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Abstract: In this paper we obtain the Lipschitz continuity of nonnegative local minimizers of the
functional J(v) = fQ (F(x,v,Vv) + A(x)x=0) dx, under nonstandard growth conditions of the energy
function F(x, s,n) and 0 < Ay, < A(x) < Apax < oo. This is the optimal regularity for the problem.
Our results generalize the ones we obtained in the case of the inhomogeneous p(x)-Laplacian in our
previous work. Nonnegative local minimizers u satisfy in their positivity set a general nonlinear
degenerate/singular equation divA(x, u, Vu) = B(x, u, Vu) of nonstandard growth type. As a by-product
of our study, we obtain several results for this equation that are of independent interest.
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1. Introduction

In this paper we study the regularity properties of nonnegative, local minimizers of the functional

J) = f (F(x,v, Vv) + AxX)xvs0y) dx, (1.1)
Q

under nonstandard growth conditions of the energy function F(x, s,77) and 0 < Apip < A(X) < Apax < 0.
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There has been a great deal of interest in these type of problems. Their study started with the
seminal paper of Alt and Caffarelli [2] where the case F(x, s,n7) = %Inl2 was considered. Later on, [3]
considered the case F(x, s,17) = G(|n*) under uniform ellipticity assumptions. The general power case
F(x,s,n) = :;lnlp with 1 < p < oo was studied in [8], and F(x, s,17) = G(|n|) with G convex under the
assumption that G’ satisfies Lieberman’s condition namely, G”(t) ~ G'(t)/t, was analyzed in [19]. The
linear inhomogeneous case F(x, s,n) = %Inl2 + f(x)s was addressed in [12] and [15].

—L_|nP® was first considered
px)

in [6] for p(x) > 2 and then, in [16] and [17] in the inhomogeneous case F(x, s,1) = [ﬁhﬂpm + f(x)s,
for 1 < p(x) < oo and f € L*(Q). In [17], among other results, we proved that nonnegative local
minimizers u are locally Lipschitz continuous and satisfy

The minimization problem for the functional (1.1) with F(x, s,n) =

Ayt := div([Vu(x)|P“2Vu) = £ in {u > 0}.

The operator A, called the p(x)-Laplacian, extends the Laplacian, where p(x) = 2 and the
p-Laplacian, where p(x) = p. This is a prototype operator with nonstandard growth. The functional
setting for the study of this type of operators are the variable exponent Lebesgue and Sobolev spaces
LPO and WhrO.

Functionals and PDEs with nonstandard growth have a wide range of applications, such as the
modelling of non-Newtonian fluids, as for instance, electrorheological [21] or thermorheological
fluids [4]. Other areas of application include non-linear elasticity [24], image reconstruction [1, 7], the
modelling of electric conductors [25], as well as processes of filtration of gases in non-homogeneous
porous media [5].

As far as we know, no result on the minimization of (1.1) with F(x, s,n) a general function with
nonstandard growth has been obtained.

The main purpose of our work is to prove the local Lipschitz continuity of nonnegative local
minimizers of such an energy. We stress that this is the optimal regularity since it is known from the
particular cases refered to above that the gradient of a minimizer u jumps across Q N dfu > 0}.

We prove that nonnegative minimizers of (1.1) are solutions to the associated equation in their
positivity sets. That is, a local minimizer u > 0 satisfies

divA(x, u, Vu) = B(x,u, Vu) (1.2)

in {u > 0}, where
A(x,s,m) = V,F(x,s,1), B(x, s,n) = F(x, s,n).

Under our assumptions, the governing equation (1.2) is given by A(x, s, i) satisfying
- 0A; -
Aol e < ) Sk s,y < Mol e,
ij J

and has a right hand side given by B(x, s,77) # 0 of p(x)-type growth in . This equation is singular in
the regions where 1 < p(x) < 2 and degenerate in the ones where p(x) > 2.

Our study thus presents new features, needed in order to overcome the deep technical difficulties
arising due to the nonlinear degenerate/singular nature and the x and s dependence of this general
operator associated to our energy functional (1.1).
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The first part of the paper is devoted to the study of equation (1.2) in a domain €2, under nonstandard
growth conditions of p(x)-type. We prove existence results, a comparison principle, a uniqueness
result, a maximum principle and other local L* bounds of solutions of this equation. These delicate
results are of independent interest.

Some of these results are obtained under the growth assumption (3.14). We remark that this
hypothesis on the functions A and B allows to consider very general equations. This condition not
only enables us to get the inequality in Proposition 3.3 that is a main tool for all the proofs in the
paper, but also it is invariant under rescalings. All these results are included in Section 3.

In the second part of the paper we deal with the minimization problem for the functional (1.1). In
fact, in Section 4 we first get an existence result for minimizers. We also prove nonnegativity and
boundedness, under suitable assumptions. Then, we prove the local Holder and Lipschitz continuity of
nonnegative local minimizers (Theorems 4.3 and 4.5).

The proofs in Section 4 involve delicate rescalings. One of the main difficulties this problem
presents is that it is not invariant under the rescaling u(x) — = ]’f), if t # k —rescaling that is a crucial
tool in dealing with this type of problems. The rescaled functionals lose the uniform properties and
nontrivial modifications are needed to get through the proofs. Even after these modifications, there is
in general no limit equation for the rescaled problems due to the growth we are allowing to the
function B(x, s,77). Novel arguments are used to complete the proof of Theorem 4.4. In fact, we are
able to show that, although there is in general no limit equation for the rescaled problems, there is a
limit function and it satisfies Harnack’s inequality (see (4.58)).

A thorough follow up of the dependence of the bounds found in Section 3 with respect to the
structural conditions on F, A and B is of most importance as well.

Let us point out that the results in the paper are new even in the case p(x) = p constant.

Finally, in Section 5 we present some examples of functionals (1.1) where our results can be used.

Our examples include functionals (1.1) involving energy functions of the form

|,7 p(x)

F(x,s,n) =a(x,s) + f(x, s).

p(x)
A possible example of admissible functions a(x, s), f(x, s) is given by
a(x, s) = ap(x)(1 + $)71, ao(x) > 0, 0 < g(x) < go(x),

for s in the range where the nonnegative local minimizer takes values, go(x) a function depending on
p(x) and
fx ) =bWls™,  b(x) 20, 7(x) 2 2,

with 7(x) satisfying (2.7).
Our results also apply to functionals (1.1) involving energy functions of the form

F(x,s,m) = G(x,n) + f(x, 9).
Some admissible G(x, n7), f(x, s) are
G(x,n) = aG("™)  a(x)>0,G" >0,

G(x,m) = A - qnP®72  A(x) € RYV uniformly elliptic,
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f(x,5) = g(x)s.

Also,
F(x,s,n) = ai(x)F(x,s,n) + ax(x)F(x, s,7), a;(x) > 0,

is an admissible function if both F(x, s,7) and F;(x, s, ) are admissible.

We begin our paper with a section where we state the hypotheses on F, A, B, A and p(x) that will
be used throught the article. And we end it with an Appendix where we state some properties of the
function spaces LP®) and W'»") where the problem is well posed.

1.1. Preliminaries on Lebesgue and Sobolev spaces with variable exponent

Let p : Q — [1, 00) be a measurable bounded function, called a variable exponent on Q and denote
Pmax = €sssup p(x) and ppi, = essinf p(x). We define the variable exponent Lebesgue space LF"(Q) to
consist of all measurable functions u : Q — R for which the modular o,,(u) = fQ [u(x)|PY dx is finite.
We define the Luxemburg norm on this space by

lllro) = llullpey = inf{d > 02 0y (/) < 1)

This norm makes L”(Q) a Banach space.
There holds the following relation between 0,,,(«) and ||ul|.»0:

. 1/ pmin 1/ pmax
min {( f ™ dx) f u? dx) ™} <l
Q Q
(x) 1/ Pmin (x) 1/ Ppmax
<max {( | [ulP®dx) (] @ dx) .
Q Q
Moreover, the dual of LPO(Q) is L (Q) with ﬁ + zﬁ =1.

Let W'0(Q) denote the space of measurable functions u such that « and the distributional derivative
Vu are in LP(Q). The norm

||M||1,p(-) = ||M||p(-) + |||VM|||p(-)

makes WP (Q) a Banach space.

The space Wé’p “(Q) is defined as the closure of the Cy(Q) in WHPO(Q).

For the sake of completeness we include in an Appendix at the end of the paper some additional
results on these spaces that are used throughout the paper.

1.2. Notation

e N spatial dimension

e |S| N-dimensional Lebesgue measure of the set S

e B,(xg) open ball of radius r and center x,

e B, open ball of radius r and center 0

® x, characteristic function of the set §

eyt = max(u,0), u = max(—u,0)

e(&(,n)y and £€-71  both denote scalar product in RY
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2. Assumptions

In this section we collect all the assumptions that will be made along the paper.
Throughout the paper Q will denote a C' bounded domain in RY. In addition, the following
assumptions will be made:

2.1. Assumptions on p(x)

We assume that the function p(x) is measurable in Q and verifies
1< Pmin < P(X) < Pmax < 0, x € Q.

We assume further that p(x) is Lipschitz continuous in  and we denote by L the Lipschitz constant
of p(x), namely, ||Vp|| =) < L.

When we are restricted to a ball B, we use p, and p; to denote the infimum and the supremum of
p(x) over B,.

2.2. Assumptions on A(x)

We assume that the function A(x) is measurable in Q and verifies

0 < Apin £ A(x) £ Apax < 0, x € Q.

2.3. Assumptions on F
We assume that F is measurable in QxR xR", and for every x € Q, F(x, -,-) € C'(RxRY)NCA(R x

RV \ {0)).
We denote A(x, s,n) = V,F(x,s,n) and B(x, s,n7) = Fy(x, s,n).

2.4. Assumptions on A

We assume that A € C(Q x R x RY,RY) and for every x € Q, A(x,-,-) € C'(R xRV \ {0}, RY).
Moreover, there exist positive constants Ay and Ay, and 8 € (0, 1) such that for every x, x;, x, € Q,
s, 81,8 € R,n € RV \ {0} and & € RY, the following conditions are satisfied:

A(x,s,0)=0, 2.1
0A; .
D 5 s EE) = Aol R, (2.2)
7 91

0A;
2|5t s < A2, (2.3)

— 1on;
A1, s.7) = Ao, s,7)| < Aolxy = P (PP~ + gl =")(1 + | log ). (2.4)
Ax, s1.1) = A(x, 52,7)| < Aolsy = sallnl”™". (2.5)
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2.5. Assumptions on B

We assume that B is measurable in Q xR xR and for every x € Q, B(x,,-) € C'(R x R"), and for
every (x,s,17) € Q X Rx RN,

|BCx, s,m)| < Ao(L + "™ + 1sI"), (2.6)
where Ay is as in the assumptions on A and

7(x) > p(x) and T e C(Q),
N
ﬂ if pmax < N’

N = p(x) (2.7)
7(x) arbitrary if py,, > N,

T(X) = p(x) if Pmin < N < Pmax-

T(x) < p'(x) =

Remark 2.1. From (2.1) and (2.3) we get

< &(pmin)Aolnlp(X)_l ’

1
0A;
A, 5.7)] = JAE. 5.7) — Ai(xs .0)] = | f > Sty

so that
JA(x, 5, )| < @(Pimin)NAoI"Y " (2.8)

From (2.1) and (2.2) we have
' 0A;
A 5o 11 = (A 5m) = A5, 00 7= |32 b s, g,

so that
A(x, 5,1) 11 2 @ Prax) Ao, (2.9)

3. Existence, uniqueness and bounds of solutions to equation (1.2)
In this section we consider A and B as in Section 2 and we prove results for solutions of the equation
divA(x, u, Vu) = B(x,u,Vu) in Q. (3.1

Namely, existence, comparison principle, uniqueness, maximum principle and bounds of solutions.

Our first result is Proposition 3.1, were we prove existence of a solution to (3.1) with given boundary
data. In order to prove the existence of a solution to (3.1) we show that, given u € W'*0(Q), there
exists a minimizer of the functional

Jalv) = f F(x,v,Vv)dx (3.2)
Q
inu+ WS”’(’)(Q), where F'is as in Section 2, A(x, s,n) = V,F(x, s,n) and B(x, s,17) = F(x, s,1).
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Then, in Proposition 3.2 we get an existence result under a growth assumption on the function F
stronger than (3.3) in Proposition 3.1, but without the small oscillation hypothesis there.

In Proposition 3.4 and Corollary 3.2 we prove comparison and uniqueness for this problem,
assuming that condition (3.14) below holds. In Proposition 3.5 we prove that solutions to (3.1) with
bounded boundary data are bounded and in Proposition 3.6 we prove a maximum principle for this
problem, under suitable assumptions. In Proposition 3.7 we give another existence result of a bounded
solution.

We start with the definition of solution to (3.1).

Definition 3.1. Let p, A and B be as in Section 2. We say that u is a solution to (3.1) if u € W'O(Q)
and, for every ¢ € C;(Q), there holds that

- fA(x, u,Vu) - Vo dx = fB(x, u, Vu)p dx.
Q Q

We are using that, under the conditions in (2.7), the embedding theorem (see Theorem A.5) applies.
Our first existence result is

Proposition 3.1. Let p, F, A, B as in Section 2 and let ' C Q be a C' domain. Let u € W'"O(Q")
and let us call p* = supg, p(x), p~ = infy p(x). Assume that there exist j1,c; € Ry, pmin > 6 > 0 and
g € LY(Q) such that

F(x,5,m) > plgl"™ = ¢i|sl"° —g(x) in Q. (3.3)

Assume, moreover that 6 > p* — p~ and that
F(x,s,1m) < p7'lP® + chlsI™ + g(x) in - Q, (3.4)

with t satisfying (2.7).

Then, there exists a solution v € u + Wol’p(')(Q’) to (3.1)in Q.

Moreover, ||V|lwiroyy < C, for a constant C depending only ||ullyr.roy I8l @y, [€2'], diam(€2"), N,
P, Pt 6, Ly, ey, lItlliey and the C' norm of o<V

Proof. We will show that there is a minimizer of Jq inu + Wé’p (')(Q’) where

Jao) = f F(x,v,Vv)dx.

This minimizer is a solution to the associated Euler-Lagrange equation (3.1) in €'.

We will use the embedding theorem (see Theorem A.5) that states that, under the conditions in
(2.7), WPO(Q') — LTO(Q’) continuously.

So, let v, be a minimizing sequence. That is, v, € u + Wé’p (')(Q’) and

I =1limYJgW,)= inf JobO)< f F(x,u,Vu)dx.
n—oo ) ’

ut Wy @
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Let us show that there is a constant « > 0 such that |[v,|/;,0« < k. In fact, by (3.3), for n large,

Vv, PP dx < 1+ f

1
F(x,u, Vuydx + = f [y, PO dx + = f g(x) dx.
o o Jor H I

Q/

By Poincare’s inequality (Theorem A.4)
Ve = ullrory < CarllV(v, = wllro@)-
Hence, recalling Proposition A.1,
Vallro@y < llullpro@ry + CQ’[”VVn”LP(’)(Q’) + ”VMHLP(')(Q’)]

< Clllullwrroy + max {( | Vv P@ dx)''” ( f [V, l" dx) 7" )]
Q/

’

< C[l + max {( an(x)—5 dx)l/p_,(f |vn|17(x)—5 dx)l/lf'}]
Q/

%
o
with C depending on lleellwrro@ys gl @y, Ns p~s s 6, 1], diam(QY), L, ||7]lz~), the C' norm of 0€Y,
and the constants in (3.3).

Observe that in case u = M, there holds that fQ F(x,u,Vu) dx is bounded by a constant that depends
only on M, ||7|| .~ and |€2’|. Hence, in that case C is independent of the regularity of Q.

Since we want to find a uniform bound of [|v,|| o), we may assume that this norm is larger than

1. Let g be the middle point of the interval [p* — &, p~]. By Young’s inequality with r(x) = i xq)_ 55

f VPP dx < Co+e | |v,|?dx,
(914 (9%

for 0 < & < 1 with C, depending only on ||, &, p~, p* and 4. On the other hand, since ||[v,||«q) <
Clvallrory with C depending only on [Q'], p~, p* and 6,

f val? dx < (Clvallpro@n)?
Q/

So that _ 1 ,
Vallroery < C[Ce + &7 (IVallro@)) 7 |
~ 1
< C[Cs + &7 [allpo@ |-
By choosing € small enough, we find that

[Vallrory < C 3.5)

with C depending on ||, diam(Q"), [lullw1,0@y, P~ P*, N, 6, gl @y, L, lITll=@), the C! norm of 0€Y,
pand cy.
From the computations above we find that fQ [v,[P®~% dx < C,. So that we have that / > —co and

IVVallro@y < Ca, (3.6)

with C, depending on |Q’|, diam(QY'), |lullwr.ro@y, P~ PFs N, 6, lIglli@), L, lITll=@), the C' norm of
0, u and c.

Mathematics in Engineering Volume 3, Issue 1, 1-39.



9

From our comment above, we have that in case u = M in (', the constant C, is independent of the
regularity of 0€2'.

Let us proceed with the proof of the existence of a minimizer. By the estimates above, for a
subsequence that we still call v,, there holds that there exists v € u + Wé’p (')(Q’), such that

v, = v in W'"OWQ), v, v in L (Q') and almost everywhere,

and such that the bounds (3.5) and (3.6) also hold for v.
By Egorov’s Theorem, for every € > 0 there exists €, such that |QQ" \ Q.| < € and v, — v uniformly
in Q,.
On the other hand, if we set Qg = {x € Q' / [v|+|Vv| £ K}, there holds that |QQ'\ Q| — 0as K — oo.
Let Q. x = Q. N Q. Then, [Q"\ Q. x| > 0ase — 0and K — oo.
There holds

lim sup f F(x,v,, Vv,)dx < I + ¢ f WP dx + f gdx. (3.7)
n—oo Qs,K Q,\Qe,l( Q,\QS,K

Let us prove that

f F(x,v,Vv)dx <1+ ¢ f V[P0 dx + f gdx.
QE.K Q,\QS,K Q' \Qg,K

In fact,

f F(x,vn,an)dx—f F(x,v,Vv)dx:f [F(x,v,, Vv,) = F(x,v,, Vv)] dx
Q Q Q

,K £, K e, K

+ f [F(x,v,, VV) = F(x,v, VV)]dx = A+ B.
Qs,K

On the one hand, 8 — 0 since F(x, v,, Vv) — F(x,v, Vv) — 0 uniformly in Q, ¢ and it is uniformly
bounded. On the other hand, by the convexity assumption on F(x, s, ) with respect to 7,

A > f Ax,v,, Vv) - (Vy, = Vv)dx >0 as n— oo
QE,K
since A(x, v,, Vv) = A(x, v, Vv) uniformly in €, g, they are uniformly bounded and Vv, — Vv weakly

in LPO(Q, k).
Hence, for every €, K,

f F(x,v,Vv)dx < I+ ¢ f [P dx + f gdx.
QS,K Q,\QS.K Q,\QE,K

Now, by letting € — 0 and K — oo, we get
f F(x,v,Vvdx <1,

and therefore, v is a minimizer of Jq in u + Wé PO(€Y') and a solution to (3.1). |

Mathematics in Engineering Volume 3, Issue 1, 1-39.



10

As a corollary of Proposition 3.1 we have the following existence result that will be used in the next
section.

Corollary 3.1. Let p, F, A, B as in Section 2 and let Q' € Q be a C' domain. Let u € W'"PO(Q') and let
us call p* = supy, p(x), p~ = info p(x). Assume that there exist u,c, € R, and pyin > 6 > 0 such that

Fx,5,m) = P = i (IsSP9 0+ 1) in Q. (3.8)
Assume, moreover that 6 > p* — p~ and that
Fx,,7) < 'l +c1(1s™ + 1) in Q, (3.9)

with T(x) satisfying (2.7).
Then, there exists a solution v € u + Wé’p(‘)(Q’) to (3.1) in Q and ||V|lw1r0y < C, for a constant C
depending only ||ullw1.ro), 1Q'], diam(Q'), N, p~, p*, 6, L, 1, ¢y, |Itll=) and the C! norm of 0€Y'.

With a stronger growth assumption on the s variable for the function F(x, s,77) we get an existence
result without the small oscillation assumption of the function p.

Proposition 3.2. Let p, F,A, B as in Section 2 and let Q' C Q be a C' domain. Let u € WHPO(Q).
Assume that there exist u,c, € Ry, g € L'(Q) and 1 < q < pmin Such that

F(x,s5,m) > plgl"™ = cilsl” — g(x) in Q. (3.10)
Assume, moreover that
F(x,s,m) < ' lP™ +ci|s"™ + g(x) in Q, (3.11)

with T satisfying (2.7).

Then, there exists a solution v € u + Wé’p(')(Q’) to (3.1) in Q" and ||v|lwiroy < C, for a constant
C depending only ”u”WI»P(‘)(Q’)’ ”g”Ll(Q'): ||, diam(€2"), N, Pmin, Pmax> ¢ L. 1, c1, |ITllz~vy and the C!
norm of €Y.

Proof. We proceed as in the proof of Proposition 3.1 and we prove that a minimizing sequence {v,}

satisfies
u f Vv, [P dx < f F(x,u,Vu) + 1 + f g(x)dx + ¢, f vl dx. (3.12)
’ 4 Q/ ’

We want to prove that there is a constant such that fQ [Vv, P9 dx < C. So, we can assume that

o, 1VvalP® dx > 1.
Thus,
Vallzo@y < Clvallro@y < Clllullwirogyy + IVl

< C[”””WLP(')(Q/) + (f |an|p(X) dx)l/pmin],
Q
where C depends on q. puin. Puax. N. L and |€¥], diam(€Y). Hence, as ¢ < puin.
val? dx < C(l +( | [Vv,P™ dx)q/pmin)

. N & (3.13)
<C+ sf Vv, |P® dx
Q/
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with C depending only on ¢, pmin, Pmax N, [, diam(Q), L, [lully1.06c), and C depending on the same
constants and also on &.
Thus, by (3.12) and (3.13),

f [V, [P dx < C
Q/

with C depending only on g, pmin, Pmax> N i, [€2'], diam(Q"), L, fQ g(x)dx, cy, |ItllL=@, the C ! norm of
0Q" and [[ul|y1.00 ).

Now, as in the proof of Proposition 3.1, we get that there exists a subsequence that we still call {v,}
and a function v € u + Wé’p O(Q) such that

v, > v in LPin(Q)), v, = v weakly in WOQ).

Now, the proof follows as that of Proposition 3.1. O

We next prove a result valid for solutions of equation (3.1) that will be of use in the proofs of Holder
and Lipschitz continuity of minimizers of the energy functional (1.1)

Proposition 3.3. Let p, F, A and B be as in Section 2. Assume moreover that

1 « 04;
214, x,5.1) - Ewl < 5 Z a_m(x’ 5, MEE; + By(x, 5, Pw?, (3.14)

for every (x,5,m) € QxR xRN\ {0}, £ € RN and w € R.
Let u € WHPO(Q) N L=(Q) and let v € WHPO(Q) N L*(Q) be such that

divA(x,v,Vv) = B(x,v,Vv) inQ, (3.15)
v=u onoQ.
Then,
f (F(x,u,Vu) — F(x,v,Vv))dx >
Q | o (3.16)
—a//lo( f IVu — Vo™ dx + f (qul + V) IVu = Vv dx),
2 QN{p(x)=2} QN{p(x)<2}

where @ = &(Pmin, Pmax) and Ay is as in (2.2).

Proof. For0 <o < 1,letu” = v+ o(u—v). Then, denoting V,F = A and F; = B, we obtain

1
1
f (F(x,u,Vu) — F(x,v,Vv))dx = f fA(x, u”,Vu”) -V’ —v)— dxdo
Q 0 Jo o
! 1 ! 1
+ f f B, u”,Vu”)wu” —v)—dxdo = f f (A(x,u”,Vu”) — A(x,v, Vv)) - V(u” = v)— dxdo
0 Ja o 0 Jo o

1
1
+ f f (B(x,u”,Vu”) — B(x,v, VV))’ —v)—dxdo =1+ 11,
0o Ja o
(3.17)
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where we have used (3.15). Moreover,

1 pl
1
= f f f A, u’,Vu®) -V’ —v)u” —v)—dxdodr
0 Jo Jvzvur o
1 1 1
+ f f f Ag(x, u” 0, Vu ) VT —v)(u” - v)— dxdodr
[Vv|<|Vu7| o
1
f f f —(x u’t, Vu' W = v),,W” —v),,—dxdodr (3.18)
ANy 4 0n; Y

1
f f f Z (6, w10, VU)W =), v),,— dxdo dt
[VvI<|Vu]| on; o

:Il+12+13+14.

Now, using (2.2), and the inequality

(3.19)

B

4 4 1 / 4
7 +t(n—n)lzzln—n|, for [7'|>Inl, 0<t<

1 1
1
L+l > f f f A|VuTT POV ~ )P~ dx do dr
0 Jo Jwizvur] o

1 1
1
n f f f | Vu PO (4 — )= dxdo dr (3.20)
0 Jo Jw<vur o

(x)-2
> a//lo( f Vi — Vo™ dx + f (qul + |Vv|)” Vi — V2 dx),
{p(x)=2} {p(x)<2}

where @ = @(ppin, Pmax) and Ay is as in (2.2). On the other hand,

1l
1
W f f f B,(x, u”", Vu'") " - v)*— dxdo dr
0 Jo JWz|vur| o
1 1 1
+ f f f B,(x, u” "0, Vu ") " — vy’ — dxdo dr
0 Jo Jwi<vue] o
1 1 1
+ f f f VB, u”",Vu’") - V(u” = v)W’ —v)—dxdodr
0 Jo Jwzvue] o

1 pl
1

+ f f f vV, B(x, w10 V") V(=)W - v)— dxdo dr.
0 Jo Jwi<vue] g

Finally, using that Ay(x, s,7) = V,B(x, s,7), the assumption (3.14) and estimates (3.17), (3.18), (3.20)
and (3.21), we get (3.16). O

we get

(3.21)

We now prove a comparison principle for equation (3.1), which holds under assumption (3.14).

Proposition 3.4. Let p, A and B be as in Section 2. Assume moreover that condition (3.14) holds. Let
u,v € WPO(Q) be such that

divA(x,u, Vu) > B(x,u,Vu) inQ,
divA(x,v,Vv) < B(x,v,Vv) inQ, (3.22)
u<v onoQ.
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Then,

u<v inQ.

(3.23)

Proof. We will use arguments similar to those in Proposition 3.3. In fact, for R > 0 we consider the

nonnegative function wg € Wol’p (')(Q) N L*(Q) given by

0 if u—v<0,
wg=su—-v if O<u-v<R,
R if u—v>R,

and by (3.22) we have

0> f (A(x,u, Vu) — A(x,v, Vv)) - Vwg dx + f (B(x,u,Vu) — B(x,v, Vv))wrdx =1 + I1.
Q Q

Then, denoting Qr = QN{0 <u—-v<R}and,forO <7< 1,u" =v+71(u—v), we get

1
I= f f A, u,Vu') - V(u —v)(u —v)dxdr
0 QrN{|Vv|=|Vul}
1
+ f f Ao, ™, Vi) V(u = v)(u — v)dx dr
QrN{|Vv|<|Vul}

0A;
f f —(x u', Vu')(u = v),,(u — v),, dx dr
QrO{IVY2Vud) ‘9771 '

f f (x VU - v, (u - )y, dxdt
QrN{ |Vv|<|Vu| on;

211+12+13+14.

Now, proceeding as in Proposition 3.3, we obtain

1
L+1,> f f A|VuPO2|\V(u — v dxdr
0 QrN{|Vv|>|Vul}

1
+ f f Ao|Vu P92V (y — v dxdr
0 QrN{|VvI<|Vul}

(x)—2
> d//lo( f Vi — Vv|P™ dx + f (IVuI + |Vv|)” Vi — Vv? dx),
QrN{p(x)=2}

QrN{p(x)<2}

where @ = @(Pmin, Pmax) and Ay is as in (2.2).

(3.24)

(3.25)

(3.26)

(3.27)

On the other hand, we observe that the evaluation of (3.14) in ¢ = 0 implies that By(x, s,n) > 0.
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Then, we get

1
11 > f f B,(x,u", Vu ) (u — v)* dxdr
0 Jorn(vvi2|Vul}

1
+ f f B,(x, u' ™, Vu")u — v)* dx dr
0 JORN{VvI<|Vul}

1
+ f f V,B(x,u",Vu") - V(u —v)(u —v)dxdr
0 Jarn(IViiz|Vul}

1
- f f V,BCe, u" ™, Vu' ) - V(u = v)(u - v) dx dt
0 QrN{|VVI<|Vul}

1
+ f f By(x,u, VuT)wfe dxdr
0 {u—v>R}N{|VV|>|Vul}
1
+ f f B, (x, '™, Vu“‘”)w,ze dxdr
0 J{u—v>RIN{|Vv|<[Vul}
1
+ f f V,B(x,u",Vu") - V(u — v)wg dx dt
0 {u—v>R}IN{|Vv|=|Vul}

1
- f f V,B(x, u' 0, Vu'' ) - V(u — v)wg dx dr.
0 {u—v>RIN{|VV|<|Vul}

Now, using that A (x, s,n7) = V,B(x, 5,1), (2.3), (3.19), assumption (3.14) and estimates (3.25), (3.26),
(3.27) and (3.28), we get

(3.28)

1 (-2
0> o f Vi — VP dx + f (1Vul + 1vvl)™ VU = Vv dx)
2 Q{p(022) Q{p(0<2)

(x)
- &AO( f (IVuI + |Vv|)p dx + f Vi — VP dx),
{u—v>RIN{p(x)>2}

{u—v>RIN{p(x)<2}

(3.29)

where & = &(Pmin, Pmax) and Ag is as in (2.3). Since R > 0 is arbirtrary, we can use that u, v € whrO(Q)
and let R — oo and we obtain

1
0> —d//lo( f IV(u — v)'PY dx + f (IVuI + |V
2 QNp(x)22) Qnp(x)<2)

which implies that V(u — v)* = 0 in Q. Since (u — v)* € WS”’ “(Q), Poincare’s inequality (Theorem
A.4) gives (u —v)* = 0in Q. That is, (3.23) holds. O

VU@ - Pdx),  (330)

As a corollary of Propostion 3.4 we obtain the following uniqueness result

Corollary 3.2. Let p,A and B be as in Section 2. Assume moreover that condition (3.14) holds. Let
@ € WHPO(Q) and let uy, u, € WHPO(Q) be such that

{divA(x, ui, Vi) = B(x, u;, Vi) in Q, (3.31)

u=¢ onoQ,

fori=1,2. Then, u; = u, in Q.
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We next prove that solutions to (3.1) with bounded boundary data are bounded, under the
assumptions of Proposition 3.1.

Proposition 3.5. Let p, A and B be as in Section 2 and let Q' C Q be a C' domain. Assume moreover,
that conditions (3.3), (3.4) and (3.14) hold in ) for some p* — p~ < 0 < pmin Where p* = supg, p and
p~ = infy p and with T satisfying (2.7). Let us also assume that there exists a positive constant N\
such that the following condition holds:

IB(x, 5, )| < Ao(1 + |s|PO7" 4 |1, (3.32)

for every (x, s,1) € ' X RXRN. Let u € W"*O(Q) be such that

divA(x,u, Vu) = B(x,u,Vu) in Q’,
(3.33)

lul <M on oY,

for some positive constant M. Then, there exists C such that |u| < C in Q', where C depends only on
M, ||, diam(Q), N, Ao, Ao, L, p~, p*, 6, ||g||L'(Q'), ”T”L‘”(Q’), uand cy.

Proof. Let v* be the solution to (3.1) with boundary data M. Then, from the proof of Proposition
3.1 it follows that |[v*|ly1,0) depends only on the constants in the structural conditions, on ||,
diam(Q)") and M. Since (recall Remark 2.1) we are under the assumptions of Theorem 4.1 in [11],
then v* € L*(Q’) with bounds depending only on the constants in the structural conditions, on |,
diam(€)’) and M. Now, the comparison principle (Proposition 3.4) implies that # < v* in Q' and the
upper bound follows. Proceeding in an analogous way with v~ the solution to (3.1) with boundary data
—M, we obtain the lower bound, thus concluding the proof. O

As a corollary of Propositions 3.1 and 3.5 we get

Corollary 3.3. Let p, F,A and B as in Section 2 and let Q' C Q be a C' domain. Assume, moreover
that F satisfies (3.8) and (3.9) with t satisfying (2.7) and A and B satisfy (3.14) and (3.32) in Q' for
some p* — p~ <0 < pmin Wwhere p* = supg, p and p~ = infy p.

Let u € W'"PO(Q) N L*(QY). Then, there exists v € u + Wé’p(')(Q’) a solution to

divA(x,v,Vv) = B(x,v,Vv) in Q.

Moreover, v € L*(Q') and ||v||.~«q is bounded by a constant C that depends only on ||ul|z~y), €],
diam(g/)) Na /107 AO’ L’ p_7 p+; 5’ ||T||L°°(Q’)) /'l and Ci.

We also prove the following maximum principle

Proposition 3.6. Let p, A and B be as in Section 2. Assume moreover that condition (3.14) holds. We
also assume that B(x,0,0) = 0 for every x € Q. Let u € W"PO(Q) be such that

divA(x,u, Vu) = B(x,u,Vu) in Q,
(3.34)

—M1 < MSMZ OI’laQ,

for some nonnegative constants My, M,. Then, —M, < u < M, in Q.
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Proof. Since condition (3.14) implies that By(x, s,17) > 0 in QxR xRN\ {0}, we have B(x,M,,0) >0
and also B(x,—M;,0) < 0, for every x € Q. Recalling (2.1), we take vt = M, and v~ = —M, and
observe that divA(x, v, Vv*) < B(x,v*", Vv") and divA(x,v™,Vv™) > B(x,v~,Vv7) in Q. Then, we can
apply the comparison principle (Proposition 3.4) and obtain —M; = v~ < u < v* = M, in Q and the
conclusion follows. O

As a corollary of Propositions 3.1 and 3.6 we get

Corollary 3.4. Let p, F, A and B as in Section 2 and let Q' C Q be a C' domain. Assume, moreover that

F satisfies (3.8) and (3.9) with T satisfying (2.7) and A and B satisfy (3.14) in Q' for some p* — p~ <

0 < Pmin Where p* = supq, p and p~ = info p. We also assume that B(x,0,0) = 0 for every x € .
Let u € WhPO(Q) N L*(Q). Then, there exists v € u + WS’P(')(Q’) a solution to

divA(x,v,Vv) = B(x,v,Vv) in Q.
Moreover, v € L*(€)) and |V||r~@) < |lullz=)-
We also have the following existence result of a bounded solution

Proposition 3.7. Let p as in Section 2. Assume that F(x,-,-) is locally Lipschitz in R X RN for almost
every x € Q and that F(x, s,-) € C'RM)NC2 RN\ {0}) for s € R and almost every x € Q. Let A = V,F,
B = F,. Assume that A satisfies (2.2) and (2.5),

IA(x, 5, ), |B(x, s, )| < Ao(1 + [s]"? + 7]P™)  a.e. in QxR xRY,

and F satisfies (3.3) and (3.4), where T satisfies (2.7). Assume moreover that

F(x,s,n) = G(x,s,n) + f(x,s)with G, f measurable functions (3.35)

and,
G>0inQAxRxRY, G,s,n=0 < =0, (3.36)
f(x, ) monotone decreasing in (—oo, 0] and monotone increasing in [0, +c0). (3.37)

Then, for every Q' C Q of class C' there holds that, if p* — p~ < 6 < pmin where p* = supq, p and
p~ = infg pfordin (3.3), given u € WO(Q') such that 0 < u < M in Q' there exists v that minimizes
the functional o (v) in u + W(;’p(')(Q’). Moreover, 0 <v < M in ).

In addition, if there exists &y > 0 such that for almost every x € Q, F(x, -,-) € C'((—&p, M +&7) XRY),
then there holds that v is a solution to

divA(x, v, Vv) = B(x,v, Vv in ',
( ) = B( ) (3.38)
v=u on 0QY'.
Proof. To begin with, the existence of a minimizer v follows proceeding as in Proposition 3.1. Let us
prove that a minimizer satisfies 0 < v < M. In fact, both w; = v—- (v - M)  and w, = v + v~ are

admissible functions. So that on the one hand,

0< f F(x, w1, VWl) - F(X, v, Vv) = f F(x, M, 0) — F(x, v, VV)
24 v>M
- [ swan-san- [ Gawnw
v>M v>M

< —f G(x,v,Vv) <0.
v>M
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Hence, G(x,v,Vv) = 0in {v > M}. So that, Vv — M) = 0in '. As (v — M)* = 0 on 0Q)’, we
deduce that v < M in .
On the other hand, proceeding in a similar way with w,,

OSfF(x,wz,sz)—F(x,v,Vv):f F(x,0,0) — F(x,v,Vv)

v<0

= f(x,0) = f(x,v) - f G(x,v,Vv)
v<0

v<0

< —f G(x,v,Vv) <0,
v<0

and we deduce as before that v~ = 0. This is, v > 0 in Q.

Now, in order to proceed with the proof we assume further regularity of F for —gy < s < M +¢g. Let
0<peCy()and 0 < & < &/ll¢ll~. Then, w = v + g¢ is an admissible function, —gy <w < M + &
and we deduce that

divA(x, v, Vv) < B(x,v,Vv) inQ).

Replacing ¢ by —¢ we reverse the inequality. So that, v is a solution to (3.38). O
4. Energy minimizers of energy functional (1.1)

In this section we prove properties of nonnegative local minimizers of the energy functional (1.1).
We prove that nonnegative local minimizers are locally Holder continuous (Theorem 4.3) and are
solutions to

divA(x,u, Vu) = B(x,u,Vu) in{u > 0},

where A(x, s,1) = V, F(x, s,n) and B(x, s,n7) = F(x, s,17). In particular we prove our main result which
is the local Lipschitz continuity on nonnegative local minimizers (Theorem 4.5).

We start with a definition, some related remarks and an existence result of a minimizer. We also
prove nonnegativity and boundedness, under suitable assumptions.

Definition 4.1. Let p, F and A be as in Section 2. Assume that F satisfies (3.3) and (3.4) with 7
satisfying (2.7). We say that u € W!*0)(Q) is a local minimizer in Q of

JO) = Jaov) = f (F(x,v, Vv) + A(xX)xps0y) dx
Q

if for every Q' cc Q and for every v € W!0(Q) such that v = u in Q \ Q' there holds that J(v) > J(u).
We point out that the energy J is well defined in W*0(Q) since, under the conditions in (2.7), the
embedding theorem (see Theorem A.5) applies.

Remark 4.1. Let u be as in Definition 4.1. Let Q' cc Q and w — u € W,"(Q). If we define
_ w in Y,
w =
u inQ\Q,
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then w € WHPO(Q) and therefore J(w) > J(u). If we now let

Jo(v) = fg (F(x,v, Vv) + A(xX)x0y) dx

it follows that Jo (W) > Jo (10).

Remark 4.2. Let J be as in Definition 4.1. If u € W'?0(Q) is a minimizer of J among the functions
VEuU+ Wé”’ (')(Q), then u is a local minimizer of J in Q.

We start with an existence result of a minimizer to (1.1).

Theorem 4.1. Let p, F, A, B and A be as in Section 2. Let ¢ € W'"PO(Q) and assume moreover that F
satisfies (3.10) and (3.11) with T satisfying (2.7).

Then, there exists a minimizer u € ¢ + Wé’p(')(Q) to (1.1) and there holds that ||ully1.,0 ) < C, for a
constant C depending only on [|§|lw1.,0) lIgllL1 @) Amaxs [€2], diam(Q), N, pmin, Pmaxs ¢ Ly 1, ¢1, 1Tl
and the C' norm of Q.

Proof. The proof is immediate from the computations in the proof of Proposition 3.2. m|

We also have,

Theorem 4.2. Let p and A be as in Section 2. Let F,A and B be as in Propostion 3.7, except for the

fact that we require that F satisfies (3.10) and (3.11) with 7 satisfying (2.7), instead of (3.3) and (3.4),

and with no oscillation assumption on p. Let ¢ € W'PO(Q) such that 0 < ¢ < M, for some M > 0.
Then, there exists a minimizer u € ¢ + Wé’p(')(Q) to(1.1)and 0 <u < M in Q.

Proof. Proceeding as in the proof of Proposition 3.2 we obtain that there exists a minimizer u € ¢ +
WS”’ (')(Q) to (1.1). The proof that 0 < u < M is similar to that of Proposition 3.7. We only have to
observe that

{u—(u—-M)">0}={u>0} and {u+u >0} ={u>0}

For local minimizers of (1.1) we first have

Lemma 4.1. Let p,F, A, B and A be as in Section 2. Assume that F satisfies (3.3) and (3.4) with T
satisfying (2.7). Let u € W'"PO(Q) be a local minimizer of

Jv) = f (F(x,v, Vv) + AX)xps0y) dx.
Q

Then
divA(x,u, Vu) > B(x,u,Vu) inQ, “4.1)

where A(x, s,m) = V, F(x,s,n) and B(x, s,n) = Fy(x, s,n).
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Proof. In fact, letr > 0 and 0 < & € C7(QQ). Using the minimality of u we have

1 1
0< ;(J(u —t&) — J(u)) < " f (F(x,u —t&,Vu —tV€) — F(x,u,Vu))dx
Q
and if we take t — 0, we obtain

0<- f V,F(x,u,Vu) - VEdx — f Fy(x,u, Vu)é dx, “4.2)
Q

Q
which gives (4.1). O

From now on we will deal with nonnegative, bounded, local minimizers of (1.1). Next we will
prove that they are locally Lipschitz continuous.
We first prove that nonnegative, bounded, local minimizers are locally Holder continuous.

Theorem 4.3. Let p,F,A, B and A be as in Section 2. Assume that F satisfies (3.3) and (3.4) with
T satisfying (2.7). Let xo € Q, 7y > 0 such that B;(xo) CC Q. Assume that A, B satisfy condition
(3.14) in B;,(xo) and either B(x,0,0) = 0 for x € B;(xo) or B satisfies (3.32) for x € B;,(xp). Let
u € WvO(Q) N L*(Q) be a nonnegative local minimizer of (1.1). Then, there exist 0 < y < 1,
Y = Y(N, pmin) and 0 < py < Fo, such that u € C”(B;,(xo)). Moreover, ||ullcy(m) < C with py and C
depending only on B, Pmax, Pmin> N> L, Fo, Ao, Ao, 11811185, (o 15 €1 Amaxs 11llzs5 vopy 1Tl2(B5 (00 and
0.

Proof. We will prove that there exist 0 <y < 1 and 0 < py < ry < 7 such that, if B, (y) C B;,(xo) and
p < po, then

1/p-
(J( Vul dx) " < Cpr, 43)
By(y)

where p_ = inf{p(x), x € B,,(y)}. Without loss of generality we will assume that y = 0.
In fact, let 0 < ry < min{%, 1}, 0 < r < rg and v the solution of

divA(x, v, Vv) = B(x,v,Vv) inB,,  v-ue W,""(B,). (4.4)

Observe that, under our assumptions we can apply either Proposition 3.1 and Proposition 3.5 or
Proposition 3.6 and deduce that such a solution exists and it is bounded in B, if r( is small enough
depending on ¢ and L = ||Vp||.~q). Hence, by Proposition 3.3, we have

f (F(x,u,Vu) — F(x,v,Vv))dx >
B,

4.5)
1 (0-2
—a/lo( f Vi — VoP@ dx + f (IVuI + IVvl)p Vi — VP dx),
2 B,0{p(22) B,N{p(x)<2)
where @ = @(Pmin, Pmax) and Ay is as in (2.2).
By the minimality of u, we have (if A} = B, N {p(x) < 2} and A, = B, N {p(x) > 2})
f IVu — VvPW dx < CrY, (4.6)
As
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f IVu — V> (|Vu| + [Vv))PP2 dx < CrV, 4.7)
Ay

where C = C(pmin’ Pmaxs N, Amax, Ao)-
Let & > 0. Take p = r'*® and suppose that r* < 1/2. Take 0 < 1 < 1 to be chosen later. Then, by
Young’s inequality, the definition of A; and (4.7), we obtain

C
f Vi = Vol dx < —— f (IVul + [V D2 Vu - Vo dux
AINB, n=Pmin JainB,

+Cn f (IVu| + [Vv])’™ dx (4.8)
BpﬂAl

<— —-N +Cn f (IVu| + [Vv])P@ dx.
77 Pmin BpﬂAl

Therefore, by (4.6) and (4.8), we get
C

772/ Pmin

f IVu — Vv|P™ dx <
B,

fe

™ +Cn f (IVu| + V)™ dx, (4.9)
B/,QA]

where C = C(pmin’ Pmax> N, Amax, o).
Since, [Vul? < C(|[Vu — Vv|? + |Vv|)9), for any g > 1, with C = C(g), we have, by (4.9), choosing
small, that

f VulP® dx < CrN + C f V[P dx, (4.10)
B, By,

where C = C(pmina Pmax>» N, Amax;> Ao)-
Now let M > 1 such that ||v||;~5,) < M and define

v(rx)

w(x) = in Bj.

Observe that M depends only on ||u|| (B (x0)) if B(x,0,0) = 0 or it depends also on the structural
conditions on F, A and B, on 7 and on the bound L of ||V p||;~ if not.

There holds that,
divA(x,w, Vw) = B(x,w,Vw) in B,
where
A(x, s,n) = A(rx, Ms, %n), B(x, s,n) = rB(rx, Ms, %n).
Now, let

A(x,s,n) = (ﬁ)p:_lﬁ(x, 5,1), B(x,s,1m) = (%)pr_lé(x, 5,1).

Observe that w € WO (B)) N L™ (B,) satisfies
divA(x, w, Vw) = B(x,w,Vw) in B, (4.11)
where p(x) = p(rx).
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Let us see that (4.11) is ~under the conditions of Theorem 1.1 in [10].
First, we clearly have A(x, s,0) = 0. Moreover, as 1 < rPr Pl < Cp < oo if r < 1 and we have
assumed that M > 1,

(x s EE) = Z —(rx Ms, 2né;
(4.12)
-1, M p(rX) 1 _
—)" (= P(O)-2| &2 P(0)=2) ¢12
> /10( M) (&) PR = ol
On the other hand,
pr=1 Mpeo-1 B
Z‘ (x s, 77)‘ < Ao M) (_) P2 < AgCy MPmoxPrin|p P2, (4.13)
.
Then, assuming without loss of generality that p(rx;) > p(rx,),
Y Y ryert M M
A, s.m) = Al sl < (37)7 |G, Ms, $) = A, Ms, )
r\pr -1 M \p(rx)-1 M \p(rx2)-1
R - p(rxi)—1 - p(rxz)—1
<(37) Mo((Z) et ()T ) (4.14)
(1 + [log (Lnh)rlx; = xof?
< AgCMPm=Prin ([P0~ 4 [P =11+ |Tog Inl|)lx — ol
ifr < rmp.
Similarly,
JA(x, s1,1) — A(x, 52, )| < Aslsy — sallnl?™!
with A4 = A()CLMpmax_pmi“+1.
On the other hand, denoting 7(x) = 7(rx),
oy r p;_l _ ) B(x r p:—l T(x
B 5.l < Aor(2)" + AgCLMPeront i) 4 Agr(— ) |Ms™)
< As(1+ P +151)
with As depending on Ag, L, Pmax, Pmin. M and |[7llrs;, (x))-
Since |[w| < 1, we may assume that
B(x, 5,1m) < Ao(1 + "),
with A depending on Ao, L, pmin, Pmax> M and [[7lzes;, (xo)-
From Theorem 1.1 in [10], it follows that w € Cll(;f(Bl) for some 0 < @ < 1 and that
sup |Vw| < C,
B>
with C depending only on 8, Pmaxs Pmin> N L, Ao, Ao, M and ||7]| (B (x0))> which implies
CM
sup |[Vy| < —. 4.15)
r

B2
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Therefore, from (4.10) and (4.15), we deduce that if r is small depending on M and 3,

f IVulP® dx < Cr¥ + CpNr P+, (4.16)
BP

with p, = sup{p(x), x € B,,} and C depending on B, Pmax, Pmin> N, L, Ao, Ao, Amax, M and ||T||Lm(3}0(x())).
Then, if we take € < 22 we have by (4.16) and by our election of p, that

N
_ (x) 1 _
[VulP-dx < [VulP'"“"dx + — [Vul’- dx

B, B, 1By B,N{|Vul<1)

< J[ IVulP™@ dx + 1

B,
N
<1+ C(f) + Crr+
e,

<1+CrN +crr

<Crbt= Cp‘d%).
Now let rg < ro(&, pmin, L) so that

pe _P+Br) £

p- p(By)~ 2

and small enough so that, in addition, rj; < 1/2. Then, if p < pg = r(‘)+€ and moreover, ry is small
depending on M and g,

_asp .
|VulP- dx < Cp™ @ P~ = Cp™" 7P,
Bp

)

= Y(N, pmin)- Thatis, if p < pg = ry**

(J( |VuP- dx)l/pf < Cp' 1.
BP

Thus (4.3) holds, with C depending only on £, Pmaxs Pmin» N, L, 7o, Ao, Ao, ”g”L‘(B;O(xo))’ U, €1y Amaxs

where y = ﬁ

letll B3, (xos Tl (85, (107 @A 6.

Applying Morrey’s Theorem, see e.g., [18], Theorem 1.53, we conclude that u € C”(B,,(x0)) and
”ullcy(m) < C for C depending Only on ﬁ’ Pmax> Pmin, N’ L, ?0, /10, AO’ ”g”L‘(B;O(xO)), M, C1, /lmaxa
letl | = s, (xon)» 11Tl 85, (x0) a0 6. o

As a corollary we obtain

Corollary 4.1. Let p,F,A, B and A be as in Section 2. Assume that F satisfies (3.8) and (3.9) with
7 satisfying (2.7). Assume that A, B satisfy condition (3.14) and either B(x,0,0) = 0 for x € Q or B
satisfies (3.32) for x € Q. Let u € W'"PO(Q) N L*(Q) be a nonnegative local minimizer of (1.1). Then,
there exists 0 <y < 1, ¥ = ¥Y(N, pmin) such that u € C?(Q). Moreover, if Q' cC Q, then ||ullcy@) <C
with C depending only on dist(Q’, 0Q), 5, N, Pmin, Pmax> L, Amax> Ao, Ao, i, €1, [|tll=@), 7]l and .
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Then, under the assumptions of the previous corollary we have that u is continuous in Q and
therefore, {# > 0} is open. We can now prove the following property for nonnegative local minimizers
of (1.1).

Lemma 4.2. Let p,F,A, B and A be as in Corollary 4.1. If u € W'O(Q) N L¥(Q) is a nonnegative
local minimizer of

J) = f (F(x,v, Vv) + AxX)x(p0)) dx,
Q

there holds that,
divA(x,u, Vu) = B(x,u,Vu) in{u > 0}, 4.17)

where A(x, s,n) = V, F(x, s,n) and B(x, s,n) = Fy(x, s,n).
Proof. From Lemma 4.1 we already know that (4.1) holds. In order to obtain the opposite inequality

in {u > 0}, welet 0 < & € C({u > 0}) and consider u — 1, for t < 0, with |7| small.
Using the minimality of u we have

0> %(J(u — &) = J(w)) = % f (F(x, u = &, Vu = 1VE) = F(x, u, Vu)) dx
Q

and if we take r — 0, we obtain

0>- f V,F(x,u,Vu) - V&Edx — f Fy(x,u, Vu)é dx,
Q Q

which gives the desired inequality, so (4.17) follows. O

We will next prove the Lipschitz continuity of nonnegative local minimizers of (1.1).
Before getting the Lipschitz continuity we prove the following result

Theorem 4.4. Let p, F, A, B, A and u be as in Corollary 4.1. Let Q' cC Q. There exist constants C > 0,
ro > 0 such that if xo € Q" N o{u > 0} and r < ry then

sup u < Cr.
Br(XO)

The constants depend only on dist(€Y',0Q), B, N, Pmin, Pmax» L, Amax Ao, Ao, i, c1, lulle@), ITllz~@)
and 6.

Proof. Let us suppose by contradiction that there exist a sequence of nonnegative local minimizers u;
corresponding to functionals J; given by

Ji(v) = f(Fk(X, v, Vv) + L(X)xps0y) dX,
Q

with u, € WHAO(Q) N L¥(Q), prin < Pr(X) < Prmaxs IVPellis < L, 0 < A(x) < Amaxs il ) < M, for
some M > 1, and points X; € Q" N d{u; > 0}, such that

1 —

sup u; > kr, and <
By, 14(X)
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We denote Ay(x,s,n) = V,Fi(x,s,n) and Bi(x,s,n) = (Fi)s(x,s,1m) and we also suppose that
Pi» Fr, A, By and 7y satisfy the assumptions in Section 2 with constants 4y, Ay and 3, we assume that
Ay, By satisfy condition (3.14) and F; satisfy (3.8) and (3.9) with 7, satisfying (2.7) and either and
Bi(x,0,0) = 0 for x € Q or By satisfy (3.32) for x € Q. All these conditions with exponent p; and
constants independent of k and with [|7¢[|~q) < 7o, for some 79 > 0.

Without loss of generality we will assume that x; = 0.

Let us define in By, for k large, i (x) = }kuk(rkx), pr(x) = pr(rex) and Ax(x) = Au(rex). Then
Pmin < Pi(%) < Pmaxs IVPrlles,) < Ly and 0 < Au(x) € Amax. Moreover, i, is a nonnegative minimizer
in iy, + Wé”_’ “O(B,) of the functional

J(v) = f (Fk(X, v, Vv) + /_lk(x))({v>0}) dx, (4.18)
B
where
Fi(x, s,n) = Fi(rix, ris, n),
with
u,(0)=0 and max it (x) > k.
B4

1 —|x]

Let di(x) = dist(x, {ii; = 0}) and O, = {x € B, : di(x) <
therefore

. Since (0) = 0 then By;4 C Oy,

3 3

my := sup(1l — [x])itx(x) > max(1l — |x|)ig(x) > — max i (x) > —k.
Ok Bl/4 31/4 4

For each fixed k, u; is bounded, then (1 — |x|)iz(x) — O when |x] — 1 which means that there exists

xr € Oy such that (1 — |x|)igg(x) = sup, (1 — [x)ig(x), and then

nmy 3
> -k 4.19
1=l = my > 4 ( )

(X)) =

as x; € Oy. Observe that 0; := di(x;) < l_éxk'. Let y; € d{ux > 0} N By such that [y, — x| = ;. Then,
(1) Bas,(yx) € By,

since if y € By, (k) = |y <30k + |xl < 1,

(2) B%k (k) € O,
Or 1=yl

3 3
sinceifye Bs,(yx) @ V| < o+ |0l <1 - =6, = di(y) < — < and
2 2 2 2 3
) 3 1-—|x
(3) ifze B%k(}’k) =1- |Z| >1- |Xk| - |Xk —Z| >1- |Xk| - 561( > 2| kl.
By (2) we have
1 —
max(1 — [x[)ix(x) > max (1 — |x])izx(x) > max (—lxkl)ﬁk(x),
Ok B, ) B, ) 2
2 2
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where in the last inequality we are using (3). Then,

217!/(()6/{) > max ﬁk(x). (420)
B, (i)
2

As B(;k(xk) C {ﬁk > 0}, then B,k(;k(rkxk) C {I/lk > O} Hence, diVAk(x, Uy, Vbtk) = Bk(x, Uy, Vbtk) in
By, (rexy). Recalling that |luclli=s, ; (rx) < M, we can replace 5] in (2.6) for By by M™. Then we
can apply Harnack’s inequality (Theorem 3.2 in [23]) and we thus have

max u(x) < C[  min  w(x) + rdy], 4.21)
B3, s (rexi) B3 o (rixi)
4"k%% 4"k

with C a positive constant depending only on N, puin, Pmax> L, M, Ao, A and 7.
It follows that
_max 7(x) < C[_min @ (x) + 8. (4.22)

B%ék(xk) B%ﬁk(Xk)

Recalling (4.19), we get from (4.22), for k large,

“min i (x) > cig(xy), (4.23)
B%ﬁk(w)

with ¢ a positive constant depending only on N, puin, Pmax> L M, A9, Ag and 7¢. As B 3 5 X)NBs (i) # 0
4
we have by (4.23)

max i (x) > ciig(xy). (4.24)
B, )
1

i (e + %)

Let wi(x) = 70

. Then, w;(0) = 0 and, by (4.20) and (4.24), we have

max wy < 2 max wy > ¢ > 0. (4.25)
B Bz

Now, recalling that #z; is a nonnegative minimizer in it + W(;”_’ "(')(Bl) of the functional J; in (4.18) and

— 0,
1P+ TkX)(B
1

that Bs, (yx) C B;, we see that wy is a nonnegative minimizer of Ji in wy + W, ), where
2

ﬁwzf@mme%MWMM
By

it (xz)
O

A _ 1) A - 0
hm&mzﬂM+§mwnm n)  and fmm=@m+§n

We let ¢, = 2"%—1”) and we notice that ¢, — oco. So we define p;(x) = pr(yx + %kx) and divide the

functional Ji, by ci’: , with p, = infp, pr. Then, it follows that wy is a nonnegative minimizer of Jy in
Wi + Wol’pk(')(Bl), where

Ji(v) = f (Fk(x’ v, Vv) + ik(x))({\»O}) dx,
By
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Fo(x,5,m) = ¢, Ey(x, 5,1) and A(x) = ¢, Q).
We claim that

A —0 uniformly in By, (4.26)
O 1 uniformly, 1< <M, inB, (4.27)
ﬁk — Po Uniformly and Pmin < Po < Pmax in Bl9 (428)

up to a subsequence, for some constants M; and p,, where M| = M;(M, L).

On the one hand, 0 < A;(x) < Amaxc;! — 0 gives (4.26).

In addition, in B] there holds, for k large, that 1 < cfk(x)_p" < e?IVPdiloge Byt we have
IVBell- log ¢ < L% log ( 2M) — 0, which implies (4.27).

To see (4.28) we observe that Pmin < Pr(X) £ pmax and [|[Vpillr=) < L and then, for a subsequence,
pr — p uniformly on compacts of Q, so pr(x) = pr(ri(yr + 5—2"x)) — po = p(0) uniformly in B;.

We define A; = V, F; and B, = (F}), and we observe that

1) 0
Pe(x) = pe(re(vi + §x>), F(X) = Te(ryx + Ekx)),

it (x1)
Ok

Fu(x,s,n) = c,:ﬁ‘_'ﬁk(x, 5,1m) = c;ﬁ;Fk(yk - %x, it (xz)S, n)
= C;ﬁ;Fk(rk(Yk + %X), riiti(X1)S5 Ci1p)s
A(x, 5,m) = C;ﬁ;CkAk(rk(yk + %x), Tl (Xi)S, i),
Bi(x,s,m) = C;ﬁ;rkﬁk(xk)Bk(rk())k + %X), reli(Xi) S, cxnp).

There holds that py, Fi, Ay, By and 7 are under the assumptions of Section 2, with constants
independent of k. In fact, recalling (4.27), we get for k large

Pmin < Pk(X) £ Pmaxs IVPillio) £ L, Pr(x) < Ti(x) < 70,

Ai(x, 5,0) =
Ay _ 2 a(Ak)z O _ .
Z] a5 S EE =C, ck; o, (R + 500 el (50)s, ) w20

zaocik“”"’w PO > /lo|77|ﬁ"(x)_2|§|2,

_ 0(A i
=c pk 22’ Ao (reOn + x) reiig(X) S, k)

Z '3( k)l

(4.30)
sAocik(x) Pi |77|1”‘()‘)_2 < NoM [n|PF72,

Assuming, without loss of generality, that pi(x;) > Pr(x2) and wusing that
(rk%" ‘logckﬁ(rk‘szk log( )—>0 we get

- - . ) o .
|AeCxr, s, m)=Ai(xa, s,m)| < ¢ ckAo(rkE"fwxl = 2P (lexnlP 0" + el P02
(1 + [loglexl]) < 2M;Aglxy — xP(IgPH0~" + [plP 21 (1 + | log [nl)).

(4.31)
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Finally, recalling that rit;(x;) < M, we obtain

Ak(x, 51,m) = Ae(x, 52, m)| <™ celoredin(xlst = salleenl™ ! (4.32)
<AoMM|s; — sy,

|Bu(x, 5,1)| Sc;p’;rkb‘tk(xk)Ao(l + |exn|P O + |rkak(xk)s|ﬁ<x)) .
SMAo(C;ﬁ; + Mllnlﬁk(x) + C]:ﬁ;|MS|?"(x)) < MlMAO(l + |77|f’k(x) + MTo|S|'T'k(x))_

On the other hand, A; and B, satisfy condition (3.14). In fact, since A; and By satisfy condition
(3.14),

1 (A, .
LSO s + (Bo)y(ro s mw?
2 i,j (97]J
1 -5 O0(Ap); Ok _
= Eckp c,% Z an, (re(yx + Ex)’ rt(x)s, ciéié

ij
. 5
+ ¢, (redig ()2 (Br) s (re(ye + Ekx), rdi(Xi) s, cr)w’

. 1)
> ¢, 2|(A) (re s + Ekx), Pt (), ca1) - (cxd) (et (i )w))|

= 2|(Ap)(x, 5.17) - €w.

Also, since Fy satisfy (3.8) and (3.9) with 7, satisfying (2.7), with exponent p;, and constants
independent of k, then Fy satisfy (3.8) and (3.9) with 7 satisfying (2.7), with exponent p; and
constants independent of k. In fact,

[ -Py = -pr _ 5 (5
Fi(x,s,m) = ¢, “ptlen| P — c, “oy(Irdie(x) P90 + 1)

N _ (4.34)
Z #lnlp/\(x) _ ClM max(lslpk(x)_(S + 1).

Analogously,
Fk(x, §,1) < C;pkll_l|ck77|ﬁk(x) + C;Pkcl(lrkﬁk(xk)slfk(x) + 1)
< My~ P + e, MO(|sO + 1),
If By(x,0,0) = 0 for x € Q, then B,(x,0,0) = 0 for x € B;.

On the other hand, if B satisfy (3.32) for x € Q with exponent p; and constant independent of &,
then B, satisfy (3.32) for x € B, with exponent p; and constant independent of k. In fact,

(4.35)

. e 5 )
|Bi(x, 5, )| =¢,”* ridig (x)| Bi(ra(yy + Ekx), reit(x0) 8, cp)|

SC,:pk rritp (o) Ao (1 + |7ty () PO + |ep P01 (4.36)
SC,QIMlMpm“AO(l + |S|]~’k(x)*1 + |,7|ﬁk(X)*1)
SMlMpmaxAO(l + |s|ﬁk(X)—1 + |77|ﬁk(x)_1)'

We now take v, the solution of

diVAk(X, Vi, Vvk) = Ek(x, Vi, Vvk) in B3/4, Vy — Wi € Wé’i)k(')(33/4). (437)

Mathematics in Engineering Volume 3, Issue 1, 1-39.



28

In fact, from Corollaries 3.3, 3.4 and 3.2 and the upper bound in (4.25), it follows that if k is large
enough
||Vk||L°°(B3/4) < Ca (4.38)

where C depends only on N, Puin, Pmax> L, Ao, Ao, i, 1, 6, M and 15. Here we have used that
supg, , Pr — infp,, pr < IV pillz3 < 3er574" < ¢din (3.8), for k large.
Then, by (4.38), we can replace |s|™* in (4.33) by 1 + C™ and applying Theorem 1.1 in [10] we
obtain that, for k large,
Ivillereg <€ with 0<a<1 (4.39)

12) —

where C depends only on B8, N, pmin> Pmaxs L» A0, Mo, i, ¢1, 6, M and 7. Therefore, there is a function
vo € CH(B, ,2) such that, for a subsequence,

v = vy and Vv, — Vvy uniformly in By . (4.40)

Let us now show that
wiy—v — 0 in mei“(B3/4). (441)
From the minimality of w; we have
f Fr(x, wiVwy) = Fi(x, viVv) < CANI Akl 85,495 (4.42)
B34

which together with Proposition 3.3 gives

[ 9= Tl dx < e @.43)
2
f VW= V2 (IVwil + V) D72 dx < Cll A8y )5 (4.44)
A]
where Allc = B3/4 N {ﬁk()C) < 2}, Ag = B3/4 N {ﬁk(X) > 2} and C = C(pmin’pmax,Na /l())
Applying Holder’s inequality (Theorem A.3) with exponents [ﬁ and %, we get
f k [Vwy — VP dx < 2 ||GZ||L2/ﬁk(')(A’1‘)”GZ”LZ/(Z‘ﬁk('))(A’I‘)’ (4.45)
Al
where i o
Gi = |[Vwi — Vol (IVwi| + [V ) PP/
Gy = (V] + V) P72,
Since

f |Gz|2/ﬁk(X) dx = f [Vw, — VVk|2(|VWk| + |Vvk|)[7k(x)—2 dx,
A Ak
then, from (4.44), (4.26) and Proposition A.1, we get, for k large,

Gl zrmoat) < CIAN e (4.46)

L*(B3;4)°
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C = C(Pmin> Pmax> N, Ag). On the other hand, (4.37) and the bounds (4.34), (4.35) and (4.38) give
C f |V vy P Sf Fr(x, viVv) + G,
Bsya B34

< f Fk(x, wiVwy) + C,
B34

<C(1 + f Vw79,
B3y

This implies
f G P dx < C f (VWi + [V P9y dxe < C(1 + f [V P9), (4.47)
Aﬁ' B34 B34

for some C > 1, depending only on pin, Pmax and the uniform constants and functions in (4.34), (4.35)
and (4.38). Now (4.47) and Proposition A.1 give

Gl 2re-sinay < C(1+ f [V PH9). (4.48)

B34

Let us show that the right hand side in (4.48) can be bounded independently of k.
In fact, let ¥, be the solution of

divAy(x, 74, Vi) = Bu(x, %, Vi) in Byjg, B — wi € Wy O(Byjg). (4.49)
Then, similar arguments to those leading to (4.38) and (4.39), give, for k large enough,
1l (8,y) < C (4.50)

and
Pillcrogy <€ with  0<a <1, (4.51)

where C and C depend only B, N, Pmins Pmax> L> A0, Ao, i, 1, 6, M and 7.
Since wy is a nonnegative minimizer of J; in B;, then we can argue as in the proof of Theorem 4.3
and get estimate (4.10) for u = wy, v = ¥, p(x) = pr(x), A(x) = Au(x), r = 7/8 and p = 3/4. That is,

f IVw,[P*® dx < C + C f [V dx, (4.52)
33/4 B3/4

where C = C(Pmins Pmax> Vs Amax»> Ao)- Therefore (4.52) and (4.51) give, for k large, a uniform bound for
the right hand side in (4.48). That is,

IGll2re-ninaty < C, (4.53)

with C a constant depending only on B, N, Puin» Pmaxs L» do» Ao, i, 1, 8, M and 7.
Now, putting together (4.43), (4.45), (4.46), (4.53) and (4.26), we obtain

f [V, — V|29 = 0. (4.54)

B34
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Thus, using Poincare’s inequality (Theorem A.4 ) and Theorem A.2, we get (4.41).

In order to conclude the proof, we now observe that, since py, Fy, Ar, Bi, Tr, A and wy fall
(uniformly) under the assumption of Corollary 4.1 in By, there exists 0 < y < 1, ¥ = ¥(N, Pmin), Such
that

”Wkllcv(ﬁ/z) <C

with C depending Only on ﬁa N, Pmins Pmax, L’ /lmaxa AO? AO’ M, C1, To and ¢ (recall that ||Wk||L°°(Bl) < 2)
Therefore, there is a function wy € C?(B;,,) such that, for a subsequence,

wy — wo  uniformly in By ,. (4.55)

In addition, recalling (4.40) and (4.41), we get vy = wy in By .
We then observe that, since there holds that w; > 0, w(0) = 0 and (4.25), then (4.55) implies
wo =0, we(0)=0, maxwy=>c>0.
B

That is,
vo=>0, v9(0)=0, maxvy>c>0. (4.56)

By
Let us show that (4.56) gives a contradiction. We will divide the proof in two cases.

Case I. Assume that By(x,0,0) = 0 for x € B.
We first observe that, since wy > 0, from Proposition 3.6 we deduce that v, > 0.
Recalling (4.39), we choose M, > 0 such that, for every &,

and define .
Axx s, = als. A s.m) + (1= als. i)™ .
By(x, s.n) = a(s, m)By(x. 5.7),
where
a(s, ) = X(isl<Monl<Mo}-
Then,

diij(x, Vi, Vvk) = ék(x, Vi, Vvk) in B]/z.
From (4.29) and (4.30) (recall Remark 2.1) we deduce

Ak(x, s, < Aglpl™ !,

3 s (4.57)
A(x, s,m) - > A InlP,

for some constant Ay > 0 independent of k.
Let us now fix € > 0. Then, if k > ky(g), (4.57), (4.33) and (4.28) give, for large k,

Ar(x, s, < Aol + cs,
~ ~—1
Ar(x,s,m) - > Ay Inl” — ce,

1Bi(x, 5, )| < Aolpl™™" + ce,
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for some positive constants /:\0 and c (independent of € and k).
Applying Harnack’s inequality (see [22], Theorems 5 and 6 and Section 5), we get forany 0 < r < 1

1
max v < C,(min vy + &),
B2 B2

with C, a positive constant.
Now, letting k — oo first, and then € — 0, we get

max vy < C, min v, (4.58)
B, B2
with
vo >0, vo(0) = 0. (4.59)

Since 0 < r < 1 is arbitrary, we get vo = 0 in B, ;. This is in contradiction with (4.56) and concludes
the proof of Case I.

Case II. Assume that By satisfy (3.32) for x € B, with exponent p; and constant independent of k.
Then, (4.30), (4.31), (4.32) and (4.36) imply that, for a subsequence,

Ay — A uniformly on compacts of B;/, x R x RV \ {0} and pointwise on B/, x R x R",

B, —0 uniformly on compacts of By, X R X RY,
and from (4.29) and (4.30) (recall Remark 2.1) we deduce

|A(x, s, )| < Aolnl™,
A(x, s,1) -1 > Ay i,

for some constant Ay > 0. Then, (4.37) and (4.40) imply that
divA(x,vo, Vvg) =0 in By ).

Applying Harnack’s inequality (see [22], Theorems 5 and 6 and Section 5), we get again, that (4.58)
and (4.59) holds for any 0 < r < 1. This contradicts once more (4.56) and concludes the proof. O

We can now prove the Lipschitz continuity of nonnegative local minimizers of (1.1)

Theorem 4.5. Let p,F,A, B, and u be as in Corollary 4.1. Then u is locally Lipschitz continuous
in Q. Moreover, for any Q' CC Q the Lipschitz constant of u in €' can be estimated by a constant C
depending only on dist(Q’, 0Q), B, N, Pmin, Pmax> L Amaxs Ao, Mo, i, 1, [ull=(@), [ITllo) and 6.

Proof. The result is a consequence of Corollary 4.1, Lemma 4.2 and Theorem 4.4 above, and
Proposition 2.1 in [16]. We point out that, although the proof of Proposition 2.1 in [16] is written for
the particular case in which A(x, s,n) = |7|"®25 and B(x, s,17) = f(x), this same proof is valid for
general A and B under the present assumptions, without changes. O

Mathematics in Engineering Volume 3, Issue 1, 1-39.



32

S. Examples

In this section we present some examples of application of our results.

Theorem 5.1. Let f(x,s) be a measurable function such that f(x,-) € C*(R) for every x € Q. Let
a(x, s) be a Holder continuous function with exponent a, a(x,-) € C*(R) for every x € Q. Let p, T and
Aas in Section 2 and 0 < 6 < pmin. Assume that there exist positive constants ay, a,, d,, ¢, and N\ such

that

I —ci(1 +[s/PD70) < f(x, 5) < c1(1+|s]™@) in Q x R.
2 fi(x,0)=0in Q.

3 fis(x,8) 2 0in QX R,

A Nf5(x, ) < Ag(1 + |s]"9) in QX R.

And

al O0<ap<a(x,s)<a <ooinf xR,
a2 lag(x, s)| < ap in QxR

a3 (a(x s)l Y(X)) < 0in QX R with ’)/(X) = min( zlp;g) 1} > 1.

Let
Inl”(”

F(x,s,n) = a(x, s) + f(x, )

and let u € WHPO(Q) N L*(Q) a nonnegative, local minimizer of (1.1). Then, u is locally Lipschitz

continuous in €.

Proof. We only have to see that F, A, B satisfy the hypotheses of Theorem 4.5.
There holds that

p(x)
A(x, s,1) = alx, s)inl"™ "y B(x, s,m) = a,(x, S)| l( + fi(x, $).
And
o | p() P(x)-6 4 e (%)
" = c1(1 + [s777°) < Fx, 5,1) < — [l + i (1 + [s]™).
Moreover,
(1). A(x, s 0) =

2). Xy 5 an; (X5 5, n)é"zfj > olpl”=I¢P. In fact,

0A; . _
> o (5 526 = alx, )| (p(x) = 2O, €07 + Il 1P|
ij J
> a(x, s)min{1, p(x) — Dgl" €l > Aolnl”O 1P

with Ay = ap min{1, py, — 1}.
(3). Tog [ 5.m)] < Aol i Ag 2 @1 N (P + 3).

(5.1)
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). JACx1, 5.1) = ACx, 5, < Aolxy = 2o/ (Il “0~" + glP*>=)|(1 + |log I]]) for a big enough constant
Ag. In fact, without loss of generality we may assume that p(x;) > p(x,). There holds,

A1, 8,m) = ACxa, s, < aCey, )|[P0™" = P27 | + JaCx, $) = alx, $)|inlPe.
Now, if [n| > 1,
P07 = P < Ly = ol [log ] < Lixi = xal(Inl”™" + a2 ) log ]
A similar inequality holds if |g| < 1. So that,
Ax1, 5,7) = ACx, 5,1)] < arLlxy = x| (I 0™ + gl )| log ] + Calxy = ol g7,

where C, is the Holder constant of the function a. And the result follows if Ay > a,Ld(Q)!~* + C,
with d(€2) the diameter of Q.
(5). 1A(x, s1,1) = A(x, 52, )| < azlPO7 sy = s5l.

We clearly have,

(D). |B(x, s,7)| < Ao(1 + [7|P@ + |s]"™) (as we may assume, without loss of generality that A, > 2.
(2). B(x,0,0)=0.

Finally, let us see that

1 «— A,
M (e s - Ewl < 5 Z] a_n,-(x’ 5. MEE] + By(x, 5,m) W

In fact, let

(x) = % &(x, 5) = a(x, s)min{1, p(x) — 1}.
Then,
20A,(x, 5.1) - Ewl < (Velx, )l POVl )( lay(x, )l PO )
e(x, s)
sﬂ%ﬂwmﬂﬁ+ 2 s Ow?
glx,s)

2a,(x, s)

px), 2
aCx, yminLpo 1"

1
=54&@mMme—nwWHmﬂk

By (5.1), we only have to check that

2a,(x, s)°
B,(x, s, > P(X).
(o8 2 0 min( L, oo — 1)
Since f;(x, s) > 0 it is enough to check that
2
s(X, . 2
a9 >y it oy = — 229 (5.2)
a(x, s) min{l, p(x) — 1}
And, (5.2) holds by hypothesis a3. O
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If a(x, s) is smooth in =M < s < M, with M, M, > 0, condition a3 only holds in0 < s <M < M,
and the local minimizer u satisfies that 0 < u < M, we can still apply the results in this paper and get
that u is locally Lipschitz continuous.

Theorem 5.2. Let f(x,s) be a measurable function such that f(x,-) € C*(R) for every x € Q. Let
a(x, s) be a Holder continuous function with exponent a, a(x,-) € C*(=M;, M,) N Lip(R) for almost
every x € Q with My, M, > 0. Let p, T and A as in Section 2 and 0 < 6 < pmin. Assume that there exist
positive constants ay, a,, az, c1, Ng and 0 < M < M, such that

ST —e1(1+1sP970) < f(x, ) < (1 +1s") in Q X R,
2 fi(x,0)=0in Q.

3 fis(x,8) >20in QxR

4 1f,(x, 9| < Ao(1 + |sI™™) in Q X R.

And

al 0 <ayp<a(x,s)<a; <ocoin QxR
a2 lay(x,s)| <a, a.e in QxR

a3’ (a(x, )" < 0in Qx [0, M] with y(x) = % > 1.

Let
| n p(x)

p(x)

and let u € WHO(Q) N L®(Q) be a local minimizer of (1.1) such that 0 < u < M. Then, u is locally
Lipschitz continuous in Q.

F(x,s,n) = a(x,s) + f(x, )

Proof. By Proposition 3.7 for such a function f and with a satisfying al and a2, for every ball B,(xy) C
Q) with r small enough there exists a solution v € u + Wé’p (')(Br(xo)) of (1.2) such that 0 < v <
||zl (B,(xp)- And this result also holds for all the rescaled equations and functions that appear in the
proofs of Section 4. Hence, condition (3.14) is only needed for s € (0, M) and this is a consequence of
a3’. O

Example 5.1. A possible example of functions a and f satisfying the assumptions of Theorem 5.2 is

(1 + 5)™1® if —1/2<s<M,,
a(x, s) = {24 if s <-1/2,
(1+ Mz)_q(x) if s > M,,

with M, > 0 and g € L*(€2) a Holder continuous function such that 0 < g(x) < y(x_1>_1 and

fQx,8) = b(o)ls"

with 0 < b € L*(Q) and 7(x) > 2 in Q satisfying (2.7).
Another possible choice of f is

f(x, 8) = b(x)f(x, ) (5.3)
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with 0 < b € L*(Q) and

o s) = { 52 if|s] <1,

al(x)|s|™™ + b(x)|s| +¢(x) if |s| > 1,

where 7(x) satisfies (2.7) and the functions @, b, ¢ € L*(Q) are chosen in such a way that f (x,") € C3(R)
for every x € Q.

With this choice of a and f, for every 0 < M < M, there holds that any local minimizer u such that
0 < u < M is locally Lipschitz continuous in Q.

Observe that, by Theorem 4.2, if ¢ € W'PO(Q) is such that 0 < ¢ < M < M,, such a minimizers
always exists.

We have another example.

Theorem 5.3. Let f(x,s) be a measurable function such that f(x,-) € C*(R) for every x € Q. Let
G(x,1n) be a measurable function such that G(x,-) € C'(RV) N C*(RN \ {0}) for every x € Q. Let p and
A as in Section 2 and assume that either f satisfies conditions f1,--- ,f4 in Theorem 5.1 or f satisfies
f1, £3 in Theorem 5.1 and

S 10 9] < Ag(1 + [P,
On the other hand, G satisfies

GI p(InlP™ = 1) < G(x,m) < ™' (InlP™ + 1) with > 0.
G2 V,G(x,0) =0in Q.

G3 L) it = dolnlr 2P,
G4 Zl] ‘87]677 ‘ <A |77|p(x) -2
G5 [V,G(x1,1) — V,G(x2, | < Aglxy — P (IlPe07! + [glPe2=1)(1 + | log Inl|) for some 0 < B < 1.

Let
F(x,s,m) =G(x,n) + f(x,5)

and let u € W'PO(Q) N L®(Q) be a nonnegative, local minimizer of (1.1). Then, u is locally Lipschitz
continuous in Q.

Proof. There holds that
A(xa s, 77) = V?]G(x7 77), B(-x’ S9 77) = .fS(x’ S).

And it is clear that F, A and B satisfy the assumptions in Theorem 4.5. O

Example 5.2. A possible example of function G satisfying the assumptions of Theorem 5.3 is

G(x,1) = a()G(nI"™),

with p(x) as in Section 2, a(x) a Holder continuous function such that ay < a(x) < ay, with ag, a;
positive constants and G € C*([0, )) a function satisfying:

co < G'(t) < Co,

~ C ..
0<G"(r) < I_-Et co, Cy positive constants.
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In fact, since ¢y < 5’(t) < (Cy, condition Gl in Theorem 5.3 holds. We have
V,G(x,n) = a(x)G’ (Inl"™) p(x)Inl"®-2y, so we get condition G2. We obtain condition G3 by reasoning
as in (5.1), using that in the present case we have 5”(t) > 0and 5’(0 > .

We get condition G4 by using in our computations that 5’(t) < Cp and 5“(t)t < Cy.

Finally, applying again that G” (1)t < Cy, we can obtain the estimate

G (Inl”"") = G (In"“)| < Colp(x1) — p(x)ll log nll,

which combined with computations similar as those in (4) in Theorem 5.1 leads to condition GS5.
A possible example of function f satisfying the assumptions of Theorem 5.3 is

f(x,s) = gx)s, with g e L¥(Q).

In fact, it is immediate that f satisfies conditions f1, f3 and f4’.
On the other hand, f(x,s) = b(x)|s|"™ with b and 7 as in Example 5.1 and f(x, s) as in (5.3) are
other possible choices.

Let us present another example

Example 5.3. Another possible example of function G satisfying the assumptions of Theorem 5.3 is
G(x,m) = A - nlnlP ™,
with p(x) as in Section 2 and X(x) € RV symmetric, Holder continuous in Q and such that
AN < A(x) < AL

Here 1) < A(x) < A(x) < Ay with 4y, Ay positive constants and A(x) — A(x) < ¢y, with ¢y a suitable
positive constant depending only on N, pmin, Pmax and Ao.

In fact, conditions G1 and G2 in Theorem 5.3 are easy to verify. The computations leading to G4
and G5 are similar to the computations in Theorem 5.1.

In order to verify G3, we observe that, denoting a(x) the smaller eigenvalue of X(x), there holds that

A(x) = a()] + B(x),  with B0l < IAX) = A0)||e)-

Then we can write _ 5
G(x,m) =a(x)ln"™ + B(x)n - nln"™~
=G(x,n) + Gy(x, 7).
Now, proceeding as in Theorem 5.1, we get

G EEj > Cpn doIP I 2IER (5.4)
ll 8)71877] 5] = Pmin . .
It is not hard to see that
A p)-2
Z '(977'(977 ‘ < ClIA(x) = Az ml”77, (5.5)
ij i

with C depending only on N, pnin and pn.c. Then, combining (5.4) and (5.5) we deduce that G(x, n7)
satisfies condition G3, if we take [|A(x) — A(X)||z~@) < co, With ¢y depending only on Ay, N, pmin and

pmax-
For choices of suitable functions f(x, s) for this G(x, ) we refer to Example 5.2.
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Remark 5.1. We can present further examples of functions satisfying our assumptions. Let p and A
be as in Section 2. Let F and F, satisfy the assumptions on Theorem 4.5, with B; = d,F; satisfying
Bi(x,0,0) = 0 for x € Q, i = 1,2. Then Theorem 4.5 also applies to the function

F(x,5,m) = ax(0)F1(x, 5,m) + ax(0)F5(x, 5,1),

for any choice of Holder continuous functions a;(x), a;(x), which are bounded from above and below
by positive constants.

The same result holds if ; and F; satisfy the assumptions on Theorem 4.5, with B; = 0, F; satisfying
(3.32)forxeQ,i=1,2.

Similar consideration applies to functions F; and F, under the assumptions of Theorem 5.2.
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Appendix

In Section 1 we included some preliminaries on Lebesgue and Sobolev spaces with variable

exponent. For the sake of completeness we collect here some additional results on these spaces.

Proposition A.1. There holds

min{( [ e an)" ([ e an) ") < e
- 1/ Pmin f . 1/ Pmax
Smax{( fg " dx) ™ ( Q|u|1” dx) }
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Some important results for these spaces are

Theorem A.1. Let p’(x) such that
1 1

— + =1
p(x)  p'(x)
Then LV O(Q) is the dual of LP(Q). Moreover, if pmin > 1, LPO(Q) and WP (Q) are reflexive.

Theorem A.2. Let g(x) < p(x). If Q has finite measure, then LP(Q) — L1O(Q) continuously.
We also have the following Holder’s inequality

Theorem A.3. Let p’(x) be as in Theorem A.l. Then there holds

f Flgldx < 20fllo lgllyo-
Q

forall f € LP(Q) and g € LP'O(Q).
The following version of Poincare’s inequality holds

Theorem A.4. Let Q be bounded. Assume that p(x) is log-Holder continuous in Q (that is, p has a
modulus of continuity w(r) = C(log %)‘1). For every u € WS’P(')(Q), the inequality

llullror) < ClIVulleoq)

holds with a constant C depending only on N, diam(Q2) and the log-Holder modulus of continuity of
p(x).

The following Sobolev embedding holds. We assume for simplicity that the domain is C!, but the
result holds with weaker assumptions on the smoothness of the boundary.

Theorem A.5. Let Q be a C' bounded domain. Assume that p(x) is log-Hoélder continuous in Q and
I < pmin < p(X) £ Pmax < 0. Let T be such that 7(x) > p(x) and T € C(ﬁ). Assume moreover that
(%) < p*(x0) = 5555 if Prax < N, 7(x) is arbitrary if pmin > N, 700 = p(x) if Prin < N < P

Then, WHPO(Q) — L™(Q) continuously. The embedding constant depends only on N, |Q)|, the

log-Holder modulus of continuity of p(X), Pmin» Pmax, [Tl and the C' norm of Q.

For the proof of these results and more about these spaces, see [9, 13, 14, 20] and the references
therein.
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