[1]
|
Mäkinen O, Wanhalinna V, Zannini E, et al. (2016) Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit Rev Food Sci Nutr 56: 339–349. doi: 10.1080/10408398.2012.761950
|
[2]
|
Peyer LC, Zannini E, Arendt EK (2016) Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci Technol 54: 17–25. doi: 10.1016/j.tifs.2016.05.009
|
[3]
|
Friedman M (1996) Nutritional value of proteins from different food sources: A review. J Agric Food Chem 44: 6–29. doi: 10.1021/jf9400167
|
[4]
|
Durand A, Franks GV, Hosken RW (2003) Particle sizes and stability of UHT bovine, cereal and grain milks. Food Hydrocol 17: 671–678. doi: 10.1016/S0268-005X(03)00012-2
|
[5]
|
Preedy VR, (2011) In: Preedy VR, Ed, Beer in health and disease production, New York: Academic press.
|
[6]
|
Back W, (2005) In: Back W, Ed, Colour atlas and handbook of beverage biology, Verlag Hans Carl: Nürnberg, Germany, 10–112.
|
[7]
|
Menz G, Andrighetto C, Lombardi A, et al. (2010) Isolation, identification, and characterisation of beer-spoilage lactic acid bacteria from microbrewed beer from Victoria, Australia. J Inst Brew 116: 14–22. doi: 10.1002/j.2050-0416.2010.tb00393.x
|
[8]
|
Priest FG, (2003) Gram-positive brewery bacteria, In: Priest FG, Campbell I, Eds, Brewing Microbiology, 3rd Ed., New York: Kluwer Academic/Plenum Publishers, 181–217.
|
[9]
|
Suzuki K, Asano S, Iijima K et al. (2008) Sake and beer spoilage lactic acid bacteria—A review. J Inst Brew 114: 209–223. doi: 10.1002/j.2050-0416.2008.tb00331.x
|
[10]
|
Thelen K, Beimfohr C, Snaidr J (2006) Evaluation study of the frequency of different beer-spoiling bacteria using the VIT analysis. Tech Q Master Brew Assoc Am 43: 31–35.
|
[11]
|
Spitaels F, Wieme AD, Janssens M, et al. (2014) The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One 9: e95384. doi: 10.1371/journal.pone.0095384
|
[12]
|
Tonsmeire M, (2014) Sour beers: A primer, In: Tonsmeire M, Ed, American sour beers: innovative techniques for mixed fermentations, Boulder, CO: Brewers Publication, 1–9.
|
[13]
|
Bokulich NA, Bamforth CW (2013) The microbiology of malting and brewing. Microbiol Mol Biol Rev 77: 157–172. doi: 10.1128/MMBR.00060-12
|
[14]
|
Pittet V, Morrow K, Ziola B (2011) Ethanol tolerance of lactic acid bacteria, including relevance of the exopolysaccharide gene, gtf. J Am Soc Brew Chem 69: 57–61.
|
[15]
|
Kalač P, Šavel J, Křížrek M, et al. (2002) Biogenic amine formation in bottled beer. Food Chem 79: 431–434. doi: 10.1016/S0308-8146(02)00193-0
|
[16]
|
Kalač P, Křížrek M (2003) A review of biogenic amines and polyamines in beer. J Inst Brewing 109: 123–128. doi: 10.1002/j.2050-0416.2003.tb00141.x
|
[17]
|
Geissler AJ, Behr J, Vogel RF (2016) Multiple genome sequences of the important beer-spoiling species Lactobacillus backii. Genom Announ 4: e00826–16.
|
[18]
|
Bergsveinson J, Friesen V, Ewen E, et al. (2015) Genome sequence of rapid beer-spoiling isolate Lactobacillus brevis BSO 464. Genom Announ 3: e01411–15.
|
[19]
|
Kim DW, Choi SH, Kang A, et al. (2011) Draft genome sequence of Lactobacillus malefermentans KCTC 3458. J Bacteriol 193: 5537. doi: 10.1128/JB.05710-11
|
[20]
|
Behr J, Geissler AJ, Schmid J, et al. (2016) The identification of novel diagnostic marker genes for the detection of beer-spoiling Pediococcus damnosus strains using the BlAst diagnostic gene finder. PLoS One 1: e0152747.
|
[21]
|
Snauwaert I, Stragier P, De Vuyst L, et al. (2015) Comparative genome analysis of Pediococcus damnosus LMG 28219, a strain well adapted to the beer environment. BMC Genom 16: 267. doi: 10.1186/s12864-015-1438-z
|
[22]
|
Pittet V, Abegunde T, Marfleet T, et al. (2012) Complete genome sequence of the beer spoilage organism Pediococcus claussenii ATCC BAA-344T. J Bacteriol 194: 1271–1272. doi: 10.1128/JB.06759-11
|
[23]
|
Bergsveinson J, Friesen V, Ziola B. (2016) Transcriptome analysis of beer-spoiling Lactobacillus brevis BSO 464 in degassed and gassed beer. Int J Food Micro 235: 28–35. doi: 10.1016/j.ijfoodmicro.2016.06.041
|
[24]
|
Pittet V, Phister TG, Ziola B (2013) Transcriptome sequence and plasmid copy number analysis of the brewery isolate Pediococcus claussenii ATCC BAA-344T during growth in beer. PLoS One 8: e73627. doi: 10.1371/journal.pone.0073627
|
[25]
|
Bergsveinson J, Ewen E, Friesen V, et al. (2016) Transcriptional activity and role of plasmids of Lactobacillus brevis BSO 464 and Pediococcus claussenii ATCC BAA-344T during growth in the presence of hops. AIMS Microbiol 2: 460–478. doi: 10.3934/microbiol.2016.4.460
|
[26]
|
Behr J, Geissler AJ, Preissler P, et al. (2015) Identification of ecotype- specific marker genes for categorization of beer-spoiling Lactobacillus brevis. Food Microbiol 51: 130–138. doi: 10.1016/j.fm.2015.05.015
|
[27]
|
Sami M, Yamashita H, Hirono T, et al. (1997) Hop-resistant Lactobacillus brevis contains a novel plasmid harboring a multidrug resistance-like gene. J FermentBioeng 84: 1–6.
|
[28]
|
Snauwaert I, Roels SP, Van Nieuwerburg F, et al. (2016) Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int J Food Microbiol 221: 1–11. doi: 10.1016/j.ijfoodmicro.2015.12.009
|
[29]
|
Bokulich NA, Bergsveinson J, Ziola B, et al. (2015) Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patters of contamination and resistance. eLife 4: e04634.
|
[30]
|
Garofalo C, Osimani A, Milanović V, et al. (2015) The occurrence of beer spoilage lactic acid bacteria in craft beer production. J Food Sci 80: M2845–M2852. doi: 10.1111/1750-3841.13112
|
[31]
|
Bartowsky EJ (2009) Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol 48: 149–156. doi: 10.1111/j.1472-765X.2008.02505.x
|
[32]
|
Gagné S, Lucas PM, Perello MC, et al. (2011) Variety and variability of glycosidase activities in an Oenococcus oeni strain collection tested with synthetic and natural substrates. J Appl Microbiol 110: 218–228. doi: 10.1111/j.1365-2672.2010.04878.x
|
[33]
|
Milchlmayr H, Nauer S, Brandes W, et al. (2012) Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chem 135: 80–87. doi: 10.1016/j.foodchem.2012.04.099
|
[34]
|
Antalick G, Perello MC, de Revel G (2012) Characterization of fruity aroma modifications in red wines during malolactic fermentation. J Agric Food Chem 60: 12371–12383. doi: 10.1021/jf303238n
|
[35]
|
Lerm E, Engelbrecht L, du Toit M (2011) Selection and characterisation of Oenococcus oeni and Lactobacillus plantarum South African wine isolates for use as malolactic fermentation starter cultures. South Afr J Enol Vit 32: 280–295.
|
[36]
|
Rossouw D, du Toit M, Bauer FF (2012) The impact of co-inoculation with Oenococcus oeni on the transcriptome of Saccharomyces cerevisiae and on the flavour active metabolite profiles during fermentation in synthetic must. Food Microbiol 29: 121–131. doi: 10.1016/j.fm.2011.09.006
|
[37]
|
Mills DA, Rawsthorne H, Parker C, et al. (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 26: 465–475.
|
[38]
|
Mohedano ML, Russo P, de los Rios V, et al. (2014) A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163. Open Biol 4: 130154. doi: 10.1098/rsob.130154
|
[39]
|
Bokulich NA, Joseph CML, Allen G, et al. (2012) Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One 7: e36357. doi: 10.1371/journal.pone.0036357
|
[40]
|
Pinto C, Pinho D, Cardoso R (2015) Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front Microbiol 6: 905.
|
[41]
|
Bokulich NA, Thorngate JH, Richardson PM, et al. (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS 111: E139–E148. doi: 10.1073/pnas.1317377110
|
[42]
|
Bokulich NA, Collins TS, Masarweh C, et al. (2016) Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial constribution to regional wine characteristics. mBio 7: e00631–16.
|
[43]
|
Zarraonaindia I, Owens SM, Weisenhorn P, et al. (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6: e02527–14.
|
[44]
|
Campanaro S, Treu L, Vendramin V, et al. (2014) Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure. Appl Microbiol Biotechnol 98: 6015–6037. doi: 10.1007/s00253-014-5795-3
|
[45]
|
de Nadra MCM, (2007) Nitrogen metabolism in lactic acid bacteria from fruits: a review, In: Mèndez-Vilas A, Ed, Comm Curr Edu Top Trend Appl Microbiol.
|
[46]
|
Lonvaud-Funel A (2001) Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett 199: 9–13. doi: 10.1111/j.1574-6968.2001.tb10643.x
|
[47]
|
Haakensen M, Schubert A, Ziola B (2008) Multiplex PCR for putative Lactobacillus and Pediococcus beer-spoilage genes and ability of gene presence to predict growth in beer. J Am Soc Brew Chem 66: 63–70.
|
[48]
|
Araque I, Gil J, Carreté R, et al. (2009) Detection of arc genes related with ethyl carbamate precursors in wine lactic acid bacteria. J Agric Food Chem 57: 1841–1847. doi: 10.1021/jf803421w
|
[49]
|
Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilus. Crit Rev Microbiol 32: 77–86. doi: 10.1080/10408410600709800
|
[50]
|
Foligne J, Dewulf J, Breton O (2010) Probiotic properties of non-conventional lactic acid bacteria immunomodulation by Oenococcus oeni. Int J Food Microbiol 140: 136–145. doi: 10.1016/j.ijfoodmicro.2010.04.007
|
[51]
|
García-Ruiz A, González de Llano D, Esteban-Fernández, et al. (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44: 220–225. doi: 10.1016/j.fm.2014.06.015
|
[52]
|
Mital BK, Steinkraus KH (1979) Fermentation of soy milk by lactic acid bacteria: A review. J Food Protect 42: 895–899. doi: 10.4315/0362-028X-42.11.895
|
[53]
|
Wang YC, Yu RC, Chou CC (2002) Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol 19: 501–508. doi: 10.1006/fmic.2002.0506
|
[54]
|
Donkor ON, Henriksson A, Vasiljevic T, et al. (2007) α-galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chem 104: 10–20. doi: 10.1016/j.foodchem.2006.10.065
|
[55]
|
LeBlanc JG, Garro MS, Silvestroni A, et al. (2004) Reduction of α-galactooligosaccharides in soyamilk by Lactobacillus fermentum CRL 722: in vitro and in vivo evaluation of fermented soyamilk. J Appl Microbiol 97: 876–881. doi: 10.1111/j.1365-2672.2004.02389.x
|
[56]
|
Silvestroni A, Connes C, Sesma F, et al. (2012) Characterization of the melA locus for α-galactosidase in Lactobacillus plantarum. Appl Environ Microbiol 68: 5464–5471.
|
[57]
|
Aguirre L, Herbert EM, Garro MS (2014) Proteolytic activity of Lactobacillus strains on soybean proteins. Food Sci Technol 59: 780–785.
|
[58]
|
Pescuma M, Turbay MBE, Mozzi F, et al. (2013) Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins. Appl Microbiol Biotechnl 97: 7831–7844. doi: 10.1007/s00253-013-5037-0
|
[59]
|
Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71: 394–406. doi: 10.1007/s00253-006-0427-1
|
[60]
|
Juarez del Valle M, Laiño JE, Savoy de Giori G, et al. (2014) Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res Int 62: 1015–1019. doi: 10.1016/j.foodres.2014.05.029
|
[61]
|
Molina V, Médici M, de Valdez GF, et al. (2012) Soybean-based functional food with vitamin B 12-producing lactic acid bacteria. J Funct Foods 4: 831–836. doi: 10.1016/j.jff.2012.05.011
|
[62]
|
Torres AC, Suárez NE, Font G, et al. (2016) Draft genome sequence of Lactobacillus reuteri strain CRL 1098, an interesting candidate for functional food development. Genom Announ 4: e00806–16.
|
[63]
|
Wang YC, Yu RC, Chou CC (2006) Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidiobacterium. Food Microbiol 23: 128–135. doi: 10.1016/j.fm.2005.01.020
|
[64]
|
Wagar LE, Champagne CP, Buckley ND, et al. (2009) Immunomodulatory properties of fermented soy and dairy milks prepared with lactic acid bacteria. J Food Sci 74: M423–M430. doi: 10.1111/j.1750-3841.2009.01308.x
|
[65]
|
Fritsch C, Vogel RF, Toelstede S (2015) Fermentation performance of lactic acid bacteria in different lupin substrates—influence and degradation ability of antinutritives and secondary metabolites. J Appl Microbiol 119: 1075–1088. doi: 10.1111/jam.12908
|
[66]
|
Hickisch A, Beer R, Vogel RF, et al. (2016) Influence of lupin-based milk alternative heat treatment and exopolysaccharide-producing lactic acid bacteria on the physical characteristics of lupin-based yogurt alternatives. Food Res Int 84: 180–188. doi: 10.1016/j.foodres.2016.03.037
|
[67]
|
De Angelis M, Gallo G, Corbo MR, et al. (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87: 259–270. doi: 10.1016/S0168-1605(03)00072-2
|
[68]
|
Palacios MC, Haros M, Rosell CM, et al. (2005) Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. J Appl Microbiol 98: 229–237. doi: 10.1111/j.1365-2672.2004.02447.x
|
[69]
|
Reale A, Mannina L, Tremonte P, et al. (2004) Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. J Agric Food Chem 52: 6300–6305. doi: 10.1021/jf049551p
|
[70]
|
Lee C, Beuchat LR (1991) Changes in chemical composition and sensory qualities of peanut milk fermented with lactic acid bacteria. Int J Food Microbiol 13: 273–283. doi: 10.1016/0168-1605(91)90085-4
|
[71]
|
Schaffner DW, Beuchat LR (1986) Fermentation of aqueous plant seed extracts by lactic acid bacteria. Appl Environ Microbiol 51: 1072–1076.
|
[72]
|
Wang NF, Yan Z, Li CY, et al. (2011) Antioxidant activity of peanut flour fermented with lactic acid bacteria. J Food Biochem 35: 1514–1521. doi: 10.1111/j.1745-4514.2010.00473.x
|
[73]
|
Bernat N, Cháfer M, Chiralt A, et al. (2014) Hazelnut milk fermentation using probiotic Lactobacillus rhamnosus GG and inulin. Int J Food Sci Technol 49: 2553–2562. doi: 10.1111/ijfs.12585
|
[74]
|
Bernat N, Cháfer M, Chiralt A, et al. (2015) Almond milk fermented with different potentially probiotic bacteria improves iron uptake by intestinal epithelial (Caco-2) cells. Int J Food Stud 4: 49–60. doi: 10.7455/ijfs/4.1.2015.a4
|
[75]
|
Blandino A, Al-Aseeri ME, Pandiella SS, et al. (2003) Cereal-based fermented foods and beverages. Food Res Int 36: 527–543. doi: 10.1016/S0963-9969(03)00009-7
|
[76]
|
Agarry O, Nkama O, Akoma O (2010) Production of Kununzaki (a Nigerian fermented cereal beverage) using starter culture. Int Res J Microbiol 1: 18–25.
|
[77]
|
Vieira-Dalodé G (2008) Use of starter cultures of lactic acid bacteria and yeasts as inoculum enrichment for the production of gowé, a sour beverage from Benin. Afr J Microbiol Res 2: 179–186.
|
[78]
|
Onyago C, Bley T, Raddatz H, et al. (2004) Flavour compounds in backslop fermented uji (an East African sour porridge). Euro Food Res Technol 218: 579–583. doi: 10.1007/s00217-003-0870-5
|
[79]
|
Muyanja, CMBK, Narhvus JA, Langsrud T (2012) Organic acids and volatile organic compounds produced during traditional and starter culture fermentation of Bushera, a Ugandan fermented cereal beverage. Food Biotechnol 26: 1–28. doi: 10.1080/08905436.2011.617252
|
[80]
|
Hong X, Chen J, Liu L, et al. (2016) Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine. Sci Rep 6: 26621. doi: 10.1038/srep26621
|
[81]
|
Sankar Bora S, Keot J, Das S (2016) Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India. 3 Biotech 6: 1–13.
|
[82]
|
Liu SP, Yu JX, Wei XL, et al. (2016) Sequencing-based screening of functional microorganism to decrease the formation of biogenic amines in Chinese rice wine. Food Cont 64: 98–104. doi: 10.1016/j.foodcont.2015.12.013
|
[83]
|
Fang RS, Dong YC, Chen F, et al. (2015) Bacterial diversity analysis during the fermentation processing of traditional Chinese yellow rice wine revealed by 16S rDNA 454 pyrosequencing. J Food Sci 80: M2265–M2271. doi: 10.1111/1750-3841.13018
|
[84]
|
Liu SP, Mao J, Liu YY, et al. (2015) Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region. World J Microbiol Biotechnol 31: 1907–1921. doi: 10.1007/s11274-015-1931-1
|
[85]
|
Turpin W, Humblot C, Guyot JP (2011) Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl Environ Microbiol 77: 8722–8734. doi: 10.1128/AEM.05988-11
|
[86]
|
Humblot C, Turpin W, Chevalier F, et al. (2014) Determination of expression and activity of genes involved in starch metabolism in Lactobacillus plantarum A6 during fermentation of a cereal-based gruel. Int J Food Microbiol 185: 103–111. doi: 10.1016/j.ijfoodmicro.2014.05.016
|
[87]
|
Leemhuis H, Pijning T, Dobruchowska JM, et al. (2013) Glucansucrases: Three-dimensional structures, reactions, mechanisms, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163: 250–272. doi: 10.1016/j.jbiotec.2012.06.037
|
[88]
|
Tieking M, Gänzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Technol 16: 79–84. doi: 10.1016/j.tifs.2004.02.015
|
[89]
|
Russo P, de Chiara MLV, Capozzi V, et al. (2016) Lactobacillus plantarum strains for multifunctional oat-based foods. LWT-Food Sci Technol 68: 288–294. doi: 10.1016/j.lwt.2015.12.040
|
[90]
|
Lamontanara A, Caggianiello G, Orrù L, et al. (2015) Draft genome sequence of Lactobacillus plantarum Lp90 isolated from wine. Genom Announ 3: e00097–15.
|
[91]
|
Lynch KM, Lucid A, Arendt EK, et al. (2015) Genomics of Weissella cibaria with an examination of its metabolic traits. Microbiol 161: 914–930. doi: 10.1099/mic.0.000053
|
[92]
|
Zannini E, Mauch A, Galle S, et al. (2013) Barley malt wort fermentation by exopolysaccharide-forming Weissella cibaria MG1 for the production of a novel beverage. J Appl Microbiol 115: 1379–1387. doi: 10.1111/jam.12329
|
[93]
|
Zannni E, (2015) Chapter 5: Impact of exopolysaccharide-producing Weissella cibaria MG1 on the properties of soy yoghurt, In: Zannin E, Functional application of lactic acid bacteria exopolysaccharide in complex food systems, PhD Thesis, University of Cork, 88–126.
|
[94]
|
Luckow T, Delahunty C (2004) Which juice is “healthier”? A consumer study of probiotic non-dairy juice drinks. Food Qual Pref 15: 751–759.
|
[95]
|
Yoon KY, Woodams EE, Hang YD (2004) Probiotification of tomato juice by lactic acid bacteria. J Microbiol 42: 315–318.
|
[96]
|
Maki M, (2004) Lactic acid bacteria in vegetables fermentation, In: Salminen S, Von WrightA, Ouwehand A, Eds, Lactic Acid Bacteria Microbiological and Functional Aspects, New York: Marcel Dekker, 419–430.
|
[97]
|
Urbonaviciene D, Viskelis P, Bartkiene E, (2015) The use of lactic acid bacteria in the fermentation of fruits and vegetables—technological and functional properties, In: Ekinci D, Author, Biotechnology, Croatia: Intech, 135–164.
|
[98]
|
Di Cagno R, Filannino P, Gobetti M, (2015) Chapter 14: Vegetable and fruit fermentation by lactic acid bacteria, In: Mozzi F, Raya RR, Vignolo GM, Eds, Biotechnology of Lactic Acid Bacteria: Novel Applications, 2nd Ed, New Jersey: Wiley, 216–230.
|
[99]
|
Sheehan VM, Ross P, Fitzgerald GF (2007) Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innov Food Sci Emerg Technol 8: 279–284. doi: 10.1016/j.ifset.2007.01.007
|
[100]
|
Reddy LV, Min JH, Wee YJ (2015) Production of probiotic mango juice by fermentation of lactic acid bacteria. Microbiol Biotechnol Lett 43: 120–125. doi: 10.4014/mbl.1504.04007
|
[101]
|
Wang CY, Ng CC, Su H, et al. (2009) Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria. Int J Food Sci Nutr 6: 98–106.
|
[102]
|
Yoon KY, Woodams EE, Hang YD (2005) Fermentation of beet juice by beneficial lactic acid bacteria. Lebensm-Wiss Technol 38: 73–75. doi: 10.1016/j.lwt.2004.04.008
|
[103]
|
Yoon KY, Woodams EE, Hang YD (2006) Production of probiotic cabbage juice by lactic acid bacteria. Biores Techol 97: 1427–1430. doi: 10.1016/j.biortech.2005.06.018
|
[104]
|
Filannino P, Di Cagno R, Crecchio C, et al. (2016) Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches. Sci Rep 6: 27392. doi: 10.1038/srep27392
|
[105]
|
Kahala M, Ahola V, Mäkimattila E, et al. (2014) The use of macroarray as a simple tool to follow the metabolic profile of Lactobacillus plantarum during fermentation. Adv Microbiol 4: 996. doi: 10.4236/aim.2014.414111
|
[106]
|
Riveros-Mckay F, Campos I, Giles-Gómez M, et al. (2014) Draft genome sequence of Leuconostoc mesenteroides P45 isolated from Pulque, a traditional mexican alcoholic fermented beverage. Genom Announ 2: e01130–14.
|
[107]
|
Giles-Gómez M, García JGS, Matus V, et al. (2016) In vitro and in vivo probiotic assessment of Leuconostoc mesenteroides. SpringerPlus 5: 1–10. doi: 10.1186/s40064-015-1659-2
|
[108]
|
Chiou TY, Oshima K, Suda W, et al. (2016) Draft genome sequence of Lactobacillus farciminis NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. Genom Announ 4: e01514–15.
|
[109]
|
Chiou TY, Suda W, Oshima K, et al. (2016) Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage. Biosci Biotechnol Biochem 1: 1–8.
|
[110]
|
Gram L, Ravn L, Rasch M, et al. (2002) Food spoilage—interactions between food spoilage bacteria. Int J Food Microbiol 78: 79–97. doi: 10.1016/S0168-1605(02)00233-7
|
[111]
|
Temitope FP, Oluchi UE (2015) Studies of the antifungal activity of Lactobacillus plantarum and Lactobacillus fermentum on spoilage fungi of tomato fruit. J Microbiol Res 5: 95–100.
|
[112]
|
Crowley S, Majony J, van Sinderen D (2013) Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiol 58: 291–299. doi: 10.1007/s12223-012-0209-3
|