big)\\ \le & M\Lambda_0 \big(c_k^{-{{\tilde p}_k^{-}}}+M_1|\eta|^{{\tilde p}_k(x)}+c_k^{-{{\tilde p}_k^{-}}}|Ms|^{{\tilde \tau}_k(x)}\big)\le M_1 M \Lambda_0 \big(1+|\eta|^{{\tilde p}_k(x)}+M^{{\tau}_0}|s|^{{\tilde \tau}_k(x)}\big). \end{aligned} \end{equation} (4.33)

    On the other hand, {\tilde A}_k and {\tilde B}_k satisfy condition (3.14). In fact, since { A}_k and { B}_k satisfy condition (3.14),

    \begin{equation*} \begin{aligned} \frac12 \sum\limits_{i, j}&\frac{\partial ({\tilde A}_k)_i}{\partial \eta_j}(x, s, \eta)\xi_i\xi_j + ({\tilde B}_k)_s(x, s, \eta)w^2 \\ & = \frac12 c_k^{-{{\tilde p}_k^{-}}}c^2_k \sum\limits_{i, j}\frac{\partial({A}_k)_i}{\partial \eta_j}\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big)\xi_i\xi_j \\ \quad&+c_k^{-{{\tilde p}_k^{-}}}(r_k\bar u_k(x_k))^2({B}_k)_s\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big)w^2\\ \quad\quad&\ge c_k^{-{{\tilde p}_k^{-}}} 2\big|({ A}_k)_s\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big)\cdot(c_k \xi) (r_k\bar u_k(x_k)w)\big|\\ \quad\quad\quad& = 2\big|({\tilde A}_k)_s(x, s, \eta)\cdot\xi w\big|. \end{aligned} \end{equation*}

    Also, since F_k satisfy (3.8) and (3.9) with \tau_k satisfying (2.7), with exponent p_k and constants independent of k , then \tilde F_k satisfy (3.8) and (3.9) with {\tilde\tau}_k satisfying (2.7), with exponent \tilde p_k and constants independent of k . In fact,

    \begin{equation} \begin{aligned} {\tilde F}_k (x, s, \eta)&\ge c_k^{-{{\tilde p}_k^{-}}}\mu|c_k\eta|^{{\tilde p}_k(x)}- c_k^{-{{\tilde p}_k^{-}}}c_1 \big(|r_k\bar u_k(x_k)s|^{{\tilde p}_k(x)-\delta}+1\big)\\ &\ge \mu|\eta|^{{\tilde p}_k(x)}-c_1 M^{p_{\max}}\big(|s|^{{\tilde p}_k(x)-\delta}+1\big). \end{aligned} \end{equation} (4.34)

    Analogously,

    \begin{equation} \begin{aligned} {\tilde F}_k (x, s, \eta)&\le c_k^{-{{\tilde p}_k^{-}}}{\mu}^{-1}|c_k\eta|^{{\tilde p}_k(x)}+c_k^{-{{\tilde p}_k^{-}}} c_1\big(|r_k\bar u_k(x_k)s|^{{\tilde \tau}_k(x)} +1\big)\\ &\le M_1{\mu}^{-1}|\eta|^{{\tilde p}_k(x)}+ c_1 M^{{\tau}_0}\big(|s|^{{\tilde \tau}_k(x)}+1\big). \end{aligned} \end{equation} (4.35)

    If B_k(x, 0, 0)\equiv0 for x\in \Omega , then {\tilde B_k(x, 0, 0)}\equiv0 for x\in B_1 .

    On the other hand, if B_k satisfy (3.32) for x\in \Omega with exponent p_k and constant independent of k , then \tilde B_k satisfy (3.32) for x\in B_1 with exponent \tilde p_k and constant independent of k . In fact,

    \begin{equation} \begin{aligned} |{\tilde B}_k(x, s, \eta)| = &c_k^{-{{\tilde p}_k^{-}}}r_k\bar u_k(x_k)|{B}_k\big(r_k(y_k+\frac{\delta_k}{2} x), r_k\bar u_k(x_k) s, c_k\eta\big)|\\ \le&c_k^{-{{\tilde p}_k^{-}}}r_k\bar u_k(x_k)\Lambda_0 (1+|r_k\bar u_k(x_k) s|^{{\tilde p}_k(x)-1}+| c_k\eta|^{{\tilde p}_k(x)-1})\\ \le&c_k^{-1}M_1 M^{p_{\max}}\Lambda_0 (1+|s|^{{\tilde p}_k(x)-1}+|\eta|^{{\tilde p}_k(x)-1})\\ \le&M_1 M^{p_{\max}}\Lambda_0 (1+|s|^{{\tilde p}_k(x)-1}+|\eta|^{{\tilde p}_k(x)-1}). \end{aligned} \end{equation} (4.36)

    We now take v_k the solution of

    \begin{equation} {\rm div} \tilde{A}_k(x, v_k, \nabla v_k) = \tilde{B}_k(x, v_k, \nabla v_k) \quad\mbox{in }B_{3/4}, \qquad v_k-w_k\in W_0^{1, \tilde p_k(\cdot)}(B_{3/4}). \end{equation} (4.37)

    In fact, from Corollaries 3.3, 3.4 and 3.2 and the upper bound in (4.25), it follows that if k is large enough

    \begin{equation} ||v_k||_{L^{\infty}(B_{3/4})}\le \bar C, \end{equation} (4.38)

    where \bar C depends only on N , p_{\min} , p_{\max} , L , \lambda_0 , \Lambda_0 , \mu , c_1 , \delta , M and \tau_0 . Here we have used that \sup_{B_{3/4}}{\tilde p}_k-\inf_{B_{3/4}} {\tilde p}_k \le \|\nabla \tilde p_k\|_{L^{\infty}}\frac32\le 3L r_k\frac{\delta_k}{4} < \delta in (3.8), for k large.

    Then, by (4.38), we can replace |s|^{{\bar\tau}_k(x)} in (4.33) by 1+{\bar C}^{\tau_0} and applying Theorem 1.1 in [10] we obtain that, for k large,

    \begin{equation} ||v_k||_{C^{1, \alpha}(\overline{B_{1/2}})}\le \hat C \quad\mbox{ with }\quad 0 \lt \alpha \lt 1 \end{equation} (4.39)

    where \hat C depends only on \beta , N , p_{\min} , p_{\max} , L , \lambda_0 , \Lambda_0 , \mu , c_1 , \delta , M and \tau_0 . Therefore, there is a function v_0\in C^{1, \alpha}(\overline{B_{1/2}}) such that, for a subsequence,

    \begin{equation} v_k\rightarrow v_0 \quad\mbox{and}\quad \nabla v_k\rightarrow \nabla v_0\quad\mbox {uniformly in }\overline{B_{1/2}}. \end{equation} (4.40)

    Let us now show that

    \begin{equation} w_k-v_k\to 0 \quad\mbox {in } L^{p_{\min}}(B_{3/4}). \end{equation} (4.41)

    From the minimality of w_k we have

    \begin{equation} \int_{B_{3/4}} {\tilde F}_k(x, w_k \nabla w_k)- {\tilde F}_k(x, v_k \nabla v_k) \le C(N)\|\tilde {\lambda}_k\|_{L^{\infty}(B_{3/4})}, \end{equation} (4.42)

    which together with Proposition 3.3 gives

    \begin{align} &\int_{A_2^k} |\nabla w_k-\nabla v_k|^{\tilde p_k(x)} \, dx\leq C \|\tilde {\lambda}_k\|_{L^{\infty}(B_{3/4})}, \end{align} (4.43)
    \begin{align} &\int_{A_1^k}|\nabla w_k-\nabla v_k|^2(|\nabla w_k|+|\nabla v_k|)^{\tilde p_k(x)-2} \, dx\leq C \|\tilde {\lambda}_k\|_{L^{\infty}(B_{3/4})}, \end{align} (4.44)

    where A_1^k = B_{3/4}\cap\{\tilde p_k(x) < 2\} , A_2^k = B_{3/4}\cap\{\tilde p_k(x)\geq 2\} and C = C(p_{\min}, p_{\max}, N, \lambda_0) .

    Applying Hölder's inequality (Theorem A.3) with exponents \frac{2}{\tilde p_k(x)} and \frac{2}{2-\tilde p_k(x)} , we get

    \begin{equation} \int_{A_1^k} |\nabla w_k-\nabla v_k|^{\tilde p_k(x)} \, dx\leq 2 \ \| G^a_k \|_{L^{2/{\tilde p_k(\cdot)}}({A_1^k})} \|G^b_k\|_{L^{{2}/({2-\tilde p_k(\cdot)})}({A_1^k})}, \end{equation} (4.45)

    where

    \begin{equation*} \begin{aligned} &G^a_k = |\nabla w_k-\nabla v_k|^{\tilde p_k}(|\nabla w_k|+|\nabla v_k|)^{({\tilde p_k-2})\tilde p_k/2}\\ &G^b_k = (|\nabla w_k|+|\nabla v_k|)^{({2-\tilde p_k})\tilde p_k/2}. \end{aligned} \end{equation*}

    Since

    \begin{equation*} \int_{A_1^k} |G^a_k|^{2/{\tilde p_k(x)}} \, dx = \int_{A_1^k}|\nabla w_k-\nabla v_k|^2(|\nabla w_k|+|\nabla v_k|)^{\tilde p_k(x)-2} \, dx, \end{equation*}

    then, from (4.44), (4.26) and Proposition A.1, we get, for k large,

    \begin{equation} \| G^a_k \|_{L^{2/{\tilde p_k(\cdot)}}({A_1^k})} \le C \|\tilde {\lambda}_k\|_{L^{\infty}(B_{3/4})}^{p_{\min}/2}, \end{equation} (4.46)

    C = C(p_{\min}, p_{\max}, N, \lambda_0) . On the other hand, (4.37) and the bounds (4.34), (4.35) and (4.38) give

    \begin{equation*} \begin{aligned} C_1 \int_{B_{3/4}} |\nabla v_k|^{\tilde p_k(x)} \leq& \int_{B_{3/4}} {\tilde F}_k(x, v_k \nabla v_k) + C_2 \\ \leq& \int_{B_{3/4}} {\tilde F}_k(x, w_k \nabla w_k) + C_2 \\ \leq& C\big(1+\int_{B_{3/4}}|\nabla w_k|^{\tilde p_k(x)}\big). \end{aligned} \end{equation*}

    This implies

    \begin{equation} \int_{A_1^k} |G^b_k|^{{2}/({2-\tilde p_k(x)})} \, dx\le C \int_{B_{3/4}}(|\nabla w_k|^{\tilde p_k(x)}+|\nabla v_k|^{\tilde p_k(x)}) \, dx \le \tilde C\big(1+\int_{B_{3/4}}|\nabla w_k|^{\tilde p_k(x)}\big), \end{equation} (4.47)

    for some \tilde C\ge 1 , depending only on p_{\min} , p_{\max} and the uniform constants and functions in (4.34), (4.35) and (4.38). Now (4.47) and Proposition A.1 give

    \begin{equation} \| G^b_k \|_{L^{{2}/({2-\tilde p_k(\cdot)})}({A_1^k})} \le \tilde C\big(1+\int_{B_{3/4}}|\nabla w_k|^{\tilde p_k(x)}\big). \end{equation} (4.48)

    Let us show that the right hand side in (4.48) can be bounded independently of k .

    In fact, let \tilde v_k be the solution of

    \begin{equation} {\rm div} \tilde{A}_k(x, \tilde v_k, \nabla \tilde v_k) = \tilde{B}_k(x, \tilde v_k, \nabla \tilde v_k) \quad\mbox{in }B_{7/8}, \qquad \tilde v_k-w_k\in W_0^{1, \tilde p_k(\cdot)}(B_{7/8}). \end{equation} (4.49)

    Then, similar arguments to those leading to (4.38) and (4.39), give, for k large enough,

    \begin{equation} ||\tilde v_k||_{L^{\infty}(B_{7/8})}\le \bar C, \end{equation} (4.50)

    and

    \begin{equation} ||\tilde v_k||_{C^{1, \alpha}(\overline{B_{3/4}})}\le \hat C \quad\mbox{ with }\quad 0 \lt \alpha \lt 1, \end{equation} (4.51)

    where \bar C and \hat C depend only \beta , N , p_{\min} , p_{\max} , L , \lambda_0 , \Lambda_0 , \mu , c_1 , \delta , M and \tau_0 .

    Since w_k is a nonnegative minimizer of \tilde J_k in B_1 , then we can argue as in the proof of Theorem 4.3 and get estimate (4.10) for u = w_k , v = \tilde v_k , p(x) = \tilde p_k(x) , \lambda(x) = \tilde\lambda_k(x) , r = 7/8 and \rho = 3/4 . That is,

    \begin{equation} \int_{B_{3/4}} |\nabla w_k|^{\tilde p_k(x)}\, dx \leq {C} +C\int_{B_{3/4}} |\nabla \tilde v_k|^{\tilde p_k(x)}\, dx, \end{equation} (4.52)

    where C = C(p_{\min}, p_{\max}, N, {\lambda_{\max}}, \lambda_0) . Therefore (4.52) and (4.51) give, for k large, a uniform bound for the right hand side in (4.48). That is,

    \begin{equation} \| G^b_k \|_{L^{{2}/({2-\tilde p_k(\cdot)})}({A_1^k})} \le \bar C, \end{equation} (4.53)

    with \bar C a constant depending only on \beta , N , p_{\min} , p_{\max} , L , \lambda_0 , \Lambda_0 , \mu , c_1 , \delta , M and \tau_0 .

    Now, putting together (4.43), (4.45), (4.46), (4.53) and (4.26), we obtain

    \begin{equation} \int_{B_{3/4}} |\nabla w_k-\nabla v_k|^{\tilde p_k(x)} \to 0. \end{equation} (4.54)

    Thus, using Poincare's inequality (Theorem A.4) and Theorem A.2, we get (4.41).

    In order to conclude the proof, we now observe that, since {\tilde p}_k , {\tilde F}_k , {\tilde A}_k , {\tilde B}_k , {\tilde\tau}_k , {\tilde \lambda}_k and w_k fall (uniformly) under the assumption of Corollary 4.1 in B_1 , there exists 0 < \gamma < 1 , \gamma = \gamma(N, p_{\min}) , such that

    \begin{equation*} \|w_k\|_{C^{\gamma}(\overline{B_{1/2}})}\leq C \end{equation*}

    with C depending only on \beta , N , p_{\min} , p_{\max} , L , {\lambda_{\max}} , \lambda_0 , \Lambda_0 , \mu , c_1 , \tau_0 and \delta (recall that \|w_k\|_{L^\infty(B_1)}\le 2 ).

    Therefore, there is a function w_0\in C^{\gamma}(\overline{B_{1/2}}) such that, for a subsequence,

    \begin{equation} w_k\rightarrow w_0 \quad\mbox {uniformly in }\overline{B_{1/2}}. \end{equation} (4.55)

    In addition, recalling (4.40) and (4.41), we get v_0 = w_0 in \overline{B_{1/2}} .

    We then observe that, since there holds that w_k\ge 0 , w_k(0) = 0 and (4.25), then (4.55) implies

    \begin{equation*} w_0\ge 0, \quad w_0(0) = 0, \quad \max\limits_{\overline{B_{1/2}}} w_0\geq c \gt 0. \end{equation*}

    That is,

    \begin{equation} v_0\ge 0, \quad v_0(0) = 0, \quad \max\limits_{\overline{B_{1/2}}} v_0\geq c \gt 0. \end{equation} (4.56)

    Let us show that (4.56) gives a contradiction. We will divide the proof in two cases.

    Case I. Assume that {\tilde B_k(x, 0, 0)}\equiv0 for x\in B_1 .

    We first observe that, since w_k\ge 0 , from Proposition 3.6 we deduce that v_k\ge 0 .

    Recalling (4.39), we choose M_0 > 0 such that, for every k ,

    \begin{equation*} ||v_k||_{L^{\infty}(B_{1/2})}\le M_0, \quad ||\nabla v_k||_{L^{\infty}(B_{1/2})}\le M_0, \end{equation*}

    and define

    \begin{equation*} \begin{aligned} {\tilde{\tilde{A}}}_k(x, s, \eta)& = a(s, \eta){\tilde{A}}_k(x, s, \eta) + (1-a(s, \eta))|\eta|^{p_0-2}\eta, \\ {\tilde{\tilde{B}}}_k(x, s, \eta)& = a(s, \eta){\tilde{B}}_k(x, s, \eta), \end{aligned} \end{equation*}

    where

    \begin{equation*} a(s, \eta) = \chi_{\{|s|\le M_0, |\eta|\le M_0\}}. \end{equation*}

    Then,

    \begin{equation*} {\rm div} {\tilde{\tilde{A}}}_k(x, v_k, \nabla v_k) = {\tilde{\tilde{B}}}_k(x, v_k, \nabla v_k) \quad\mbox{in }B_{1/2}. \end{equation*}

    From (4.29) and (4.30) (recall Remark 2.1) we deduce

    \begin{equation} \begin{aligned} |\tilde A_k(x, s, \eta)|&\le \tilde\Lambda_0|\eta|^{\tilde p_k(x)-1}, \\ \tilde A_k(x, s, \eta)\cdot\eta&\ge \tilde\Lambda_0^{-1}|\eta|^{\tilde p_k(x)}, \end{aligned} \end{equation} (4.57)

    for some constant \tilde\Lambda_0 > 0 independent of k .

    Let us now fix {\varepsilon} > 0 . Then, if k\ge k_0({\varepsilon}) , (4.57), (4.33) and (4.28) give, for large k ,

    \begin{equation*} \begin{aligned} |{\tilde{\tilde{A}}}_k(x, s, \eta)|&\le {\tilde{\tilde{\Lambda}}}_0|\eta|^{p_0-1}+c{\varepsilon}, \\ {\tilde{\tilde{A}}}_k(x, s, \eta)\cdot\eta&\ge {\tilde{\tilde{\Lambda}}}_0^{-1}|\eta|^{p_0}-c{\varepsilon}, \\ |{\tilde{\tilde{B}}}_k(x, s, \eta)|&\le {\tilde{\tilde{\Lambda}}}_0|\eta|^{p_0-1}+c{\varepsilon}, \end{aligned} \end{equation*}

    for some positive constants {\tilde{\tilde{\Lambda}}}_0 and c (independent of {\varepsilon} and k ).

    Applying Harnack's inequality (see [22], Theorems 5 and 6 and Section 5), we get for any 0 < r < 1

    \begin{equation*} \max\limits_{\overline{B_{r/2}}}v_k\le C_r \big(\min\limits_{\overline{B_{r/2}}} v_k + {{\varepsilon}}^{\frac{1}{p_0}}\big), \end{equation*}

    with C_r a positive constant.

    Now, letting k\to\infty first, and then {\varepsilon}\to 0 , we get

    \begin{equation} \max\limits_{\overline{B_{r/2}}}v_0\le C_r \min\limits_{\overline{B_{r/2}}} v_0, \end{equation} (4.58)

    with

    \begin{equation} v_0\ge 0, \qquad v_0(0) = 0. \end{equation} (4.59)

    Since 0 < r < 1 is arbitrary, we get v_0\equiv 0 in B_{1/2} . This is in contradiction with (4.56) and concludes the proof of Case I.

    Case II. Assume that \tilde B_k satisfy (3.32) for x\in B_1 with exponent \tilde p_k and constant independent of k . Then, (4.30), (4.31), (4.32) and (4.36) imply that, for a subsequence,

    \begin{equation*} \begin{aligned} \tilde A_k \rightarrow \tilde A & \quad\mbox{uniformly on compacts of }{B_{1/2}}\times{\mathbb R}\times{\mathbb R}^N\setminus\{0\} \, \mbox{and pointwise on }{B_{1/2}}\times{\mathbb R}\times{\mathbb R}^N, \\ &\qquad\qquad\tilde B_k\rightarrow 0\quad\mbox {uniformly on compacts of }{B_{1/2}}\times{\mathbb R}\times{\mathbb R}^N, \end{aligned} \end{equation*}

    and from (4.29) and (4.30) (recall Remark 2.1) we deduce

    \begin{equation*} \begin{aligned} |\tilde A(x, s, \eta)|&\le \tilde\Lambda_0|\eta|^{p_0-1}, \\ \tilde A(x, s, \eta)\cdot\eta&\ge \tilde\Lambda_0^{-1}|\eta|^{p_0}, \end{aligned} \end{equation*}

    for some constant \tilde\Lambda_0 > 0 . Then, (4.37) and (4.40) imply that

    \begin{equation*} {\rm div} \tilde{A}(x, v_0, \nabla v_0) = 0 \quad\mbox{in }B_{1/2}. \end{equation*}

    Applying Harnack's inequality (see [22], Theorems 5 and 6 and Section 5), we get again, that (4.58) and (4.59) holds for any 0 < r < 1 . This contradicts once more (4.56) and concludes the proof.

    We can now prove the Lipschitz continuity of nonnegative local minimizers of (1.1)

    Theorem 4.5. Let p, F, A, B, \lambda and u be as in Corollary 4.1. Then u is locally Lipschitz continuous in \Omega . Moreover, for any \Omega'\subset\subset \Omega the Lipschitz constant of u in \Omega' can be estimated by a constant C depending only on {\rm dist}(\Omega', \partial\Omega) , \beta , N , p_{\min} , p_{\max} , L , {\lambda_{\max}} , \lambda_0 , \Lambda_0 , \mu , c_1 , \|u\|_{L^{\infty}(\Omega)} , ||\tau||_{L^{\infty}(\Omega)} and \delta .

    Proof. The result is a consequence of Corollary 4.1, Lemma 4.2 and Theorem 4.4 above, and Proposition 2.1 in [16]. We point out that, although the proof of Proposition 2.1 in [16] is written for the particular case in which A(x, s, \eta) = |\eta|^{p(x)-2}\eta and B(x, s, \eta) = f(x) , this same proof is valid for general A and B under the present assumptions, without changes.

    In this section we present some examples of application of our results.

    Theorem 5.1. Let f(x, s) be a measurable function such that f(x, \cdot)\in C^2({\mathbb R}) for every x\in\Omega . Let a(x, s) be a Hölder continuous function with exponent \alpha , a(x, \cdot)\in C^2({\mathbb R}) for every x\in\Omega . Let p , \tau and \lambda as in Section 2 and 0 < \delta < p_{\min} . Assume that there exist positive constants a_0, a_1, a_2, c_1 and \Lambda_0 such that

    f1 -c_1(1+|s|^{p(x)-\delta})\le f(x, s)\le c_1(1+|s|^{\tau(x)}) in \Omega\times{\mathbb R} .

    f2 f_s(x, 0)\equiv 0 in \Omega .

    f3 f_{ss}(x, s)\ge0 in \Omega\times{\mathbb R} .

    f4 |f_s(x, s)|\le \Lambda_0(1+|s|^{\tau(x)}) in \Omega\times{\mathbb R} .

    And

    a1 0 < a_0\le a(x, s)\le a_1 < \infty in \Omega\times{\mathbb R} .

    a2 |a_s(x, s)|\le a_2 in \Omega\times{\mathbb R} .

    a3 \big(a(x, s)^{1-\gamma(x)}\big)_{ss}\le0 in \Omega\times{\mathbb R} with \gamma(x) = \frac{2p(x)}{\min\{1, p(x)-1\}} > 1 .

    Let

    F(x, s, \eta) = a(x, s)\frac{|\eta|^{p(x)}}{p(x)}+f(x, s)

    and let u\in W^{1, p(\cdot)}(\Omega)\cap L^\infty(\Omega) a nonnegative, local minimizer of (1.1). Then, u is locally Lipschitz continuous in \Omega .

    Proof. We only have to see that F, A, B satisfy the hypotheses of Theorem 4.5.

    There holds that

    A(x, s, \eta) = a(x, s)|\eta|^{p(x)-2}\eta, \qquad B(x, s, \eta) = a_s(x, s)\frac{|\eta|^{p(x)}}{p(x)}+f_s(x, s).

    And

    \frac{a_0}{p_{\max}}|\eta|^{p(x)}-c_1(1+|s|^{p(x)-\delta})\le F(x, s, \eta)\le \frac{a_1}{p_{\min}}|\eta|^{p(x)}+c_1(1+|s|^{\tau(x)}).

    Moreover,

    (1). \; A(x, s, 0) = 0 .

    (2). \; \sum_{i, j}\frac{\partial A_i}{\partial\eta_j}(x, s, \eta)\xi_i\xi_j\ge\lambda_0|\eta|^{p(x)-2}|\xi|^2 . In fact,

    \begin{equation} \begin{aligned}\sum\limits_{i, j}\frac{\partial A_i}{\partial\eta_j}(x, s, \eta)\xi_i\xi_j& = a(x, s)\Big[(p(x)-2)|\eta|^{p(x)-4}\langle\eta, \xi\rangle^2+|\eta|^{p(x)-2}|\xi|^2\Big]\\ &\ge a(x, s)\min\{1, p(x)-1\}|\eta|^{p(x)-2}|\xi|^2 \ge\lambda_0|\eta|^{p(x)-2}|\xi|^2 \end{aligned} \end{equation} (5.1)

    with \lambda_0 = a_0\min\{1, p_{\min}-1\} .

    (3). \; \sum_{i, j}\Big|\frac{\partial A_i}{\partial\eta_j}(x, s, \eta)\Big|\le \Lambda_0|\eta|^{p(x)-2} if \Lambda_0\ge a_1N(p_{\max}+3) .

    (4). \; |A(x_1, s, \eta)-A(x_2, s, \eta)|\le \Lambda_0|x_1-x_2|^\alpha\big(|\eta|^{p(x_1)-1}+|\eta|^{p(x_2)-1}\big)\big|\big(1+\big|\log|\eta|\big|\big) for a big enough constant \Lambda_0 . In fact, without loss of generality we may assume that p(x_1)\ge p(x_2) . There holds,

    |A(x_1, s, \eta)-A(x_2, s, \eta)|\le a(x_1, s)\big||\eta|^{p(x_1)-1}-|\eta|^{p(x_2)-1}\big|+\big|a(x_1, s)-a(x_2, s)\big||\eta|^{p(x_2)-1}.

    Now, if |\eta|\ge1 ,

    \big||\eta|^{p(x_1)-1}-|\eta|^{p(x_2)-1}\big|\le {L} |x_1-x_2| |\eta|^{p(x_1)-1}\big|\log|\eta|\big|\le {L} |x_1-x_2| \Big(|\eta|^{p(x_1)-1}+|\eta|^{p(x_2)-1}\Big)\big|\log|\eta|\big| .

    A similar inequality holds if |\eta|\le1 . So that,

    |A(x_1, s, \eta)-A(x_2, s, \eta)|\le a_1 {L} |x_1-x_2| \Big(|\eta|^{p(x_1)-1}+|\eta|^{p(x_2)-1}\Big)\big|\log|\eta|\big|+C_a|x_1-x_2|^\alpha|\eta|^{p(x_2)-1},

    where C_a is the Holder constant of the function a . And the result follows if \Lambda_0\ge a_1{L} d(\Omega)^{1-\alpha}+C_a with d(\Omega) the diameter of \Omega .

    (5). \; |A(x, s_1, \eta)-A(x, s_2, \eta)|\le a_2|\eta|^{p(x)-1}|s_1-s_2| .

    We clearly have,

    (1). |B(x, s, \eta)|\le \Lambda_0(1+|\eta|^{p(x)}+|s|^{\tau(x)}) (as we may assume, without loss of generality that \Lambda_0\ge \frac{a_2}{p_{\min}} ).

    (2). \; B(x, 0, 0) = 0 .

    Finally, let us see that

    2|A_s(x, s, \eta)\cdot\xi\, w|\le \frac12\sum\limits_{i, j}\frac{\partial A_i}{\partial\eta_j}(x, s, \eta)\xi_i\xi_j+B_s(x, s, \eta)\, w^2.

    In fact, let

    \ell(x) = \frac{p(x)-2}{2(p(x)-1)}\qquad {\varepsilon}(x, s) = a(x, s)\min\{1, p(x)-1\}.

    Then,

    \begin{aligned} 2|A_s&(x, s, \eta)\cdot\xi\, w|\le\Big(\sqrt{{\varepsilon}(x, s)} |\eta|^{\ell(x)(p(x)-1)} |\xi|\Big)\Big(\frac2{\sqrt{{\varepsilon}(x, s)}}|a_s(x, s)||\eta|^{(1-\ell(x))(p(x)-1)}\, |w|\Big)\\ &\le\frac{{\varepsilon}(x, s)}2|\eta|^{p(x)-2}|\xi|^2+ \frac2{{\varepsilon}(x, s)}a_s(x, s)^2|\eta|^{p(x)}w^2\\ & = \frac12 a(x, s)\min\{1, p(x)-1\} |\eta|^{p(x)-2}|\xi|^2+ \frac{2a_s(x, s)^2}{a(x, s)\min\{1, p(x)-1\}}|\eta|^{p(x)} w^2. \end{aligned}

    By (5.1), we only have to check that

    B_s(x, s, \eta)\ge \frac{2a_s(x, s)^2}{a(x, s)\min\{1, p(x)-1\}}|\eta|^{p(x)}.

    Since f_{ss}(x, s)\ge0 it is enough to check that

    \begin{equation} {a_{ss}(x, s)}\ge \gamma(x)\frac {a_s(x, s)^2}{a(x, s)}\quad\mbox{ with }\quad\gamma(x) = \frac{2p(x)}{\min\{1, p(x)-1\}} \gt 1. \end{equation} (5.2)

    And, (5.2) holds by hypothesis a3.

    If a(x, s) is smooth in -M_1 < s < M_2 with M_1, M_2 > 0 , condition a3 only holds in 0\le s\le M < M_2 and the local minimizer u satisfies that 0\le u\le M , we can still apply the results in this paper and get that u is locally Lipschitz continuous.

    Theorem 5.2. Let f(x, s) be a measurable function such that f(x, \cdot)\in C^2({\mathbb R}) for every x\in\Omega . Let a(x, s) be a Hölder continuous function with exponent \alpha , a(x, \cdot)\in C^2(-M_1, M_2)\cap Lip({\mathbb R}) for almost every x\in\Omega with M_1, M_2 > 0 . Let p , \tau and \lambda as in Section 2 and 0 < \delta < p_{\min} . Assume that there exist positive constants a_0, a_1, a_2, c_1, \Lambda_0 and 0 < M < M_2 such that

    f1 -c_1(1+|s|^{p(x)-\delta})\le f(x, s)\le c_1(1+|s|^{\tau(x)}) in \Omega\times{\mathbb R} .

    f2 f_s(x, 0)\equiv 0 in \Omega .

    f3 f_{ss}(x, s)\ge0 in \Omega\times{\mathbb R} .

    f4 |f_s(x, s)|\le \Lambda_0(1+|s|^{\tau(x)}) in \Omega\times{\mathbb R} .

    And

    a1 0 < a_0\le a(x, s)\le a_1 < \infty in \Omega\times{\mathbb R} .

    a2 |a_s(x, s)|\le a_2 \ \ a.e. in \Omega\times{\mathbb R} .

    a3' \big(a(x, s)^{1-\gamma(x)}\big)_{ss}\le0 in \Omega\times[0, M] with \gamma(x) = \frac{2p(x)}{\min\{1, p(x)-1\}} > 1 .

    Let

    F(x, s, \eta) = a(x, s)\frac{|\eta|^{p(x)}}{p(x)}+f(x, s)

    and let u\in W^{1, p(\cdot)}(\Omega)\cap L^\infty(\Omega) be a local minimizer of (1.1) such that 0\le u\le M . Then, u is locally Lipschitz continuous in \Omega .

    Proof. By Proposition 3.7 for such a function f and with a satisfying a1 and a2, for every ball B_r(x_0)\subset\Omega with r small enough there exists a solution v\in u+W^{1, p(\cdot)}_0(B_r(x_0)) of (1.2) such that 0\le v\le \|u\|_{L^\infty(B_r(x_0))} . And this result also holds for all the rescaled equations and functions that appear in the proofs of Section 4. Hence, condition (3.14) is only needed for s\in(0, M) and this is a consequence of a3'.

    Example 5.1. A possible example of functions a and f satisfying the assumptions of Theorem 5.2 is

    a(x, s) = \begin{cases}(1+s)^{-q(x)}&\quad\mbox{if }-1/2\le s\le M_2, \\ 2^{q(x)}&\quad\mbox{if } s\le -1/2, \\ (1+M_2)^{-q(x)}&\quad\mbox{if } s\ge M_2, \end{cases}

    with M_2 > 0 and q\in L^\infty(\Omega) a Hölder continuous function such that 0 < q(x) < \frac1{\gamma(x)-1} and

    f(x, s) = b(x)|s|^{\tau(x)}

    with 0\le b\in L^\infty(\Omega) and \tau(x)\ge 2 in \Omega satisfying (2.7).

    Another possible choice of f is

    \begin{equation} f(x, s) = b(x)\widetilde f(x, s) \end{equation} (5.3)

    with 0\le b\in L^\infty(\Omega) and

    \begin{equation*} \widetilde f(x, s) = \begin{cases} s^2&\quad\mbox{if } |s|\le 1, \\ \widetilde a(x)|s|^{\tau(x)}+\widetilde b(x)|s|+\widetilde c(x)&\quad\mbox{if } |s|\ge 1, \end{cases} \end{equation*}

    where \tau(x) satisfies (2.7) and the functions \widetilde a, \widetilde b, \widetilde c \in L^\infty(\Omega) are chosen in such a way that \widetilde f(x, \cdot)\in C^2({\mathbb R}) for every x\in\Omega .

    With this choice of a and f , for every 0 < M < M_2 there holds that any local minimizer u such that 0\le u\le M is locally Lipschitz continuous in \Omega .

    Observe that, by Theorem 4.2, if \phi\in W^{1, p(\cdot)}(\Omega) is such that 0\le\phi\le M < M_2 , such a minimizers always exists.

    We have another example.

    Theorem 5.3. Let f(x, s) be a measurable function such that f(x, \cdot)\in C^2({\mathbb R}) for every x\in\Omega . Let G(x, \eta) be a measurable function such that G(x, \cdot)\in C^1({\mathbb R}^N)\cap C^2({\mathbb R}^N\setminus\{0\}) for every x\in\Omega . Let p and \lambda as in Section 2 and assume that either f satisfies conditions \rm f1, \cdots, f4 in Theorem 5.1 or f satisfies \rm f1, f3 in Theorem 5.1 and

    f4' |f_s(x, s)|\le \Lambda_0\big(1+|s|^{p(x)-1}\big) .

    On the other hand, G satisfies

    G1 \mu\big(|\eta|^{p(x)}- 1\big)\le G(x, \eta)\le \mu^{-1}\big(|\eta|^{p(x)}+ 1\big) with \mu > 0 .

    G2 \nabla_\eta G(x, 0)\equiv0 in \Omega .

    G3 \sum_{i, j}\frac{\partial^2 G}{\partial\eta_i\partial\eta_j}\xi_i\xi_j\ge \lambda_0 |\eta|^{p(x)-2}|\xi|^2 .

    G4 \sum_{i, j}\Big|\frac{\partial^2 G}{\partial\eta_i\partial\eta_j}\Big|\le \Lambda_0 |\eta|^{p(x)-2} .

    G5 |\nabla_\eta G(x_1, \eta)-\nabla_\eta G(x_2, \eta)|\le \Lambda_0 |x_1-x_2|^\beta \big(|\eta|^{p(x_1)-1}+|\eta|^{p(x_2)-1}\big)\big(1+\big|\log|\eta|\big|\big) for some 0 < \beta\le1 .

    Let

    F(x, s, \eta) = G(x, \eta)+f(x, s)

    and let u\in W^{1, p(\cdot)}(\Omega)\cap L^\infty(\Omega) be a nonnegative, local minimizer of (1.1). Then, u is locally Lipschitz continuous in \Omega .

    Proof. There holds that

    A(x, s, \eta) = \nabla_\eta G(x, \eta), \qquad B(x, s, \eta) = f_s(x, s).

    And it is clear that F, A and B satisfy the assumptions in Theorem 4.5.

    Example 5.2. A possible example of function G satisfying the assumptions of Theorem 5.3 is

    G(x, \eta) = a(x)\widetilde G\big(|\eta|^{p(x)}\big),

    with p(x) as in Section 2, a(x) a Hölder continuous function such that a_0\le a(x)\le a_1 , with a_0, a_1 positive constants and \widetilde G\in C^2\big([0, \infty)\big) a function satisfying:

    \begin{equation*} \begin{aligned} &\qquad\qquad c_0\le \widetilde G'(t)\le C_0, \\ &0\le \widetilde G''(t)\le \frac{C_0}{1+t}\qquad c_0, C_0 \mbox{ positive constants.} \end{aligned} \end{equation*}

    In fact, since c_0\le\widetilde G'(t)\le C_0 , condition G1 in Theorem 5.3 holds. We have \nabla_\eta G(x, \eta) = a(x)\widetilde G'\big(|\eta|^{p(x)}\big)p(x)|\eta|^{p(x)-2}\eta , so we get condition G2. We obtain condition G3 by reasoning as in (5.1), using that in the present case we have \widetilde G''(t)\ge 0 and \widetilde G'(t)\ge c_0 .

    We get condition G4 by using in our computations that \widetilde G'(t)\le C_0 and \widetilde G''(t)t\le C_0 .

    Finally, applying again that \widetilde G''(t)t\le C_0 , we can obtain the estimate

    |\widetilde G'\big(|\eta|^{p(x_1)}\big)-\widetilde G'\big(|\eta|^{p(x_2)}\big)|\le C_0|p(x_1)-p(x_2)||\log |\eta||,

    which combined with computations similar as those in (4) in Theorem 5.1 leads to condition G5.

    A possible example of function f satisfying the assumptions of Theorem 5.3 is

    f(x, s) = g(x)s, \qquad \mbox{with}\quad g\in L^{\infty}(\Omega).

    In fact, it is immediate that f satisfies conditions f1, f3 and f4'.

    On the other hand, f(x, s) = b(x)|s|^{\tau(x)} with b and \tau as in Example 5.1 and f(x, s) as in (5.3) are other possible choices.

    Let us present another example

    Example 5.3. Another possible example of function G satisfying the assumptions of Theorem 5.3 is

    G(x, \eta) = \widetilde A(x)\eta\cdot\eta|\eta|^{p(x)-2},

    with p(x) as in Section 2 and \widetilde A(x)\in {{\mathbb R}}^{N\times N} , symmetric, Hölder continuous in \Omega and such that

    \lambda(x) I\le \widetilde A(x)\le \Lambda(x) I.

    Here \lambda_0\le \lambda(x)\le \Lambda (x)\le \Lambda_0 with \lambda_0, \Lambda_0 positive constants and \Lambda(x)-\lambda(x)\le c_0 , with c_0 a suitable positive constant depending only on N , p_{\min} , p_{\max} and \lambda_0 .

    In fact, conditions G1 and G2 in Theorem 5.3 are easy to verify. The computations leading to G4 and G5 are similar to the computations in Theorem 5.1.

    In order to verify G3, we observe that, denoting a(x) the smaller eigenvalue of \widetilde A(x) , there holds that

    \widetilde A(x) = a(x)I +\widetilde B(x), \qquad \text{with }\quad ||\widetilde B(x)||_{L^\infty(\Omega)}\le ||\Lambda(x)-\lambda(x)||_{L^\infty(\Omega)}.

    Then we can write

    \begin{equation*} \begin{aligned} G(x, \eta) = &a(x)|\eta|^{p(x)} + \widetilde B(x)\eta\cdot\eta|\eta|^{p(x)-2}\\ = &G_1(x, \eta)+G_2(x, \eta). \end{aligned} \end{equation*}

    Now, proceeding as in Theorem 5.1, we get

    \begin{equation} \sum\limits_{i, j}\frac{\partial^2 G_1}{\partial\eta_i\partial\eta_j}\xi_i\xi_j\ge c_{p_{\min}}\lambda_0 |\eta|^{p(x)-2}|\xi|^2. \end{equation} (5.4)

    It is not hard to see that

    \begin{equation} \sum\limits_{i, j}\Big|\frac{\partial^2 G_2}{\partial\eta_i\partial\eta_j}\Big|\le C ||\Lambda(x)-\lambda(x)||_{L^\infty(\Omega)} |\eta|^{p(x)-2}, \end{equation} (5.5)

    with C depending only on N , p_{\min} and p_{\max} . Then, combining (5.4) and (5.5) we deduce that G(x, \eta) satisfies condition G3, if we take ||\Lambda(x)-\lambda(x)||_{L^\infty(\Omega)}\le c_0 , with c_0 depending only on \lambda_0 , N , p_{\min} and p_{\max} .

    For choices of suitable functions f(x, s) for this G(x, \eta) we refer to Example 5.2.

    Remark 5.1. We can present further examples of functions satisfying our assumptions. Let p and \lambda be as in Section 2. Let F_1 and F_2 satisfy the assumptions on Theorem 4.5, with B_i = \partial_s F_i satisfying B_i(x, 0, 0)\equiv 0 for x\in\Omega , i = 1, 2 . Then Theorem 4.5 also applies to the function

    F(x, s, \eta) = a_1(x)F_1(x, s, \eta)+a_2(x)F_2(x, s, \eta),

    for any choice of Hölder continuous functions a_1(x), a_2(x) , which are bounded from above and below by positive constants.

    The same result holds if F_1 and F_2 satisfy the assumptions on Theorem 4.5, with B_i = \partial_s F_i satisfying (3.32) for x\in \Omega , i = 1, 2 .

    Similar consideration applies to functions F_1 and F_2 under the assumptions of Theorem 5.2.

    Supported by the Argentine Council of Research CONICET under the project PIP 11220150100032CO 2016-2019, UBACYT 20020150100154BA and ANPCyT PICT 2016-1022.

    The authors declare no conflict of interest.

    In Section 1 we included some preliminaries on Lebesgue and Sobolev spaces with variable exponent. For the sake of completeness we collect here some additional results on these spaces.

    Proposition A.1. There holds

    \begin{align*} \min\Big\{\Big(\int_{\Omega} |u|^{p(x)}\, dx\Big) ^{1/{p_{\min}}}, & \Big(\int_{\Omega} |u|^{p(x)}\, dx\Big) ^{1/{p_{\max}}}\Big\}\le\|u\|_{L^{p(\cdot)}(\Omega)}\\ &\leq \max\Big\{\Big(\int_{\Omega} |u|^{p(x)}\, dx\Big) ^{1/{p_{\min}}}, \Big(\int_{\Omega} |u|^{p(x)}\, dx\Big) ^{1/{p_{\max}}}\Big\}. \end{align*}

    Some important results for these spaces are

    Theorem A.1. Let p'(x) such that

    \frac{1}{p(x)}+\frac{1}{p'(x)} = 1.

    Then L^{p'(\cdot)}(\Omega) is the dual of L^{p(\cdot)}(\Omega) . Moreover, if p_{\min} > 1 , L^{p(\cdot)}(\Omega) and W^{1, p(\cdot)}(\Omega) are reflexive.

    Theorem A.2. Let q(x)\leq p(x) . If \Omega has finite measure, then L^{p(\cdot)}(\Omega)\hookrightarrow L^{q(\cdot)}(\Omega) continuously.

    We also have the following Hölder's inequality

    Theorem A.3. Let p'(x) be as in Theorem A.1. Then there holds

    \int_{\Omega}|f||g|\, dx \le 2\|f\|_{p(\cdot)}\|g\|_{p'(\cdot)},

    for all f\in L^{p(\cdot)}(\Omega) and g\in L^{p'(\cdot)}(\Omega) .

    The following version of Poincare's inequality holds

    Theorem A.4. Let \Omega be bounded. Assume that p(x) is log-Hölder continuous in \Omega (that is, p has a modulus of continuity \omega(r) = C(\log \frac{1}{r})^{-1} ). For every u\in W_0^{1, p(\cdot)}(\Omega) , the inequality

    \|u\|_{L^{p(\cdot)}(\Omega)}\leq C\|\nabla u\|_{L^{p(\cdot)}(\Omega)}

    holds with a constant C depending only on N, \rm{diam}(\Omega) and the log-Hölder modulus of continuity of p(x) .

    The following Sobolev embedding holds. We assume for simplicity that the domain is C^1 , but the result holds with weaker assumptions on the smoothness of the boundary.

    Theorem A.5. Let \Omega be a C^1 bounded domain. Assume that p(x) is log-Hölder continuous in \Omega and 1 < p_{\min}\le p(x)\le p_{\max} < \infty . Let \tau be such that \tau(x)\ge p(x) and \tau\in C(\overline\Omega) . Assume moreover that \tau(x)\le p^*(x) = \frac{Np(x)}{N-p(x)} if p_{\max} < N , \tau(x) is arbitrary if p_{\min} > N , \tau(x) = p(x) if p_{\min}\le N \le p_{\max} .

    Then, W^{1, p(\cdot)}(\Omega)\hookrightarrow L^{\tau(\cdot)}(\Omega) continuously. The embedding constant depends only on N , |\Omega| , the log-Hölder modulus of continuity of p(x) , p_{\min} , p_{\max} , ||\tau||_{L^{\infty}} and the C^1 norm of \partial\Omega .

    For the proof of these results and more about these spaces, see [9,13,14,20] and the references therein.



    [1] Aboulaich R, Meskine D, Souissi A (2008) New diffusion models in image processing. Comput Math Appl 56: 874-882.
    [2] Alt HW, Caffarelli LA (1981) Existence and regularity for a minimum problem with free boundary. J Reine Angew Math 325: 105-144.
    [3] Alt HW, Caffarelli LA, Friedman A (1984) A free boundary problem for quasilinear elliptic equations. Ann Scuola Norm Sci 11: 1-44.
    [4] Antontsev SN, Rodrigues JF (2006) On stationary thermo-rheological viscous flows. Ann Univ Ferrara 52: 19-36.
    [5] Antontsev SN, Shmarev SI (2005) A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions. Nonlinear Anal 60: 515-545.
    [6] Bonder JF, Martínez S, Wolanski N (2010) A free boundary problem for the p(x)-Laplacian. Nonlinear Anal 72: 1078-1103.
    [7] Chen Y, Levine S, Rao M (2006) Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math 66: 1383-1406.
    [8] Danielli D, Petrosyan A (2005) A minimum problem with free boundary for a degenerate quasilinear operator. Calc Var 23: 97-124.
    [9] Diening L, Harjulehto P, Hasto P, et al. (2011) Lebesgue and Sobolev Spaces with Variable Exponents, Berlin: Springer.
    [10] Fan X (2007) Global C1, α regularity for variable exponent elliptic equations in divergence form. J Differ Equations 235: 397-417.
    [11] Fan X, Zhao D (1999) A class of De Giorgi type and Hölder continuity. Nonlinear Anal 36: 295-318.
    [12] Gustafsson B, Shahgholian H (1996) Existence and geometric properties of solutions of a free boundary problem in potential theory. J Reine Angew Math 473: 137-179.
    [13] Harjulehto P, Hästö P (2019) Orlicz Spaces and Generalized Orlicz Spaces, Berlin: Springer.
    [14] Kováčik O, Rákosník J (1991) On spaces Lp(x) and Wk, p(x). Czechoslovak Math J 41: 592-618.
    [15] Lederman C (1996) A free boundary problem with a volume penalization. Ann Scuola Norm Sci 23: 249-300.
    [16] Lederman C, Wolanski N (2017) Weak solutions and regularity of the interface in an inhomogeneous free boundary problem for the p(x)-Laplacian. Interface Free Bound 19: 201-241.
    [17] Lederman C, Wolanski N (2019) Inhomogeneous minimization problems for the p(x)-Laplacian. J Math Anal Appl 475: 423-463.
    [18] Maly J, Ziemer WP (1997) Fine Regularity of Solutions of Elliptic Partial Differential Equations, Providence, RI: American Mathematical Society.
    [19] Martínez S, Wolanski N (2008) A minimum problem with free boundary in Orlicz spaces. Adv Math 218: 1914-1971.
    [20] Radulescu VD, Repovs DD (2015) Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Boca Raton, FL: Chapman & Hall / CRC Press.
    [21] Ruzicka M (2000) Electrorheological Fluids: Modeling and Mathematical Theory, Berlin: Springer-Verlag.
    [22] Serrin J (1964) Local behavior of solutions of quasi-linear equations. Acta Math 111: 247-302.
    [23] Wolanski N (2015) Local bounds, Harnack inequality and Hölder continuity for divergence type elliptic equations with non-standard growth. Rev Un Mat Argentina 56: 73-105.
    [24] Zhikov VV (1987) Averaging of functionals of the calculus of variations and elasticity theory. Math USSR Izv 29: 33-66.
    [25] Zhikov VV (2008) Solvability of the three-dimensional thermistor problem. Proc Steklov Inst Math 261: 98-111.
  • This article has been cited by:

    1. João Vitor da Silva, Giane Casari Rampasso, Gleydson Chaves Ricarte, Hernán Agustín Vivas, Free Boundary Regularity for a Class of One-Phase Problems with Non-Homogeneous Degeneracy, 2022, 0021-2172, 10.1007/s11856-022-2392-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4260) PDF downloads(573) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog