
Citation: Vandana Gulati, Mansi Dass Singh, Pankaj Gulati. Role of mushrooms in gestational diabetes mellitus[J]. AIMS Medical Science, 2019, 6(1): 49-66. doi: 10.3934/medsci.2019.1.49
[1] | Umar Nazir, Kanit Mukdasai . Combine influence of Hall effects and viscous dissipation on the motion of ethylene glycol conveying alumina, silica and titania nanoparticles using the non-Newtonian Casson model. AIMS Mathematics, 2023, 8(2): 4682-4699. doi: 10.3934/math.2023231 |
[2] | Umar Nazir, Abdelaziz Nasr . Utilizing the Box-Behnken method on modeling of ternary-Casson nanofluid with variable density and heat sink across a vertical jet. AIMS Mathematics, 2025, 10(4): 10093-10123. doi: 10.3934/math.2025460 |
[3] | Mohammed Alrehili . Managing heat transfer effectiveness in a Darcy medium with a vertically non-linear stretching surface through the flow of an electrically conductive non-Newtonian nanofluid. AIMS Mathematics, 2024, 9(4): 9195-9210. doi: 10.3934/math.2024448 |
[4] | Imran Siddique, Yasir Khan, Muhammad Nadeem, Jan Awrejcewicz, Muhammad Bilal . Significance of heat transfer for second-grade fuzzy hybrid nanofluid flow over a stretching/shrinking Riga wedge. AIMS Mathematics, 2023, 8(1): 295-316. doi: 10.3934/math.2023014 |
[5] | Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi . Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder. AIMS Mathematics, 2025, 10(2): 3561-3580. doi: 10.3934/math.2025164 |
[6] | Taqi A. M. Shatnawi, Nadeem Abbas, Wasfi Shatanawi . Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet. AIMS Mathematics, 2022, 7(12): 20545-20564. doi: 10.3934/math.20221126 |
[7] | Humaira Yasmin, Rawan Bossly, Fuad S. Alduais, Afrah Al-Bossly, Anwar Saeed . Analysis of the radiated ternary hybrid nanofluid flow containing TiO2, CoFe2O4 and MgO nanoparticles past a bi-directional extending sheet using thermal convective and velocity slip conditions. AIMS Mathematics, 2025, 10(4): 9563-9594. doi: 10.3934/math.2025441 |
[8] | Haifaa Alrihieli, Musaad S. Aldhabani, Ghadeer M. Surrati . Enhancing the characteristics of MHD squeezed Maxwell nanofluids via viscous dissipation impact. AIMS Mathematics, 2023, 8(8): 18948-18963. doi: 10.3934/math.2023965 |
[9] | Madeeha Tahir, Ayesha Naz, Muhammad Imran, Hasan Waqas, Ali Akgül, Hussein Shanak, Rabab Jarrar, Jihad Asad . Activation energy impact on unsteady Bio-convection nanomaterial flow over porous surface. AIMS Mathematics, 2022, 7(11): 19822-19845. doi: 10.3934/math.20221086 |
[10] | H. Thameem Basha, R. Sivaraj, A. Subramanyam Reddy, Ali J. Chamkha, H. M. Baskonus . A numerical study of the ferromagnetic flow of Carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole. AIMS Mathematics, 2020, 5(5): 4197-4219. doi: 10.3934/math.2020268 |
$ \overline{u}, \overline{v} $ | velocity along measure coordinates [m/s] |
$ {\mu }_{ternnf} $ | enhanced dynamic viscosity [Pa s] |
$ {\mu }_{hbnf} $ | enhanced bihybrid dynamic viscosity [Pa s] |
$ {\rho }_{ternnf} $ | enhanced density [kg/m3] |
$ {\rho }_{hbnf} $ | enhanced bihybrid density [kg/m3] |
$ {\alpha }_{ternnf} $ | enhanced thermal diffusivity [m2/s] |
$ {k}_{ternnf} $ | enhanced thermal conductivity [W/(m K)] |
$ {k}_{hbnf} $ | enhanced bihybrid thermal conductivity [W/(m K)] |
$ {\left(\rho {c}_{p}\right)}_{ternnf} $ | improved heat capacity [J/K] |
$ {\left(\rho {c}_{p}\right)}_{hbnf} $ | improved bihybrid heat capacity [J/K] |
$ \overline{T} $ | temperature [K] |
$ {\overline{T}}_{\infty } $ | ambient temperature [K] |
$ {\overline{T}}_{w} $ | wedge surface temperature [K] |
$ {\overline{u}}_{w} $ | velocity at the surface [m/s] |
$ {\overline{\omega }}_{1}, {\overline{\omega }}_{2}, {\overline{\omega }}_{3} $ | solid concentration of nanoparticles |
$ {M}_{1} $ | magnetic number |
$ {P}_{r} $ | Prandtl number |
$ \eta $ | transformative variable |
$ F{'} $ | dimensionless velocity |
$ \beta $ | dimensionless temperature |
$ {\lambda }_{1} $ | wedge parameter |
In the present time, promising characteristics of nanofluids and their hybrid types [1,2] attained much interest of the researchers and engineers. Thus, Kudenatti et al. [3] analyzed the dynamics of Power Law Nanofluid (PLN) over a non-static wedge. The authors emphasized on the importance of MHD and their role in the controlling motion of the fluid. Later on, Akcay et al. [4] reported the behaviour of shear drag along a moving wedge by engaging the multiple effects of the significant physical controlling parameters. Also, analysis of the velocity and temperature distribution over the surface was major focus of the authors. The study of non-transient heat transport playing key role in many of the applied research areas and change the fluid movement under the multiple parameter ranges Therefore, Jafar et al. [5] provided an in-depth analysis of steady magnetohydrodynamic [6] boundary layer flow and discussed variations in boundary layer region due to increasing values of the parameters.
The study of variety of nanoparticles with enhanced characteristics attracted the researchers and engineers. Therefore, extensive efforts have been made to investigate the nanofluids characteristics from various physical aspects. In 2013, Ellahi [7] discussed the potential effects of MHD on non-newtonian nanoliquid. The model developed using thermal dependent viscosity and the model solutions computed via analytical scheme and analyzed the dynamics of the model for multiple appeared parameters. Irreversibility analysis of power-law nanoliquid for electro osmotic CPF (Couette-Poiseuille flow) reported in [8]. To improve the heat capability of the basic fluid, the authors preferred Al2O3 nanoparticles and examined interesting variations in entropy generation. In 2022, Bhatti et al. [9] emphasized on the study of magneto-nanoliquid using bihybrid nanoparticles. Diminishes in the fluid movement and concentration boundary layer with increasing magnetic, slip and Schmidt effects were core findings of the study. Besides these, nanoparticles extensively contribute in drug delivery systems. In this regard, a useful analysis provided by Bhatti et al. [10] and concluded that the study would be advantageous for biomedical engineering and those who are striving to investigate the dynamics of blood in arteries.
In 2023, Yasir et al. [11] performed thermal enhancement in bihybrid nanoliquids. The components of the working liquid taken as GO, Ag, AA7072 and MoS2 and hybrid basic solvent H2O/EG 50%/50%. The numerical simulation of the model done and analyzed the results of the interest and reported that the performed analysis would be expedient for electronic equipment cooling and heat exchangers devices. Abbas et al. [12] introduced a model for Sutterby nanofluid (SNF) by incorporating the influence of magnetic induction and Darcy resistance. The authors inspected that an increasing Eckert number corresponded to greater kinetic energy of the particles and thus an increase in temperature. Similarly, Murad et al. [13], Nisar et al. [14], Alsharari and Mousa [15] described deep knowledge about the characteristics of Casson-Carreau fluid directed to a stagnation point, changes in the nanoliquid performance due to slippery surface, activation energy, and buoyancy effects on copper/water nanofluid in the presence of an insulated obstacle. The studies showed that nanoliquids possessing outstanding thermal characteristics that ultimately increase their applications spectrum.
The transient heat transfer with hydrogen based nanoparticles and function fluid has tremendous characteristics and is extensively uses in multiple engineering disciplines. Thus, Mahmood and Khan [16] and Guedri et al. [17] analyzed the micropolar nanoliquid model and the effects of Al2O3 and Cu nanoparticles and on the heat transfer, shear drag and thermal transmission using basic fluid with hydrogen effects. The study supported findings that increasing the quantity of nanoparticles intensifies the shear drag coefficient and enhances the temperature of the fluid. Those researchers who are interesting in the field of nanofluids (see [18,19,20,21,22]) and their applications in various engineering zone paved their attention in the development of new innovative thermal transmission models and reported comparative or individual analysis. Some of the most latest and potential studies on various nanofluids described by the various scientists (for instance see [23,24,25,26]) using variety of tiny particles and basic functional fluid.
A comparative study of Sakiadis and Blasius flow reported by Klazly et al. [27]. The study revealed that shear drags rises for Sakiadis case and it drops for Blasius case. After that, Kumar et al. [28] reported MHD Blasius/Sakiadis flow of radiated Williamson fluid under effects of variable fluid characteristics. Devi et al. [29] focused on the investigation of 2D transient flow due to static sheet. Further, the authors integrated the significant effects of quadratic type radiation in chemically reactive fluid and interpreted the model results. The steady laminar boundary layer flow in the presence of Rosseland radiation was discussed by Pantokratoras et al. [30]. The study non-Newtonian Carreau, fluid along a static and a moving sheet reported in [31], examining wall shear drag and velocity profile for both Blasius and Sakiadis scenarios. Bataller [32] made efforts to analyze the surface convection effects on the boundary layer with thermal radiations effects. Hady et al. [33] discussed the heat transmission in single phase nanoliquids using shape factors effects. The effects of MHD and convective on BSF (Blasius and Sakiadis Flow) by using Cattaneo-Christov flux model over a sheet investigated in [34]. Similarly, the brief study of BSF using the effects of surface conditions and nanoparticles properties was reported by Krishna et al. [35]. They concluded that the Nusselt number increases for Sakiadis flow. Further, the heat transport characteristics of BSF MHD Maxwell fluid was analyzed by Sekhar [36].
The study of electrically conducting non-Newtonian fluid under the variations of physical quantities investigated by Pantokratoras et al. [37]. The two-dimensional BSF flow of MHD radiated Williamson fluid with chemically reacting species of variable conductivity explored in [28]. The study of free convection for BSF through porous media investigated in [38]. Oyem et al. [39] performed the analysis of BSF of 2D incompressible fluid with soret/dufour effects. Pantokratoras et al. [40] discussed the BSF for Riga-surface and graphically analyzed the velocity profile as well as skin friction for both cases.
Heat transfer investigation in boundary layer flows attained huge attention of the researchers in all times. Such flows have potential applications in designing of airplane wings, nuclear thermal plants, aerodynamics, applied thermal engineering, chemical engineering and many other applied research areas. The researchers made efforts to analyze the heat transfer through boundary layer using simple, mono nano and bihybrid nanofluids under the influence of additional physical aspects. However, no attempt has be made to report the comparative thermal transmission under the influence of induced magnetic field in three types of nanofluids (mono nano, bihybrid and ternary nanofluids) which is important to discuss in the field. For this, reason the present study for boundary layer flow past a wedge (Falkner Skan flow) with pores at the surface is conducted. Modelling of the problem completed via transformative equations and new effective thermo physical characteristics of ternary nanofluids. The results of the model will be advantageous for various engineering applications where enhanced heat transfer is essential and the parametric ranges were considered for achieving better results.
Considered a steady incompressible and two-dimensional boundary layer flow through a wedge influenced by induced magnetic field. Let us supposed that, the velocities at the wedge surface and far from the wedge considered as $ {\overline{\mathrm{u}}}_{w}\left(x\right) = {\overline{U}}_{w}{x}^{m} $ and $ {\overline{\mathrm{u}}}_{e}\left(x\right) = {\overline{U}}_{\infty }{x}^{m} $, respectively. Here, $ {\overline{U}}_{w} $, $ {\overline{U}}_{\infty } $ are velocities and $ m $ is a constant with $ 0\le m\le 1 $. As Shown in Figure 1.
The governing equations according to the above considered model are as follows [41]:
$ \frac{\partial \overline{u}}{\partial x}+\frac{\partial \overline{v}}{\partial y} = 0, $ | (1) |
$ \frac{\partial {\overline{H}}_{1}}{\partial x}+\frac{\partial {\overline{H}}_{2}}{\partial y} = 0, $ | (2) |
$ \overline{u}\frac{\partial \overline{u}}{\partial x}+\overline{v}\frac{\partial \overline{u}}{\partial y}-\frac{{\mu }_{ternnf}}{4\pi {\rho }_{f}}\left({\overline{H}}_{1}\frac{\partial {\overline{H}}_{1}}{\partial x}+{\overline{H}}_{2}\frac{\partial {\overline{H}}_{1}}{\partial y}\right) = \left({\overline{u}}_{e}\frac{{d\overline{u}}_{e}}{dx}-{\mu }_{ternnf}\frac{{\overline{H}}_{e}}{4\pi {\rho }_{f}}\frac{{d\overline{H}}_{e}}{dx}\right)+\frac{{\mu }_{ternnf}}{{\rho }_{ternnf}}\frac{{\partial }^{2}\overline{u}}{{\partial y}^{2}}, $ | (3) |
$ \overline{u}\frac{\partial {\overline{H}}_{1}}{\partial x}+\overline{v}\frac{\partial {\overline{H}}_{1}}{\partial y}-{\overline{H}}_{1}\frac{\partial \overline{u}}{\partial x}-{\overline{H}}_{2}\frac{\partial \overline{u}}{\partial y} = {\mu }_{e}\frac{{\partial }^{2}{H}_{1}}{{\partial y}^{2}}, $ | (4) |
$ \overline{u}\frac{\partial \overline{T}}{\partial x}+\overline{v}\frac{\partial \overline{T}}{\partial y} = {\alpha }_{ternf}\frac{{\partial }^{2}\overline{T}}{{\partial y}^{2}}. $ | (5) |
The applicable physical conditions for the current flow of ternary nanoliquid are considered as below:
$ \left\{¯u|y=0=¯uw(x),¯v|y=0=0,¯T|y=0=¯Tw,∂¯H1∂y|y=0=¯H2|y=0=0, \right. $
|
(6) |
$
\left\{¯u→¯ue(x)=¯U∞xm,¯T→¯T∞,¯H1|y→∞=¯He(x)=¯H0xm. \right. \text{when}~~ y\to \infty.
$
|
(7) |
Thermophysical properties of nanofluids [42,43] are of key interest in the analysis nanoliquids thermal transport. Therefore, the following properties (Table 1) of ternary nanofluid taken for estimation of enhanced nanoliquid characteristics.
Dynamic viscosity | |
Nanofluid | $ {\mu }_{nf}={\mu }_{f}{\left[1-{\varpi }_{1}\right]}^{-2.5}. $ |
Hybrid nanofluid | $ {\mu }_{hbnf}={\mu }_{f}{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\right]}^{-1}. $ |
Ternary nanofluid | $ {\mu }_{ternnf}={\mu }_{f}{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}(1-{\varpi }_{3})\right]}^{-1}. $ |
Density | |
Nanofluid | $ {\rho }_{nf}=\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]{\rho }_{f}. $ |
Hybrid nanofluid | $ {\rho }_{hbnf}=\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}. $ |
Ternary nanofluid | $ {\rho }_{ternf}=\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}\right\}\right]+{\varpi }_{3}\frac{{\rho }_{p3}}{{\rho }_{f}}. $ |
Heat capacity | |
Nanofluid | $ ({\rho {c}_{p})}_{nf}=\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]{\left(\rho {c}_{p}\right)}_{f}. $ |
Hybrid nanofluid | $ ({\rho {c}_{p})}_{hbnf}=\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]+{\varpi }_{2}\frac{{\left(\rho {c}_{p}\right)}_{p2}}{({\rho {c}_{p})}_{f}}. $ |
Ternary nanofluid | $ {\left(\rho {c}_{p}\right)}_{ternf}=\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]+{\varpi }_{2}\frac{{\left(\rho {c}_{p}\right)}_{p2}}{({\rho {c}_{p})}_{f}}\right\}\right]+{\varpi }_{3}\frac{{\left(\rho {c}_{p}\right)}_{p3}}{({\rho {c}_{p})}_{f}}. $ |
Thermal conductivity | |
Nanofluid | $ {k}_{nf}=\frac{\left[\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)\right]}{[\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}({k}_{f}-{k}_{p1}\left)\right]}{k}_{f}. $ |
Hybrid nanofluid | $ {k}_{hbnf}=\frac{\left[\left({k}_{p2}+2{k}_{nf}~~ \right)-2{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)\right]}{[\left({k}_{p2}+2{k}_{nf}~~ \right)+{\varpi }_{2}({k}_{nf}-{k}_{p2}\left)\right]}{k}_{nf}. $ |
Ternary nanofluid | $ {k}_{ternnf}=\frac{\left[\left({k}_{p3}+2{k}_{hbnf}~~~ \right)-2{\varpi }_{3}\left({k}_{hbnf}-{k}_{p3}\right)\right]}{[\left({k}_{p3}+2{k}_{hbnf}~~~ \right)+{\varpi }_{3}({k}_{hbnf}-{k}_{p3}\left)\right]}{k}_{hbnf}. $ |
To acquire to desired heat transfer model, the following similarity equations were used along with mathematical operations:
$ \left.¯u=∂¯ψ∂y=¯U∞xmF′,¯v=−∂¯ψ∂x=−((¯m+1)νf¯U(x)2x)12(F+¯m−1¯m+1)ηF′,¯ψ=(2νfxU(x)(m+1))0.5F,β=¯T−¯T∞¯Tw−¯T∞,η=((m+1)U(x)2νfx)0.5,¯H1=¯H0xmG′,¯H2=−¯Ho(2νfx¯m−1(¯m+1)¯U∞)0.5{¯mG+0.5(¯m−1)ηG′}. \right\} $
|
(8) |
Finally, the following heat transport model obtained which includes the characteristics of ternary nanofluid.
$ {F}^{{'}{'}{'}}+\frac{\frac{{\rho }_{ternnf}}{{\rho }_{f}}}{\frac{{\mu }_{ternnf}}{{\mu }_{f}}}\left[{F}^{{'}{'}}F+2m{\left(m+1\right)}^{-1}\left(1-{F}^{{'}2}\right)+\frac{{2\delta }_{1}}{\left(m+1\right)}\left(m{G}^{{'}2}-m{G}^{{'}{'}}G-m\right)\right] = 0, $ | (9) |
$ {M}_{1}{G}^{{'}{'}{'}}+{G}^{{'}{'}}F-2m{\left(m+1\right)}^{-1}{F}^{{'}{'}}G = 0, $ | (10) |
$ \frac{{k}_{ternnf}}{{k}_{f}}{\beta }^{{'}{'}}+\frac{Pr{\left(\rho {c}_{p}\right)}_{ternnf}}{{\left(\rho {c}_{p}\right)}_{f}}{\beta }^{{'}}F = 0, $ | (11) |
$ \frac{{k}_{ternnf}}{{k}_{f}} = \left[(kp1+2kf)−2ϖ1(kf−kp1)(kp1+2kf)+ϖ1(kf−kp1)∗(kp2+2knf )−2ϖ2(knf−kp2)(kp2+2knf )+ϖ2(knf−kp2)∗(kp3+2khbnf )−2ϖ3(khbnf−kp3)(kp3+2khbnf )+ϖ3(khbnf−kp3) \right]. $
|
The above-described model is supported by the following boundary conditions over the wedge:
$ F = 0, {F}^{{'}} = {\lambda }_{1}, G = 0, {G}^{{'}{'}} = 0, \beta = 1~~ at~~ \eta = 0, $ | (12) |
$ {F}^{{'}} = 1, G = 1, \beta \to 0~~when~~ \eta \to \infty . $ | (13) |
The embedded quantities are $ {\delta }_{1} = \frac{{\overline{\mu }}_{e}{{\overline{H}}_{0}}^{2}}{4\pi {\rho }_{f}{{\overline{U}}_{\infty }}^{2}}, Pr = {\nu }_{f}{\alpha }_{f}^{-1} $ and $ {\lambda }_{1} = \frac{{\overline{U}}_{w}}{{\overline{U}}_{\infty }} $. Moreover, the significant (skin friction and Nusselt number) formulas described by the following expressions (Table 2):
Skin friction formulas | |
Nanofluid | $ \frac{{\left[1-{\varpi }_{1}\right]}^{-2.5}}{\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]}{F}^{{'}{'}}\left(0\right). $ |
Hybrid nanofluid | $ \frac{{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\right]}^{-1}}{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}}{F}^{{'}{'}}\left(0\right). $ |
Ternary nanofluid | $ \frac{{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\left(1-{\varpi }_{3}\right)\right]}^{-1}}{\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}\right\}\right]+{\varpi }_{3}\frac{{\rho }_{p3}}{{\rho }_{f}}}{F}^{{'}{'}}\left(0\right). $ |
Nusselt number formulas | |
Nanofluid | $ \left|\left[\frac{\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}{\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}\right]{\beta }^{{'}}\left(0\right)\right|. $ |
Hybrid nanofluid | $ \left|\left[\frac{\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}{\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}*\frac{\left({k}_{p2}+2{k}_{nf}~~ \right)-2{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)}{\left({k}_{p2}+2{k}_{nf}~~ \right)+{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)}\right]{\beta }^{{'}}\left(0\right)\right|. $ |
Ternary nanofluid | $ \left|\left[(kp1+2kf)−2ϖ1(kf−kp1)(kp1+2kf)+ϖ1(kf−kp1)∗(kp2+2knf )−2ϖ2(knf−kp2)(kp2+2knf )+ϖ2(knf−kp2)∗(kp3+2khbnf )−2ϖ3(khbnf−kp3)(kp3+2khbnf )+ϖ3(khbnf−kp3) \right]{\beta }^{{'}}\left(0\right)\right|. $ |
The current model is coupled and contains high nonlinearities, and an exact solution is not feasible. Therefore, the RKF-45 (see [44,45,46]) implemented for the analysis of the model using the software MATHEMATICA 13.0 and the impacts of physical constraints on the heat transport performances of mono, hybrid and ternary nanofluids. The adopted technique is applicable for initial value problems and the desired initial value problem was obtained after using the following transforms in the system:
$ \left[{\zeta }_{1}, {\zeta }_{2}, {\zeta }_{3}, {\zeta }_{3}^{{'}}, {\zeta }_{4}, {\zeta }_{5}, {\zeta }_{6}, {\zeta }_{6}^{{'}}, {\zeta }_{7}, {\zeta }_{8}, {\zeta }_{8}{'}\right] = \left[F, {F}^{{'}}, {F}^{{'}{'}}, {F}^{{'}{'}{'}}, G, {G}^{{'}}, {G}^{{'}{'}}, {G}^{{'}{'}{'}}, \beta , {\beta }^{{'}}, {\beta }^{{'}{'}}\right]. $ | (14) |
The system was then arranged in the following way to reduce it into respective initial value problems.
$ {F}^{{'}{'}{'}} = -\frac{\frac{{\rho }_{ternnf}}{{\rho }_{f}}}{\frac{{\mu }_{ternnf}}{{\mu }_{f}}}\left[{F}^{{'}{'}}F+2m{\left(m+1\right)}^{-1}\left(1-{F}^{{'}2}\right)+\frac{{2\delta }_{1}}{\left(m+1\right)}\left(m{G}^{{'}2}-m{G}^{{'}{'}}G-m\right)\right], $ | (15) |
$ {{G}^{{'}{'}}}^{{'}} = -\frac{1}{{M}_{1}}\left[{G}^{{'}{'}}F-2m{\left(m+1\right)}^{-1}{F}^{{'}{'}}G\right], $ | (16) |
$ {\beta }^{{'}{'}} = -\frac{1}{\frac{{k}_{ternnf}}{{k}_{f}}}\left[\frac{Pr{\left(\rho {c}_{p}\right)}_{ternnf}}{{\left(\rho {c}_{p}\right)}_{f}}{\beta }^{{'}}F\right]. $ | (17) |
Now, the system takes the below appropriate form for further computation:
$ {\zeta }_{3}^{{'}} = -\frac{\frac{{\rho }_{ternnf}}{{\rho }_{f}}}{\frac{{\mu }_{ternnf}}{{\mu }_{f}}}\left[{\zeta }_{3}{\zeta }_{1}+2m{\left(m+1\right)}^{-1}\left(1-{\zeta }_{2}^{2}\right)+\frac{{2\delta }_{1}}{\left(m+1\right)}\left(m{\zeta }_{5}^{2}-m{\zeta }_{5}^{{'}}{\zeta }_{4}-m\right)\right], $ | (18) |
$ {\zeta }_{6}^{{'}} = -\frac{1}{{M}_{1}}\left[{\zeta }_{6}{\zeta }_{1}-2m{\left(m+1\right)}^{-1}{\zeta }_{3}{\zeta }_{4}\right], $ | (19) |
$ {\zeta }_{8}^{{'}} = -\frac{1}{\frac{{k}_{ternnf}}{{k}_{f}}}\left[\frac{Pr{\left(\rho {c}_{p}\right)}_{ternnf}}{{\left(\rho {c}_{p}\right)}_{f}}{\zeta }_{8}{\zeta }_{1}\right]. $ | (20) |
Accuracy of the technique is achieved by setting its tolerance up to $ {10}^{-6} $ and the step size $ 0.01 $. The authenticity of the results is subject to the asymptotic behavior of the temperature profile and it must satisfy the boundary conditions for the velocity and temperature distributions. These are obvious from the plotted results which gives the correctness of the model results.
The physical results of the model representing the flow of ternary, nano and bihybrid nanoliquids over a nonstationary wedge are demonstrated in this section. It is commendable to mention here that the three types of nanoparticles namely Al2O3, Cu and Ag taken for the formation of resultant nanoliquid and H2O is taken as working base solvent due its good solvent characteristics, density and high heat capacity. Further, $ {\overline{\omega }}_{1}, {\overline{\omega }}_{2} $ and $ {\overline{\omega }}_{3} $ are the associated concentration of the nanoparticles in the basic solvent. Further, the concentrations of nanoparticles were taken up to 20% and feasible value of Prandtl number for water is fixed at $ 6.2 $. This section further classified into three subsequent subsections which represent the model results for the velocity, ternary nanoliquid temperature, shear drag and Nusselt number. The study validation is also presented in subsection 4.4.
Figure 2 demonstrating the velocity $ F{'}\left(\eta \right) $ changes under potential effects of $ m, $ moving wedge number $ {\lambda }_{1} $ and magnetic number $ {\delta }_{1} $. The presentation of the velocity distribution shows that the fluid movement increases by enlarging the values of $ m $ and $ {\lambda }_{1} $. Physically, when the wedge moves then the neighboring fluid layer on the wedge surface gain the velocity of the wedge. As a consequence the particles moves rapidly. Then the frictional forces with the successive fluid layer reduces and the fluid velocity increases. After, $ \eta = 3.0 $ the velocity of the fluid reaches to its maximum speed and then moves with the speed of free stream. These results elucidated in Figures 2(a) and 2(b), respectively. On the other side, the magnetic number reduces the fluid motion and almost negligible variations observed in Figure 2(c).
Figures 3 and 4 organized to analyze the tangential velocity distribution $ G{'}\left(\eta \right) $ for increasing $ {\lambda }_{1}, {M}_{1} $ and $ {\delta }_{1} $. The tangential velocity of the fluid varies in very interesting way while the wedge moves and the reciprocal Hartmann parameter $ {M}_{1} $ enlarges. It is inspected that $ G{'}\left(\eta \right) $ declines prominently near the wedge surface (Figure 3a); however, these variations become slow and finally reaches to the its maximum limit i.e., $ {G}^{{'}}\left(\eta \right) = 1 $ after which the fluid moves with constant velocity. Figure 3(b) indicates that the reciprocal Hartmann parameter (Figure 3b) is effective in increasing the velocity component $ G{'}\left(\eta \right) $ and is maximum fluctuation is observed around $ \eta = 0 $. The 3D representation of the results in Figures 3(a) and 3(b) given in Figures 3(c) and 3(d), respectively. Figure 4 demonstrating the impacts of $ {\delta }_{1} $ which shows that the velocity drops when the parameter $ {\delta }_{1} $ enhances and maximum drop is noticed for nanoliquids. Figure 4(d) supports the 3D pictorial view of the $ {\delta }_{1} $ variations on the profile of $ G{'}\left(\eta \right) $.
This subsection represents the comparative enhanced heat transfer for Al2O3/H2O (mono nanoliquid), (Al2O3-CuO)/H2O (bihybrid nanoliquid) and (Al2O3-CuO-Ag)/H2O (ternary nanoliquid) due to variations in $ {\delta }_{1}, {\lambda }_{1} $ and $ {M}_{1} $. For this, Figure 5 furnished.
Figure 5(a) indicates that when the magnetic forces enlarges, the temperature of the fluids also increases. However, higher temperatures are observed for ternary nanoliquid than bihybrid and mono nanoliquids. Physically, ternary nanoliquid (Al2O3-CuO-Ag)/H2O comprises the thermal conductivity and heat capacity of three particles which increase thermal conductivity of ternary nanoliquid which enhance it heat transport property. Thus, in ternary nanoliquid the heat transfer is greater than in the other nanofluids. Similarly, the temperature decreases with increasing $ {\lambda }_{1} $ (Figure 5b) but the behavior is greater in the ternary nanofluid. Further, thermal boundary layer thickness increase for larger $ {\delta }_{1} $ and no significant contribution of the reciprocal Hartmann number (Figure 5c) was noticed in thermal enhancement of the nanofluids.
The study of shear drags and thermal gradient (Nusselt number) in nanofluids is essential from various engineering field and industrial purposes. Therefore, this subsection fill this requirement under the variations of the model parameters. For this, Figures 5 and 6 plotted for the shear drags and Nu trends.
Figures 6(a) and 6(b) present the shear drag in the mono nanofluid, bihybrid nanofluid and ternary nanofluid against $ {\delta }_{1} $ and $ {\lambda }_{1} $, respectively. In both the cases, the greatest shear drag effects were in the ternary nanoliquids. Physically, composite density of (Al2O3-CuO-Ag) nanoparticles make the resultant fluid denser than that of mono (Al2O3) and bihybrid (Al2O3-CuO) nanoparticles. Due to this reason maximum shear drag observed on the wedge surface.
The analysis of thermal gradient at the surface is important for heating/cooling purposes. Thus, the set of Figures 7(a) and 7(b) show the trends of Nusselt number on the surface for increasing values of $ {\delta }_{1} $ and $ {\lambda }_{1} $, respectively. For both parametric variations, the Nusselt number is greatest in the ternary nanoliquid. Physically, the sum of thermal conductivities of the nanoparticles boosts the thermal conductivity of ternary nanofluid. Therefore, maximum heat transmitted on the wedge surface. However, for bihybrid and mono nanoliquids, the heat transport mechanism is slow due to weak thermal conductivity.
The study validation successfully performed and is presented in this subsection. In order make the current model compatible with the existing models in open science literature, it is essential to set the values $ {\phi }_{j} $ for $ j = \mathrm{1, 2}, 3 $, $ {\lambda }_{1} $ and $ {\delta }_{1} $ such that these tends to zero. Then, the model results for shear drag $ F{'}{'}\left(0\right) $ computed at multiple stages of the parameter $ m $. These results given in Table 3 and it is cleared that the current results aligned with the results of Ahmed et al. [47], Watanabe [48] and Adnan et al. [49]. This shows that the results obtained from the study are correct and can be replicated in future studies.
$ \boldsymbol{m} $ | Results from various studies for $ \boldsymbol{F}\boldsymbol{{'}}\boldsymbol{{'}}\left(0\right) $ | |||
present results | Ahmed et al. [47] | Watanabe [48] | Adnan et al. [49] | |
0.0 | 0.4695999960 | 0.46959 | 0.46960 | 0.469590 |
0.0141 | 0.5046143299 | 0.504614 | ----- | 0.504614 |
0.0435 | 0.5689777817 | 0.568977 | 0.56898 | 0.568977 |
0.0909 | 0.6549788596 | 0.654978 | 0.65498 | 0.654978 |
0.1429 | 0.7319985706 | 0.731998 | 0.73200 | 0.731998 |
0.2000 | 0.8021256343 | 0.802125 | 0.80213 | 0.802125 |
0.3333 | 0.9276536249 | 0.927653 | 0.92765 | 0.927653 |
0.5000 | 1.0389035229 | 1.038903 | 1.03890 | 1.038903 |
The study of thermal enhancement in ternary nanofluids over a moving wedge amid an induced magnetic field is presented. The basic model was transformed into a simplified form via defined transformative rules and improved properties of the ternary nanofluid. To investigate the influence of the model parameters on the dynamics of fluid, numerical analysis was conducted and the results were portrayed multiple parametric values. It is concluded that:
• The fluids movement (nanofluid, hybrid nanofluid and ternary nanofluid) can be intensified by increasing the values of $ m $ and $ {\lambda }_{1} $ as $ 0.1, 0.2, 0.3 $ and $ 1.0, 1.2, 1.3 $, respectively.
• The magnetic field strongly opposed the fluid velocity over the wedge surface.
• The tangential velocity $ G{'}\left(\eta \right) $ diminishes rapidly when $ {\lambda }_{1} $ and $ {\delta }_{1} $ increase as $ 1.0, 1.2, 1.3 $.
• The ternary nanofluid has high capacity to transmit the heat with increasing $ {\delta }_{1} $, while the transmission in the nanofluid and hybrid nanoliquid is slow.
• The thermal gradient in ternary nanoliquid was 65%, for the hybrid nanofluid, it was 45% and for the common nanofluid it was 35% which shows that ternary nanofluids are excellent for thermal transport applications.
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/16/44.
The authors declare no conflict of interest.
[1] |
Buchanan TA, Xiang AH (2005) Gestational diabetes mellitus. J Clin Invest 115: 485–491. doi: 10.1172/JCI200524531
![]() |
[2] |
Konstanze M, Holger S, Mathias F (2012) Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin Endocrinol 76: 2–11. doi: 10.1111/j.1365-2265.2011.04234.x
![]() |
[3] |
Bellamy L, Casas JP, Hingorani AD, et al. (2009) Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373: 1773–1779. doi: 10.1016/S0140-6736(09)60731-5
![]() |
[4] | Bener A, Saleh NM, Al-Hamaq A (2011) Prevalence of gestational diabetes and associated maternal and neonatal complications in a fast-developing community: global comparisons. Int J Women's Health 3: 367–373. |
[5] |
Reece EA, Leguizamón G, Wiznitzer A (2009) Gestational diabetes: the need for a common ground. Lancet 373: 1789–1797. doi: 10.1016/S0140-6736(09)60515-8
![]() |
[6] |
Hod M, Kapur A, Sacks DA, et al. (2015) The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int J Gynecol Obstet 131: S173–S211. doi: 10.1016/S0020-7292(15)30033-3
![]() |
[7] |
Craig WJ (2010) Nutrition Concerns and Health Effects of Vegetarian Diets. Nutr Clin Pract 25: 613–620. doi: 10.1177/0884533610385707
![]() |
[8] |
De Silva DD, Rapior S, Hyde KD, et al. (2012) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers 56: 1–29. doi: 10.1007/s13225-012-0187-4
![]() |
[9] |
Martel J, Ojcius DM, Chang CJ, et al. (2017) Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol 13: 149–160. doi: 10.1038/nrendo.2016.142
![]() |
[10] | Royse DJ, Singh M (2014) A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina, 1–6. |
[11] | Valverde ME, Hernndez-Prez T, Paredes-Lopez O (2015) Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int J Microbiol 2015: 376387. |
[12] |
Horowitz S (2011) Medicinal Mushrooms: Research Support for Modern Applications of Traditional Uses. Altern Complem Ther 17: 323–329. doi: 10.1089/act.2011.17602
![]() |
[13] | Mohamed M, Nassef D, Waly E, et al. (2012) Earliness, Biological efficiency and basidiocarp yield of Pleurotus ostreatus and P. columbinus oyster mushrooms in response to different sole and mixed substrates. Assiut J Agric Sci 43: 91–114. |
[14] |
Gargano ML, van Griensven LJ, Isikhuemhen OS, et al. (2017) Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosys 151: 548–565. doi: 10.1080/11263504.2017.1301590
![]() |
[15] | Deepalakshmi K, Mirunalini S (2011) Therapeutic properties and current medical usage of medicinal mushroom: Ganoderma lucidum. Inter J Pharm Sci Res 2: 1922–1929. |
[16] |
Klupp NL, Kiat H, Bensoussan A, et al. (2016) A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep 6: 29540. doi: 10.1038/srep29540
![]() |
[17] |
Holliday JC, Cleaver MP (2008) Medicinal Value of the Caterpillar Fungi Species of the Genus Cordyceps (Fr.) Link (Ascomycetes). A Review. Int J Med Mushrooms 10: 219–234. doi: 10.1615/IntJMedMushr.v10.i3.30
![]() |
[18] |
Firenzuoli F, Gori L, Lombardo G (2008) The Medicinal Mushroom Agaricus blazei Murrill: Review of Literature and Pharmaco-Toxicological Problems. Evid Based Complement Alternat Med 5: 3–15. doi: 10.1093/ecam/nem007
![]() |
[19] |
Vitak T, Yurkiv B, Wasser S, et al. (2017) Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes 8: 187–201. doi: 10.4239/wjd.v8.i5.187
![]() |
[20] |
Lei H, Guo S, Han J, et al. (2012) Hypoglycemic and hypolipidemic activities of MT-α-glucan and its effect on immune function of diabetic mice. Carbohydr Polym 89: 245–250. doi: 10.1016/j.carbpol.2012.03.003
![]() |
[21] |
Khan MA, Tania M (2012) Nutritional and medicinal importance of Pleurotus mushrooms: An overview. Food Rev Int 28: 313–329. doi: 10.1080/87559129.2011.637267
![]() |
[22] |
Vitak TY, Wasser SP, Nevo E, et al. (2015) Structural Changes of Erythrocyte Surface Glycoconjugates after Treatment with Medicinal Mushrooms. Int J Med Mushrooms 17: 867–878. doi: 10.1615/IntJMedMushrooms.v17.i9.70
![]() |
[23] |
Maschio BH, Gentil BC, Caetano ELA, et al. (2017) Characterization of the Effects of the Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), on Severe Gestational Diabetes Mellitus in Rats. Int J Med Mushrooms 19: 991–1000. doi: 10.1615/IntJMedMushrooms.2017024498
![]() |
[24] |
Chen YH, Lee CH, Hsu TH, et al. (2015) Submerged-Culture Mycelia and Broth of the Maitake Medicinal Mushroom Grifola frondosa (Higher Basidiomycetes) Alleviate Type 2 Diabetes-Induced Alterations in Immunocytic Function. Int J Med Mushrooms 17: 541–556. doi: 10.1615/IntJMedMushrooms.v17.i6.50
![]() |
[25] |
Rony KA, Ajith TA, Janardhanan KK (2015) Hypoglycemic and Hypolipidemic Effects of the Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) in Streptozotocin-Induced Diabetic Rats. Int J Med Mushrooms 17: 521–531. doi: 10.1615/IntJMedMushrooms.v17.i6.30
![]() |
[26] |
Yurkiv B, Wasser SP, Nevo E, et al. (2015) The Effect of Agaricus brasiliensis and Ganoderma lucidum Medicinal Mushroom Administration on the L-arginine/Nitric Oxide System and Rat Leukocyte Apoptosis in Experimental Type 1 Diabetes Mellitus. Int J Med Mushrooms 17: 339–350. doi: 10.1615/IntJMedMushrooms.v17.i4.30
![]() |
[27] | Jayasuriya WJ, Suresh TS, Abeytunga D, et al. (2012) Oral hypoglycemic activity of culinary-medicinal mushrooms Pleurotus ostreatus and P. cystidiosus (higher basidiomycetes) in normal and alloxan-induced diabetic Wistar rats. Int J Med Mushrooms 14: 347–355. |
[28] |
Ganeshpurkar A, Kohli S, Rai G (2014) Antidiabetic potential of polysaccharides from the white oyster culinary-medicinal mushroom Pleurotus florida (higher Basidiomycetes). Int J Med Mushrooms 16: 207–217. doi: 10.1615/IntJMedMushr.v16.i3.10
![]() |
[29] |
Lei H, Guo S, Han J, et al. (2012) Hypoglycemic and hypolipidemic activities of MT-alpha-glucan and its effect on immune function of diabetic mice. Carbohydr Polym 89: 245–250. doi: 10.1016/j.carbpol.2012.03.003
![]() |
[30] |
Zhang Y, Hu T, Zhou H, et al. (2016) Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. Int J Biol Macromol 83: 126–132. doi: 10.1016/j.ijbiomac.2015.11.045
![]() |
[31] |
Zhou S, Liu Y, Yang Y, et al. (2015) Hypoglycemic Activity of Polysaccharide from Fruiting Bodies of the Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Higher Basidiomycetes), on Mice Induced by Alloxan and Its Potential Mechanism. Int J Med Mushrooms 17: 957–964. doi: 10.1615/IntJMedMushrooms.v17.i10.50
![]() |
[32] |
Jeong SC, Jeong YT, Yang BK, et al. (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30: 49–56. doi: 10.1016/j.nutres.2009.12.003
![]() |
[33] |
Kiho T, Sobue S, Ukai S (1994) Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of Agrocybe cylindracea. Carbohydr Res 251: 81–87. doi: 10.1016/0008-6215(94)84277-9
![]() |
[34] |
Gray AM, Flatt PR (1998) Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J Endocrinol 157: 259–266. doi: 10.1677/joe.0.1570259
![]() |
[35] |
Wisitrassameewong K, Karunarathna SC, Thongklang N, et al. (2012) Agaricus subrufescens: A review. Saudi J Biol Sci 19: 131–146. doi: 10.1016/j.sjbs.2012.01.003
![]() |
[36] |
Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97: 12–24. doi: 10.1080/15572536.2006.11832834
![]() |
[37] |
Niwa A, Tajiri T, Higashino H (2011) Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 48: 194–202. doi: 10.3164/jcbn.10-78
![]() |
[38] |
Vincent HK, Innes KE, Vincent KR (2007) Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab 9: 813–839. doi: 10.1111/j.1463-1326.2007.00692.x
![]() |
[39] |
Hu XY, Liu CG, Wang X, et al. (2017) Hpyerglycemic and anti-diabetic nephritis activities of polysaccharides separated from Auricularia auricular in diet-streptozotocin-induced diabetic rats. Exp Ther Med 13: 352–358. doi: 10.3892/etm.2016.3943
![]() |
[40] |
Ding ZY, Lu YJ, Lu ZX, et al. (2010) Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem 121: 39–43. doi: 10.1016/j.foodchem.2009.12.001
![]() |
[41] |
Lv YT, Han LN, Yuan C, et al. (2009) Comparison of Hypoglycemic Activity of Trace Elements Absorbed in Fermented Mushroom of Coprinus comatus. Biol Trace Elem Res 131: 177–185. doi: 10.1007/s12011-009-8352-7
![]() |
[42] |
Guo JY, Han CC, Liu YM (2010) A Contemporary Treatment Approach to Both Diabetes and Depression by Cordyceps sinensis, Rich in Vanadium. Evid Based Complement Alternat Med: 7: 387–389. doi: 10.1093/ecam/nep201
![]() |
[43] |
Nie S, Cui SW, Xie MY, et al. (2013) Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioact Carbohydrates Dietary Fibre 1: 38–52. doi: 10.1016/j.bcdf.2012.12.002
![]() |
[44] |
Pan D, Zhang D, Wu JS, et al. (2013) Antidiabetic, Antihyperlipidemic and Antioxidant Activities of a Novel Proteoglycan from Ganoderma Lucidum Fruiting Bodies on db/db Mice and the Possible Mechanism. PLoS One 8: e68332. doi: 10.1371/journal.pone.0068332
![]() |
[45] |
Hong L, Xun M, Wutong W (2007) Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 59: 575–582. doi: 10.1211/jpp.59.4.0013
![]() |
[46] |
Chaiyasut C, Sivamaruthi BS (2017) Anti-hyperglycemic property of Hericium erinaceus – A mini review. Asian Pac J Trop Biomed 7: 1036–1040. doi: 10.1016/j.apjtb.2017.09.024
![]() |
[47] |
Liang B, Guo ZD, Xie F, et al. (2013) Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. BMC Complement Altern Med 13: 253. doi: 10.1186/1472-6882-13-253
![]() |
[48] |
Geng Y, Lu ZM, Huang W, et al. (2013) Bioassay-Guided Isolation of DPP-4 Inhibitory Fractions from Extracts of Submerged Cultured of Inonotus obliquus. Molecules 18: 1150–1161. doi: 10.3390/molecules18011150
![]() |
[49] |
Wang J, Wang C, Li S, et al. (2017) Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother 95: 1669–1677. doi: 10.1016/j.biopha.2017.09.104
![]() |
[50] |
Bisen P, Baghel RK, Sanodiya BS, et al. (2010) Lentinus edodes: A macrofungus with pharmacological activities. Curr Med Chem 17: 2419–2430. doi: 10.2174/092986710791698495
![]() |
[51] | Wahab NAA, Abdullah N, Aminudin N (2014) Characterisation of Potential Antidiabetic-Related Proteins from Pleurotus pulmonarius (Fr.) Quél. (Grey Oyster Mushroom) by MALDI-TOF/TOF Mass Spectrometry. Biomed Res Int 2014: 131607. |
[52] | Badole SL, Patel NM, Thakurdesai PA, et al. (2008) Interaction of Aqueous Extract of Pleurotus pulmonarius (Fr.) Quel-Champ. with Glyburide in Alloxan Induced Diabetic Mice. Evid Based Complement Alternat Med 5: 159–164. |
[53] |
Kiho T, Morimoto H, Kobayashi T, et al. (2000) Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Biosci Biotechnol Biochem 64: 417–419. doi: 10.1271/bbb.64.417
![]() |
[54] |
Kiho T, Kochi M, Usui S, et al. (2001) Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H). Biol Pharm Bull 24: 1400–1403. doi: 10.1248/bpb.24.1400
![]() |
[55] |
Cho EJ, Hwang HJ, Kim SW, et al. (2007) Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 75: 1257–1265. doi: 10.1007/s00253-007-0972-2
![]() |
[56] |
Fu M, Wang L, Wang XY, et al. (2018) Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos. Molecules 23: 1839. doi: 10.3390/molecules23081839
![]() |
[57] |
Esteban CI (2009) Medicinal interest of Poria cocos (Wolfiporia extensa). Rev Iberoam Micol 26: 103–107. doi: 10.1016/S1130-1406(09)70019-1
![]() |
[58] |
Li Y, Zhang J, Li T, et al. (2016) A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography. PLoS One 11: e0168998. doi: 10.1371/journal.pone.0168998
![]() |
[59] |
Shafrir E, Spielman S, Nachliel I, et al. (2001) Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 17: 55–66. doi: 10.1002/1520-7560(2000)9999:9999<::AID-DMRR165>3.0.CO;2-J
![]() |
[60] |
Clark TA, Deniset JF, Heyliger CE, et al. (2014) Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Fail Rev 19: 123–132. doi: 10.1007/s10741-013-9380-0
![]() |
[61] | Gruzewska K, Michno A, Pawelczyk T, et al. (2014) Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol 65: 603–611. |
[62] |
Halberstam M, Cohen N, Shlimovich P, et al. (1996) Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 45: 659–666. doi: 10.2337/diab.45.5.659
![]() |
[63] | Huang HY, Korivi M, Chaing YY, et al. (2012) Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats. Evid Based Complement Alternat Med 2012: 856381. |
[64] |
Huang HY, Korivi M, Yang HT, et al. (2014) Effect of Pleurotus tuber-regium polysaccharides supplementation on the progression of diabetes complications in obese-diabetic rats. Chin J Physiol 57: 198–208. doi: 10.4077/CJP.2014.BAC245
![]() |
[65] |
Kobayashi M, Kawashima H, Takemori K, et al. (2012) Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice. Biochem Biophys Res Commun 427: 299–304. doi: 10.1016/j.bbrc.2012.09.045
![]() |
[66] | Laurino LF, Viroel FJM, Pickler TB, et al. (2017) Functional foods in gestational diabetes: Evaluation of the oral glucose tolerance test (OGTT) in pregnant rats treated with mushrooms. Reprod Toxicol 72: 36. |
[67] | Jayasuriya WJ, Wanigatunge CA, Fernando GH, et al. (2015) Hypoglycaemic activity of culinary Pleurotus ostreatus and P. cystidiosus mushrooms in healthy volunteers and type 2 diabetic patients on diet control and the possible mechanisms of action. Phytother Res 29: 303–309. |
[68] | Gao Y, Lan J, Dai X, et al. (2004) A Phase I/II Study of Ling Zhi Mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) Extract in Patients with Type II Diabetes Mellitus. Int J Med Mushrooms 6: 327-334. |
[69] |
Friedman M (2016) Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5: 80. doi: 10.3390/foods5040080
![]() |
[70] |
Lo HC, Wasser SP (2011) Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int J Med Mushrooms 13: 401–426. doi: 10.1615/IntJMedMushr.v13.i5.10
![]() |
1. | Hamid Qureshi, Amjad Ali Pasha, Zahoor Shah, Muhammad Asif Zahoor Raja, Salem Algarni, Talal Alqahtani, Kashif Irshad, Waqar Azeem Khan, Application of machine learning for thermal exchange of dissipative ternary nanofluid over a stretchable wavy cylinder with thermal slip, 2024, 60, 2214157X, 104599, 10.1016/j.csite.2024.104599 | |
2. | Fateh Ali, Yanren Hou, Xinlong Feng, M. Zahid, Muhammad Usman Ali, Puntani Pongsumpun, Levenberg–Marquardt neural network-based intelligent computation for the non-Newtonian polymer during forward roll coating, 2023, 35, 1070-6631, 10.1063/5.0176202 | |
3. | Waseem Abbas, Zafar Mahmood, Sami Ullah Khan, Emad E. Mahmoud, Yasir Khan, Mohammad Khalid Nasrat, Thermal behavior of radiated tetra-nanofluid flow with different parameters, 2024, 14, 2158-3226, 10.1063/5.0211706 | |
4. | Waseem Abbas, Aisha M. Alqahtani, Zafar Mahmood, Sid Ahmed Ould Beinane, Muhammad Bilal, Numerical heat featuring in radiative convective ternary nanofluid under induced magnetic field and heat generating source, 2024, 0217-9792, 10.1142/S0217979225500444 | |
5. | Walid Aich, Hamad Almujibah, Sherzod Shukhratovich Abdullaev, Mutasem Z. Bani-Fwaz, Ahmed M Hassan, Thermal performance of radiated annular extended surface using advanced nanomaterials influenced by various physical controlling parameters for nucleate boiling case, 2023, 51, 2214157X, 103524, 10.1016/j.csite.2023.103524 | |
6. | Khaleeq ur Rahman, Nidhish Kumar Mishra, Mutasem Z. Bani-Fwaz, Thermal study of Darcy–Forchheimer hybrid nanofluid flow inside a permeable channel by VIM: features of heating source and magnetic field, 2023, 148, 1388-6150, 14385, 10.1007/s10973-023-12611-5 | |
7. | Taysir Mhedheb, Walid Hassen, Abdallah Mhimid, Mohammed A. Almeshaal, Muapper Alhadri, Lioua Kolsi, Parametric analysis of a solar parabolic trough collector integrated with hybrid-nano PCM storage tank, 2023, 51, 2214157X, 103652, 10.1016/j.csite.2023.103652 | |
8. | Khaleeq Ur Rahman, Zafar Mahmood, Sami Ullah Khan, Aatif Ali, Zhixiong Li, Iskander Tlili, Enhanced thermal study in hybrid nanofluid flow in a channel motivated by graphene/Fe3O4 and Newtonian heating, 2024, 21, 25901230, 101772, 10.1016/j.rineng.2024.101772 | |
9. | Aneesa Nadeem, Haitham A Mahmoud, Aatif Ali, Sayed M Eldin, Significance of Koo-Kleinstreuer-Li model for thermal enhancement in nanofluid under magnetic field and thermal radiation factors using LSM, 2023, 15, 1687-8132, 10.1177/16878132231206906 | |
10. | Lotfi Ben Said, Warisha Gul, Zafar Mahmood, Mutasem Z. Bani-Fwaz, Hijaz Ahmad, Sami Ullah Khan, Walid Aich, Melting thermal process in buoyancy driven radiated flow of (MoS2-SiO2-Au)/H2O near the stagnant point under mixed convection, 2024, 60, 2214157X, 104615, 10.1016/j.csite.2024.104615 | |
11. | Kamel Smida, Muhammad Umer Sohail, Iskander Tlili, Asma Javed, Numerical thermal study of ternary nanofluid influenced by thermal radiation towards convectively heated sinusoidal cylinder, 2023, 9, 24058440, e20057, 10.1016/j.heliyon.2023.e20057 | |
12. | Obai younis, Houssem Laidoudi, Aissa Abderrahmane, Abdeldjalil Belazreg, Naef A.A. Qasem, Raad Z. Homod, Muhyaddine Rawa, Ahmed M. Hassan, Thermal pattern of nano-encapsulated PCM in a lid-driven cavity with presence of a heated body, magnetic field and limited permeability, 2023, 50, 2214157X, 103469, 10.1016/j.csite.2023.103469 | |
13. | Aneesa Nadeem, Nejla Mahjoub Said, LSM analysis of thermal enhancement in KKL model-based unsteady nanofluid problem using CCM and slanted magnetic field effects, 2023, 1388-6150, 10.1007/s10973-023-12801-1 | |
14. | Waseem Abbas, Nejla Mahjoub Said, Nidhish Kumar Mishra, Zafar Mahmood, Muhammad Bilal, Significance of coupled effects of resistive heating and perpendicular magnetic field on heat transfer process of mixed convective flow of ternary nanofluid, 2024, 149, 1388-6150, 879, 10.1007/s10973-023-12723-y | |
15. | Azhar Rasheed, Sami Ullah Khan, Muhammad Bilal, Dennis Ling Chuan Ching, Lotfi Ben Said, Ahmed Mir, Lioua Kolsi, Ilyas Khan, Investigation of comparative entropy in different nanofluids inspired by solar radiations and unsteady effects: Model analysis for permeable channel, 2024, 17, 16878507, 101158, 10.1016/j.jrras.2024.101158 | |
16. | Naef A.A. Qasem, Aissa Abderrahmane, Abdeldjalil Belazreg, Obai Younis, Yacine Khetib, Kamel Guedri, Investigation of phase change heat transfer in a rectangular case as function of fin placement for solar applications, 2024, 54, 2214157X, 103996, 10.1016/j.csite.2024.103996 | |
17. | Bowen Liu, Chunming Wang, Numerical simulation for the evolution in surface morphology of titanium alloy by nanosecond pulsed laser ablation, 2024, 315, 02540584, 128997, 10.1016/j.matchemphys.2024.128997 | |
18. | C. Pownraj, A. Karthik, S. Suresh, A. Valan Arasu, Jitendra Kumar Katiyar, Investigation of tribo-thermal properties of inter-mixed AYSZ nanoceramic composite/SAE20W40 nanolubricant, 2023, 148, 1388-6150, 12411, 10.1007/s10973-023-12606-2 | |
19. | Nidhish Kumar Mishra, Khalid Abdulkhaliq M. Alharbi, Khaleeq ur Rahman, Sayed M. Eldin, Mutasem Z. Bani-Fwaz, Investigation of improved heat transport featuring in dissipative ternary nanofluid over a stretched wavy cylinder under thermal slip, 2023, 48, 2214157X, 103130, 10.1016/j.csite.2023.103130 | |
20. | Waqas Ashraf, Study of heat transfer in ternary nanofluid between parallel plates influenced by different physical parameters, 2023, 148, 1388-6150, 10645, 10.1007/s10973-023-12418-4 | |
21. | Md. Mahadul Islam, Md. Mamun Molla, Mixed convection and sensitivity analysis of impinging jet flow of engine oil on rotating heated cylinder with high Prandtl numbers, 2024, 64, 2214157X, 105375, 10.1016/j.csite.2024.105375 | |
22. | Mutasem Z Bani-Fwaz, Adnan , Zafar Mahmood, Muhammad Bilal, Adel A EI-Zahhar, Ilyas Khan, Shafiullah Niazai, Computational investigation of thermal process in radiated nanofluid modulation influenced by nanoparticles (Al2O3) and molecular (H2O) diameters, 2024, 11, 2288-5048, 22, 10.1093/jcde/qwae011 | |
23. | Walid Aich, Ghulfam Sarfraz, Nejla Mahjoub Said, Muhammad Bilal, Ahmed Faisal Ahmed Elhag, Ahmed M. Hassan, Significance of radiated ternary nanofluid for thermal transport in stagnation point flow using thermal slip and dissipation function, 2023, 51, 2214157X, 103631, 10.1016/j.csite.2023.103631 | |
24. | Naim Ben Ali, Zafar Mahmood, Mutasem Z. Bani-Fwaz, Sami Ullah Khan, Iskander Tlili, Thermal efficiency of radiated nanofluid through convective geometry subject to heating source, 2024, 15, 20904479, 102947, 10.1016/j.asej.2024.102947 | |
25. | Subhalaxmi Dey, Surender Ontela, Pradyumna Kumar Pattnaik, Satyaranjan Mishra, Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder, 2023, 2397-7914, 10.1177/23977914231207947 | |
26. | K. Vishnu Ram, Aeswin Lawrance, R. Harish, Impact of nanoparticle shape on the thermal performance of eco-friendly soybean-based nanofluids in cooling titanium alloys, 2024, 63, 2214157X, 105309, 10.1016/j.csite.2024.105309 | |
27. | Walid Aich, Waseem Abbas, Muhammad Bilal Riaz, M.A. Ahmed, Lotfi Ben Said, Sami Ullah Khan, Impacts of nanoscaled metallic particles on the dynamics of ternary Newtonian nanofluid laminar flow through convectively heated and radiated surface, 2024, 53, 2214157X, 103969, 10.1016/j.csite.2023.103969 | |
28. | Ghulam Haider, Naveed Ahmed, Unsteady Ohmic dissipative flow of ZnO-SAE50 nanofluid past a permeable shrinking cylinder, 2023, 34, 0957-4484, 455401, 10.1088/1361-6528/aced57 | |
29. | Sumaira Fayyaz, Zafar Mahmood, Sami Ullah Khan, Mohammed A. Tashkandi, Lioua Kolsi, Thermal study of single phase nanofluid model using radiative γAl2O3 nanomaterial under Hall current and momentum slip phenomena, 2024, 0958-305X, 10.1177/0958305X241270239 | |
30. | Mutasem Z. Bani-Fwaz, Sumaira Fayyaz, Nidhish Kumar Mishra, Zafar Mahmood, Sami Ullah Khan, Muhammad Bilal, Investigation of unsteady nanofluid over half infinite domain under the action of parametric effects and EPNM, 2024, 1388-6150, 10.1007/s10973-024-13121-8 | |
31. | Badreddine Ayadi, Sadia Karim, Zafar Mahmood, Sami Ullah Khan, Mutasem Z. Bani-Fwaz, Muhammad Bilal, Wajdi Rajhi, Lotfi Ben Said, Study of ZnO-SAE50 over a radiated permeable exponentially elongating curved device subject to non-uniform thermal source and Newtonian heating, 2024, 63, 2214157X, 105275, 10.1016/j.csite.2024.105275 | |
32. | Nidhish Kumar Mishra, Muhammed Umer Sohail, Mutasem Z. Bani-Fwaz, Ahmed M. Hassan, Thermal analysis of radiated (aluminum oxide)/water through a magnet based geometry subject to Cattaneo-Christov and Corcione’s Models, 2023, 49, 2214157X, 103390, 10.1016/j.csite.2023.103390 | |
33. | Chetan Kumar, Vashista Ademane, Vasudeva Madav, Experimental study of convective heat transfer distribution of non-interacting wall and perpendicular air jet impingement cooling on flat surface, 2024, 60, 2214157X, 104532, 10.1016/j.csite.2024.104532 | |
34. | Shabbir Ahmad, Kashif Ali, Hafiz Humais Sultan, Fareeha Khalid, Moin-ud-Din Junjua, Farhan Lafta Rashid, Humberto Garcia Castellanos, Yashar Aryanfar, Tamer M. Khalaf, Ahmed S. Hendy, A Breakthrough in Penta-Hybrid Nanofluid Flow Modeling for Heat Transfer Enhancement in a Spatially Dependent Magnetic Field: Machine Learning Approach, 2025, 46, 0195-928X, 10.1007/s10765-024-03467-4 | |
35. | Praveen Kumar Kanti, Prabhu Paramasivam, V. Vicki Wanatasanappan, Seshathiri Dhanasekaran, Prabhakar Sharma, Experimental and explainable machine learning approach on thermal conductivity and viscosity of water based graphene oxide based mono and hybrid nanofluids, 2024, 14, 2045-2322, 10.1038/s41598-024-81955-1 | |
36. | Noura Alsedais, Mohamed Ahmed Mansour, Abdelraheem Mahmoud Aly, Sara I. Abdelsalam, Artificial neural network validation of MHD natural bioconvection in a square enclosure: entropic analysis and optimization, 2025, 41, 0567-7718, 10.1007/s10409-024-24507-x | |
37. | Mutasem Z. Bani-Fwaz, Sami Ullah Khan, Zafar Mahmood, Yasir Khan, A. M. Obalalu, Mohammad Khalid Nasrat, Entropy performance of nonlinear mathematical hydrocarbon based model using ternary alloys (AA7072/AA7075/Ti6AI4V) under influential solar radiations and convective effects, 2024, 14, 2045-2322, 10.1038/s41598-024-81901-1 | |
38. | Ghulfam Sarfraz, Sami Ullah Khan, Zafar Mahmood, Yasir Khan, Tadesse Walelign, Significance of Hamilton–Crosser’s model for thermal improvement in transient ternary nanofluid problem from multiple physical aspects, 2024, 0217-9849, 10.1142/S0217984925500903 | |
39. | Latif Ahmad, Assmaa Abd-Elmonem, Saleem Javed, Muhammad Yasir, Umair Khan, Yalcin Yilmaz, Aisha M. Alqahtani, Dissipative disorder analysis of Homann flow of Walters B fluid with the applications of solar thermal energy absorption aspects, 2025, 15, 2190-5487, 10.1007/s13201-024-02335-8 | |
40. | Mutasem Z. Bani-Fwaz, Sadia Karim, Sami Ullah Khan, Muhammad Bilal, Yasir Khan, Iskander Tlili, Significance of Fe3O4/MnZnFe2O4 nanoparticles for thermal efficiency of ethylene glycol: Analysis for single-phase nanofluid flow using Cattaneo Christov theory, 2025, 0217-9849, 10.1142/S0217984925501052 | |
41. | Shabir Ahmad, Ikram Ullah, Saira Shukat, Murtaza Ali, Lorentz force and Brownian motion features on entropy optimization in nanofluid swirling flow through porous configuration, 2025, 8, 2520-8160, 10.1007/s41939-024-00711-0 | |
42. | Mutasem Z. Bani-Fwaz, Sami Ullah Khan, B. Shankar Goud, Tadesse Walelign, Kanayo Kenneth Asogwa, Iskander Tlili, Thermal performance of Falkner Skan model (FSM) for (GOMoS2)/(C2H6O2-H2O) 50:50% nanofluid under radiation heating source, 2025, 15, 2045-2322, 10.1038/s41598-025-86470-5 | |
43. | Nidhish Kumar Mishra, Khaleeq ur Rahman, Mutasem Z. Bani-Fwaz, Yasir Khan, Investigation of micropolar nanofluid using AA7072 alloys under intrinsic polarities: model-based computational analysis, 2025, 1388-6150, 10.1007/s10973-024-13986-9 | |
44. | Warisha Gul, Zafar Mahmood, Sami Ullah Khan, Muhammad Bilal, A. M. Obalalu, Yasir Khan, Iskander Tlili, Multiscale parametric influence on stagnation point Darcy-Forchheimer single phase ternary nanofluid problem using solar radiations: design for vertical sheet, 2025, 8, 2520-8160, 10.1007/s41939-025-00747-w | |
45. | Mutasem Z. Bani‐Fwaz, Ishtiaque Mahmood, Numerical MHD heat transport in C12H26‐C15H32 using modified Tiwari–Das model inspired by nanoparticles characteristics, 2025, 105, 0044-2267, 10.1002/zamm.70071 | |
46. | Khaleeq ur Rahman, Syed Zulfiqar Ali Zaidi, Refka Ghodhbani, Dana Mohammad Khidhir, Muhammad Asad Iqbal, Iskander Tlili, Thermomechanics of radiated hybrid nanofluid interacting with MHD and heating source: Significance of nanoparticles shapes, 2025, 18, 16878507, 101544, 10.1016/j.jrras.2025.101544 |
Dynamic viscosity | |
Nanofluid | $ {\mu }_{nf}={\mu }_{f}{\left[1-{\varpi }_{1}\right]}^{-2.5}. $ |
Hybrid nanofluid | $ {\mu }_{hbnf}={\mu }_{f}{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\right]}^{-1}. $ |
Ternary nanofluid | $ {\mu }_{ternnf}={\mu }_{f}{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}(1-{\varpi }_{3})\right]}^{-1}. $ |
Density | |
Nanofluid | $ {\rho }_{nf}=\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]{\rho }_{f}. $ |
Hybrid nanofluid | $ {\rho }_{hbnf}=\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}. $ |
Ternary nanofluid | $ {\rho }_{ternf}=\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}\right\}\right]+{\varpi }_{3}\frac{{\rho }_{p3}}{{\rho }_{f}}. $ |
Heat capacity | |
Nanofluid | $ ({\rho {c}_{p})}_{nf}=\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]{\left(\rho {c}_{p}\right)}_{f}. $ |
Hybrid nanofluid | $ ({\rho {c}_{p})}_{hbnf}=\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]+{\varpi }_{2}\frac{{\left(\rho {c}_{p}\right)}_{p2}}{({\rho {c}_{p})}_{f}}. $ |
Ternary nanofluid | $ {\left(\rho {c}_{p}\right)}_{ternf}=\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]+{\varpi }_{2}\frac{{\left(\rho {c}_{p}\right)}_{p2}}{({\rho {c}_{p})}_{f}}\right\}\right]+{\varpi }_{3}\frac{{\left(\rho {c}_{p}\right)}_{p3}}{({\rho {c}_{p})}_{f}}. $ |
Thermal conductivity | |
Nanofluid | $ {k}_{nf}=\frac{\left[\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)\right]}{[\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}({k}_{f}-{k}_{p1}\left)\right]}{k}_{f}. $ |
Hybrid nanofluid | $ {k}_{hbnf}=\frac{\left[\left({k}_{p2}+2{k}_{nf}~~ \right)-2{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)\right]}{[\left({k}_{p2}+2{k}_{nf}~~ \right)+{\varpi }_{2}({k}_{nf}-{k}_{p2}\left)\right]}{k}_{nf}. $ |
Ternary nanofluid | $ {k}_{ternnf}=\frac{\left[\left({k}_{p3}+2{k}_{hbnf}~~~ \right)-2{\varpi }_{3}\left({k}_{hbnf}-{k}_{p3}\right)\right]}{[\left({k}_{p3}+2{k}_{hbnf}~~~ \right)+{\varpi }_{3}({k}_{hbnf}-{k}_{p3}\left)\right]}{k}_{hbnf}. $ |
Skin friction formulas | |
Nanofluid | $ \frac{{\left[1-{\varpi }_{1}\right]}^{-2.5}}{\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]}{F}^{{'}{'}}\left(0\right). $ |
Hybrid nanofluid | $ \frac{{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\right]}^{-1}}{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}}{F}^{{'}{'}}\left(0\right). $ |
Ternary nanofluid | $ \frac{{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\left(1-{\varpi }_{3}\right)\right]}^{-1}}{\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}\right\}\right]+{\varpi }_{3}\frac{{\rho }_{p3}}{{\rho }_{f}}}{F}^{{'}{'}}\left(0\right). $ |
Nusselt number formulas | |
Nanofluid | $ \left|\left[\frac{\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}{\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}\right]{\beta }^{{'}}\left(0\right)\right|. $ |
Hybrid nanofluid | $ \left|\left[\frac{\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}{\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}*\frac{\left({k}_{p2}+2{k}_{nf}~~ \right)-2{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)}{\left({k}_{p2}+2{k}_{nf}~~ \right)+{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)}\right]{\beta }^{{'}}\left(0\right)\right|. $ |
Ternary nanofluid | $ \left|\left[(kp1+2kf)−2ϖ1(kf−kp1)(kp1+2kf)+ϖ1(kf−kp1)∗(kp2+2knf )−2ϖ2(knf−kp2)(kp2+2knf )+ϖ2(knf−kp2)∗(kp3+2khbnf )−2ϖ3(khbnf−kp3)(kp3+2khbnf )+ϖ3(khbnf−kp3) \right]{\beta }^{{'}}\left(0\right)\right|. $ |
$ \boldsymbol{m} $ | Results from various studies for $ \boldsymbol{F}\boldsymbol{{'}}\boldsymbol{{'}}\left(0\right) $ | |||
present results | Ahmed et al. [47] | Watanabe [48] | Adnan et al. [49] | |
0.0 | 0.4695999960 | 0.46959 | 0.46960 | 0.469590 |
0.0141 | 0.5046143299 | 0.504614 | ----- | 0.504614 |
0.0435 | 0.5689777817 | 0.568977 | 0.56898 | 0.568977 |
0.0909 | 0.6549788596 | 0.654978 | 0.65498 | 0.654978 |
0.1429 | 0.7319985706 | 0.731998 | 0.73200 | 0.731998 |
0.2000 | 0.8021256343 | 0.802125 | 0.80213 | 0.802125 |
0.3333 | 0.9276536249 | 0.927653 | 0.92765 | 0.927653 |
0.5000 | 1.0389035229 | 1.038903 | 1.03890 | 1.038903 |
Dynamic viscosity | |
Nanofluid | $ {\mu }_{nf}={\mu }_{f}{\left[1-{\varpi }_{1}\right]}^{-2.5}. $ |
Hybrid nanofluid | $ {\mu }_{hbnf}={\mu }_{f}{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\right]}^{-1}. $ |
Ternary nanofluid | $ {\mu }_{ternnf}={\mu }_{f}{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}(1-{\varpi }_{3})\right]}^{-1}. $ |
Density | |
Nanofluid | $ {\rho }_{nf}=\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]{\rho }_{f}. $ |
Hybrid nanofluid | $ {\rho }_{hbnf}=\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}. $ |
Ternary nanofluid | $ {\rho }_{ternf}=\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}\right\}\right]+{\varpi }_{3}\frac{{\rho }_{p3}}{{\rho }_{f}}. $ |
Heat capacity | |
Nanofluid | $ ({\rho {c}_{p})}_{nf}=\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]{\left(\rho {c}_{p}\right)}_{f}. $ |
Hybrid nanofluid | $ ({\rho {c}_{p})}_{hbnf}=\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]+{\varpi }_{2}\frac{{\left(\rho {c}_{p}\right)}_{p2}}{({\rho {c}_{p})}_{f}}. $ |
Ternary nanofluid | $ {\left(\rho {c}_{p}\right)}_{ternf}=\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\left(\rho {c}_{p}\right)}_{p1}}{({\rho {c}_{p})}_{f}}\right]+{\varpi }_{2}\frac{{\left(\rho {c}_{p}\right)}_{p2}}{({\rho {c}_{p})}_{f}}\right\}\right]+{\varpi }_{3}\frac{{\left(\rho {c}_{p}\right)}_{p3}}{({\rho {c}_{p})}_{f}}. $ |
Thermal conductivity | |
Nanofluid | $ {k}_{nf}=\frac{\left[\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)\right]}{[\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}({k}_{f}-{k}_{p1}\left)\right]}{k}_{f}. $ |
Hybrid nanofluid | $ {k}_{hbnf}=\frac{\left[\left({k}_{p2}+2{k}_{nf}~~ \right)-2{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)\right]}{[\left({k}_{p2}+2{k}_{nf}~~ \right)+{\varpi }_{2}({k}_{nf}-{k}_{p2}\left)\right]}{k}_{nf}. $ |
Ternary nanofluid | $ {k}_{ternnf}=\frac{\left[\left({k}_{p3}+2{k}_{hbnf}~~~ \right)-2{\varpi }_{3}\left({k}_{hbnf}-{k}_{p3}\right)\right]}{[\left({k}_{p3}+2{k}_{hbnf}~~~ \right)+{\varpi }_{3}({k}_{hbnf}-{k}_{p3}\left)\right]}{k}_{hbnf}. $ |
Skin friction formulas | |
Nanofluid | $ \frac{{\left[1-{\varpi }_{1}\right]}^{-2.5}}{\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]}{F}^{{'}{'}}\left(0\right). $ |
Hybrid nanofluid | $ \frac{{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\right]}^{-1}}{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}}{F}^{{'}{'}}\left(0\right). $ |
Ternary nanofluid | $ \frac{{\left[{\left(1-{\varpi }_{1}\right)}^{2.5}{\left(1-{\varpi }_{2}\right)}^{2.5}\left(1-{\varpi }_{3}\right)\right]}^{-1}}{\left(1-{\varpi }_{3}\right)\left[\left\{\left(1-{\varpi }_{2}\right)\left[\left(1-{\varpi }_{1}\right)+{\varpi }_{1}\frac{{\rho }_{p1}}{{\rho }_{f}}\right]+{\varpi }_{2}\frac{{\rho }_{p2}}{{\rho }_{f}}\right\}\right]+{\varpi }_{3}\frac{{\rho }_{p3}}{{\rho }_{f}}}{F}^{{'}{'}}\left(0\right). $ |
Nusselt number formulas | |
Nanofluid | $ \left|\left[\frac{\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}{\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}\right]{\beta }^{{'}}\left(0\right)\right|. $ |
Hybrid nanofluid | $ \left|\left[\frac{\left({k}_{p1}+2{k}_{f}\right)-2{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}{\left({k}_{p1}+2{k}_{f}\right)+{\varpi }_{1}\left({k}_{f}-{k}_{p1}\right)}*\frac{\left({k}_{p2}+2{k}_{nf}~~ \right)-2{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)}{\left({k}_{p2}+2{k}_{nf}~~ \right)+{\varpi }_{2}\left({k}_{nf}-{k}_{p2}\right)}\right]{\beta }^{{'}}\left(0\right)\right|. $ |
Ternary nanofluid | $ \left|\left[(kp1+2kf)−2ϖ1(kf−kp1)(kp1+2kf)+ϖ1(kf−kp1)∗(kp2+2knf )−2ϖ2(knf−kp2)(kp2+2knf )+ϖ2(knf−kp2)∗(kp3+2khbnf )−2ϖ3(khbnf−kp3)(kp3+2khbnf )+ϖ3(khbnf−kp3) \right]{\beta }^{{'}}\left(0\right)\right|. $ |
$ \boldsymbol{m} $ | Results from various studies for $ \boldsymbol{F}\boldsymbol{{'}}\boldsymbol{{'}}\left(0\right) $ | |||
present results | Ahmed et al. [47] | Watanabe [48] | Adnan et al. [49] | |
0.0 | 0.4695999960 | 0.46959 | 0.46960 | 0.469590 |
0.0141 | 0.5046143299 | 0.504614 | ----- | 0.504614 |
0.0435 | 0.5689777817 | 0.568977 | 0.56898 | 0.568977 |
0.0909 | 0.6549788596 | 0.654978 | 0.65498 | 0.654978 |
0.1429 | 0.7319985706 | 0.731998 | 0.73200 | 0.731998 |
0.2000 | 0.8021256343 | 0.802125 | 0.80213 | 0.802125 |
0.3333 | 0.9276536249 | 0.927653 | 0.92765 | 0.927653 |
0.5000 | 1.0389035229 | 1.038903 | 1.03890 | 1.038903 |