Research article Special Issues

Modeling the impact of temperature on the dynamics of carrier-dependent infectious diseases with control strategies


  • Published: 28 May 2025
  • The spread of diseases poses significant threats to human health globally. The dynamic nature of infectious diseases, especially those that also rely on carriers (e.g., house flies) for transmission, requires innovative strategies to control their spread, as environmental conditions such as temperature, humidity, etc., affect the rate of growth of the carrier population. This study introduces a mathematical model to assess the effect of increasing global average temperature rise caused by carbon dioxide emissions and chemical control strategies on the dynamics of such diseases. The stability properties of feasible equilibrium solutions were discussed. Sensitivity analysis was also performed to highlight the key parameters that may help to design effective intervention strategies to control disease transmission. The model was further analyzed for an optimal control problem by incorporating a control measure on the application rate of chemical insecticides to reduce the carrier population. Through the combination of analytical techniques and numerical simulations, we have evaluated the effectiveness of chemical control strategies under varying epidemiological parameters. The model also explored the critical thresholds necessary for achieving disease control and eradication. Our results are valuable to public health officials and policymakers in designing effective interventions against carrier-dependent infectious diseases.

    Citation: Shubham Chaudhry, Gauri Agrawal, Maia Martcheva, A. K. Misra. Modeling the impact of temperature on the dynamics of carrier-dependent infectious diseases with control strategies[J]. Mathematical Biosciences and Engineering, 2025, 22(7): 1722-1750. doi: 10.3934/mbe.2025063

    Related Papers:

  • The spread of diseases poses significant threats to human health globally. The dynamic nature of infectious diseases, especially those that also rely on carriers (e.g., house flies) for transmission, requires innovative strategies to control their spread, as environmental conditions such as temperature, humidity, etc., affect the rate of growth of the carrier population. This study introduces a mathematical model to assess the effect of increasing global average temperature rise caused by carbon dioxide emissions and chemical control strategies on the dynamics of such diseases. The stability properties of feasible equilibrium solutions were discussed. Sensitivity analysis was also performed to highlight the key parameters that may help to design effective intervention strategies to control disease transmission. The model was further analyzed for an optimal control problem by incorporating a control measure on the application rate of chemical insecticides to reduce the carrier population. Through the combination of analytical techniques and numerical simulations, we have evaluated the effectiveness of chemical control strategies under varying epidemiological parameters. The model also explored the critical thresholds necessary for achieving disease control and eradication. Our results are valuable to public health officials and policymakers in designing effective interventions against carrier-dependent infectious diseases.



    加载中


    [1] S. Bansal, L. A. Meyers, The impact of past epidemics on future disease dynamics, J. Theor. Biol., 309 (2012), 176–184. https://doi.org/10.1016/j.jtbi.2012.06.012 doi: 10.1016/j.jtbi.2012.06.012
    [2] V. J. Cirillo, "Winged Sponges": Houseflies as carriers of typhoid fever in 19th-and early 20th-century military camps, Perspect. Biol. Med., 49 (2006), 52–63. https://doi.org/10.1353/pbm.2006.0005 doi: 10.1353/pbm.2006.0005
    [3] B. Chala, F. Hamde, Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review, Front. Public Health, 9 (2021), 715759. https://doi.org/10.3389/fpubh.2021.715759 doi: 10.3389/fpubh.2021.715759
    [4] A. Flahault, R. R. de Castaneda, I. Bolon, Climate change and infectious diseases, Public Health Rev., 37 (2016), 21. https://doi.org/10.1186/s40985-016-0035-2 doi: 10.1186/s40985-016-0035-2
    [5] B. Traore, O. Koutou, B. Sangare, A global mathematical model of malaria transmission dynamics with structured mosquito population and temperature variations, Nonlinear Anal. Real World Appl., 53 (2020), 103081. https://doi.org/10.1016/j.nonrwa.2019.103081 doi: 10.1016/j.nonrwa.2019.103081
    [6] L. J. Nunes, The rising threat of atmospheric CO$_2$: A review on the causes, impacts, and mitigation strategies, Environments, 10 (2023), 66. https://doi.org/10.3390/environments10040066 doi: 10.3390/environments10040066
    [7] N. P. Gillett, M. Kirchmeier-Young, A. Ribes, H. Shiogama, G. C. Hegerl, R. Knutti, et al., Constraining human contributions to observed warming since the pre-industrial period, Nat. Clim. Change, 11 (2021), 207–212. https://doi.org/10.1038/s41558-020-00965-9 doi: 10.1038/s41558-020-00965-9
    [8] M. Baylis, Potential impact of climate change on emerging vector-borne and other infections in the UK, Environ. Health, 16 (2017), 112. https://doi.org/10.1186/s12940-017-0326-1 doi: 10.1186/s12940-017-0326-1
    [9] S. Bahrndorff, A. Ruiz-Gonzalez, N. De Jonge, J. L. Nielsen, H. Skovgard, C. Pertoldi, Integrated genome-wide investigations of the housefly, a global vector of diseases reveal unique dispersal patterns and bacterial communities across farms, BMC Genomics, 21 (2020), 66. https://doi.org/10.1186/s12864-020-6445-z doi: 10.1186/s12864-020-6445-z
    [10] F. M. Chikezie, K. N. Opara, P. M. E. Ubulom, Impacts of changing climate on arthropod vectors and diseases transmission, Niger. J. Entomol., 40 (2024), 179–192. https://doi.org/10.36108/NJE/4202/04.0161 doi: 10.36108/NJE/4202/04.0161
    [11] L. Francuski, W. Jansen, L. W. Beukeboom, Effect of temperature on egg production in the common housefly, Entomol. Exp. Appl., 168 (2020), 513–522. https://doi.org/10.1111/eea.12912 doi: 10.1111/eea.12912
    [12] P. J. Edelson, R. Harold, J. Ackelsberg, J. S. Duchin, S. J. Lawrence, Y. C. Manabe, et al., Climate change and the epidemiology of infectious diseases in the United States, Clin. Infect. Dis., 76 (2023), 950–956. https://doi.org/10.1093/cid/ciac697 doi: 10.1093/cid/ciac697
    [13] H. Skovgard, G. Nachman, Temperature-and age-dependent survival, development, and oviposition rates of the pupal parasitoid spalangia cameroni (Hymenoptera: Pteromalidae), Environ. Entomol., 45 (2016), 1063–1075. https://doi.org/10.1093/ee/nvw055 doi: 10.1093/ee/nvw055
    [14] C. J. Geden, H. Biale, E. Chiel, D. M. Johnson, Effect of fluctuating high temperatures on house flies (Diptera: Muscidae) and their principal parasitoids (Muscidifurax spp. and Spalangia spp. [Hymenoptera: Pteromalidae]) from the United States, J. Med. Entomol., 56 (2019), 1650–1660. https://doi.org/10.1093/jme/tjz080 doi: 10.1093/jme/tjz080
    [15] R. W. Sutherst, Global change and human vulnerability to vector-borne diseases, Clin. Microbiol. Rev., 17 (2004), 136–173. https://doi.org/10.1128/CMR.17.1.136-173.2004 doi: 10.1128/CMR.17.1.136-173.2004
    [16] C. Caminade, K. M. McIntyre, A. E. Jones, Impact of recent and future climate change on vector-borne diseases, Ann. N. Y. Acad. Sci., 1436 (2019), 157–173. https://doi.org/10.1111/nyas.13950 doi: 10.1111/nyas.13950
    [17] H. Van Den Berg, M. Zaim, R. S. Yadav, A. Soares, B. Ameneshewa, A. Mnzava, et al., Global trends in the use of insecticides to control vector-borne diseases, Environ. Health Perspect., 120 (2012), 577–582. https://doi.org/10.1289/ehp.1104340 doi: 10.1289/ehp.1104340
    [18] H. Van Den Berg, R. Velayudhan, R. S. Yadav, Management of insecticides for use in disease vector control: Lessons from six countries in Asia and the Middle East, PLoS Negl. Trop. Dis., 15 (2021), e0009358. https://doi.org/10.1371/journal.pntd.0009358 doi: 10.1371/journal.pntd.0009358
    [19] A. M. Mohanrao, Extension guidelines for pest/vector management in human habitations, MANAGE, (2019). Available from: https://nirdpr.org.in/nird_docs/other/Extension_guidelines_Pests_Rodents_Management.pdf.
    [20] N. C. Hinkle, J. A. Hogsette, A review of alternative controls for house flies, Insects, 12 (2021), 1042. https://doi.org/10.3390/insects12111042 doi: 10.3390/insects12111042
    [21] K. Karunamoorthi, S. Sabesan, Insecticide resistance in insect vectors of disease with special reference to mosquitoes: A potential threat to global public health, Health Scope, 2 (2013), 4–18. https://doi.org/10.17795/jhealthscope-9840 doi: 10.17795/jhealthscope-9840
    [22] M. Ghosh, P. Chandra, P. Sinha, J. B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004), 385–402. https://doi.org/10.1016/S0096-3003(03)00564-2 doi: 10.1016/S0096-3003(03)00564-2
    [23] P. Das, D. Mukherjee, A. K. Sarkar, Study of a carrier dependent infectious disease-cholera, J. Biol. Syst., 13 (2005), 233–244. https://doi.org/10.1142/S0218339005001495 doi: 10.1142/S0218339005001495
    [24] R. Naresh, S. Pandey, A. K. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Anal.: Model. Control, 13 (2008), 331–350. https://doi.org/10.15388/NA.2008.13.3.14561 doi: 10.15388/NA.2008.13.3.14561
    [25] X. Z. Li, W. S. Li, M. Ghosh, Stability and bifurcation of an SIS epidemic model with treatment, Chaos, Solitons Fractals, 42 (2009), 2822–2832. https://doi.org/10.1016/j.chaos.2009.04.024 doi: 10.1016/j.chaos.2009.04.024
    [26] D. Kalajdzievska, M. Y. Li, Modeling the effects of carriers on transmission dynamics of infectious diseases, Math. Biosci. Eng., 8 (2011), 711–722. https://doi.org/10.3934/mbe.2011.8.711 doi: 10.3934/mbe.2011.8.711
    [27] J. B. Shukla, V. Singh, A. K. Misra, Modeling the spread of an infectious disease with bacteria and carriers in the environment, Nonlinear Anal. Real World Appl., 12 (2011), 2541–2551. https://doi.org/10.1016/j.nonrwa.2011.03.003 doi: 10.1016/j.nonrwa.2011.03.003
    [28] A. K. Misra, V. Singh, A delay mathematical model for the spread and control of water borne diseases, J. Theor. Biol., 301 (2012), 49–56. https://doi.org/10.1016/j.jtbi.2012.02.006 doi: 10.1016/j.jtbi.2012.02.006
    [29] R. K. Gupta, R. K. Rai, P. K. Tiwari, A. K. Misra, M. Martcheva, A mathematical model for the impact of disinfectants on the control of bacterial diseases, J. Biol. Dyn., 17 (2023), 2206859. https://doi.org/10.1080/17513758.2023.2206859 doi: 10.1080/17513758.2023.2206859
    [30] D. Bolatova, S. Kadyrov, A. Kashkynbayev, Mathematical modeling of infectious diseases and the impact of vaccination strategies, Math. Biosci. Eng., 21 (2024), 7103–7123. https://doi.org/10.3934/mbe.2024314 doi: 10.3934/mbe.2024314
    [31] A. K. Misra, A. Gupta, E. Venturino, Modeling biological control of carrier-dependent infectious diseases, Comput. Math. Methods, 3 (2021), e1127. https://doi.org/10.1002/cmm4.1127 doi: 10.1002/cmm4.1127
    [32] L. Liu, X. Wang, Y. Li, Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity, Math. Biosci. Eng., 20 (2023), 20914–20938. https://doi.org/10.3934/mbe.2023925 doi: 10.3934/mbe.2023925
    [33] R. Naresh, S. R. Verma, J. B. Shukla, M. Agarwal, Modeling the effect of sanitation effort on the spread of carrier-dependent infectious diseases due to environmental degradation, Appl. Appl. Math., 18 (2023).
    [34] S. Singh, P. Chandra, J. B. Shukla, Modeling and analysis of the spread of carrier dependent infectious diseases with environmental effects, J. Biol. Syst., 11 (2003), 325–335. https://doi.org/10.1142/S0218339003000877 doi: 10.1142/S0218339003000877
    [35] A. K. Misra, S. N. Mishra, A. L. Pathak, P. K. Srivastava, P. Chandra, A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay, Chaos, Solitons Fractals, 57 (2013), 41–53. https://doi.org/10.1016/j.chaos.2013.08.002 doi: 10.1016/j.chaos.2013.08.002
    [36] K. Lata, S. N. Mishra, A. K. Misra, An optimal control problem for carrier dependent diseases, Biosystems, 187 (2020) 104039. https://doi.org/10.1016/j.biosystems.2019.104039 doi: 10.1016/j.biosystems.2019.104039
    [37] A. K. Misra, A. Jha, Modeling the effect of population pressure on the dynamics of carbon dioxide gas, J. Appl. Math. Comput., 67 (2021), 623–640. https://doi.org/10.1007/s12190-020-01492-8 doi: 10.1007/s12190-020-01492-8
    [38] J. K. Hale, Ordinary Differential Equations, Wiley–Interscience, 1969.
    [39] H. I. Freedman, J. W. H. So, Global stability and persistence of simple food chains, Math. Bio., 76 (1985), 69–86. https://doi.org/10.1016/0025-5564(85)90047-1 doi: 10.1016/0025-5564(85)90047-1
    [40] G. Agrawal, A. K. Agrawal, J. Dhar, A. K. Misra, Modeling the impact of cloud seeding to rescind the effect of atmospheric pollutants on natural rainfall, Model. Earth Syst. Environ., 10 (2024), 1573–1588. https://doi.org/10.1007/s40808-023-01854-8 doi: 10.1007/s40808-023-01854-8
    [41] G. Agrawal, A. K. Agrawal, J. Dhar, Effects of human population and atmospheric pollution on rainfall: A modeling study, J. Indian Math. Soc., 91 (2024), 550–564.
    [42] G. Agrawal, A. K. Agrawal, A. K. Misra, Modeling the impacts of chemical substances and time delay to mitigate regional atmospheric pollutants and enhance rainfall, Phys. D: Nonlinear Phenom., 472 (2025), 134507. https://doi.org/10.1016/j.physd.2024.134507 doi: 10.1016/j.physd.2024.134507
    [43] T. K. Kar, A. Batabyal, Stability analysis and optimal control of an SIR epidemic model with vaccination, Biosystems, 104 (2011), 127–135. https://doi.org/10.1016/j.biosystems.2011.02.001 doi: 10.1016/j.biosystems.2011.02.001
    [44] T. K. Kar, S. Jana, A theoretical study on mathematical modelling of an infectious disease with application of optimal control, Biosystems, 111 (2013), 37–50. https://doi.org/10.1016/j.biosystems.2012.10.003 doi: 10.1016/j.biosystems.2012.10.003
    [45] S. Singh, Modeling the effect of global warming on the spread of carrier dependent infectious diseases, Model. Earth Syst. Environ., 3 (2017), 39. https://doi.org/10.1007/s40808-017-0292-1 doi: 10.1007/s40808-017-0292-1
    [46] D. L. Lukes, Differential Equations: Classical to Control, Academic Press, 1982.
    [47] W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975.
    [48] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, 1962.
    [49] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, CRC Press, 2007. https://doi.org/10.1201/9781420011418
    [50] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, 2015. https://doi.org/10.1007/978-1-4899-7612-3
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(851) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog