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Abstract: The spread of diseases poses significant threats to human health globally. The dynamic
nature of infectious diseases, especially those that also rely on carriers (e.g., house flies) for
transmission, requires innovative strategies to control their spread, as environmental conditions such as
temperature, humidity, etc., affect the rate of growth of the carrier population. This study introduces a
mathematical model to assess the effect of increasing global average temperature rise caused by carbon
dioxide emissions and chemical control strategies on the dynamics of such diseases. The stability
properties of feasible equilibrium solutions were discussed. Sensitivity analysis was also performed
to highlight the key parameters that may help to design effective intervention strategies to control
disease transmission. The model was further analyzed for an optimal control problem by incorporating
a control measure on the application rate of chemical insecticides to reduce the carrier population.
Through the combination of analytical techniques and numerical simulations, we have evaluated the
effectiveness of chemical control strategies under varying epidemiological parameters. The model also
explored the critical thresholds necessary for achieving disease control and eradication. Our results
are valuable to public health officials and policymakers in designing effective interventions against
carrier-dependent infectious diseases.
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1. Introduction

Over recent decades, the emergence of infectious diseases has increased significantly, posing
serious threats to human health, worldwide. Some diseases spread in humans through the direct
contact between susceptible and infected individuals [1]. However, certain diseases, like Typhoid
fever, Salmonellosis, etc., spread in humans through carriers, like houseflies, apart from direct contact
between susceptible and infected individuals. This is because of the fact that carriers transfer the
pathogens of the diseases from contaminated sources to the edibles of humans, thus contaminating
them. Due to the uptake of these contaminated edibles, individuals acquire the infection and make the
disease more endemic in several regions of the world [2]. Research studies indicate that the increasing
population density, healthcare disparities, global climate change, and the adaptive evolution of
pathogens are the key factors for the emergence and proliferation of infectious diseases globally.
These factors act synergistically to enhance disease transmission, promote the survival and spread of
pathogens, and exacerbate the persistence of infectious diseases across diverse populations and
regions [3,4].

The correlation between the growth rate of the carrier population and temperature rise is studied by
some researchers and it is pointed out that temperature rise attributes to the reproduction process of
carriers and thus increases the density of carriers [5]. Over recent decades, the global atmospheric
carbon dioxide (CO,) level has been increasing due to anthropogenic activities, like urbanization,
combustion of fossil fuels, deforestation, industrialization, etc., and is expected to continue rising [6].
It is noted that the global average temperature has also increased and is continuing to increase, but it
was nearly constant before the pre-industrialization era [7]. The rise in this global average surface
temperature is directly associated with the rising level of atmospheric carbon dioxide. Numerous
research studies have highlighted that increasing carbon dioxide and temperature significantly
contribute to the population density of vectors responsible for transmitting infectious diseases [8—10].
The elevated temperature creates favorable biological and ecological conditions for the growth of
carriers, like houseflies [11, 12]. Higher temperature accelerates the metabolic processes of carriers,
leading to faster development through their lifecycle phases (egg, larva, pupa, and adult). Eggs and
larvae are less likely to perish in warmer conditions, ensuring higher survival rates and larger
population [13, 14]. Global warming has also facilitated the expansion of vector habitats into regions
previously restricted by colder climates. This geographical spread, combined with longer breeding
seasons and improved survival rates, underscores the role of global average temperature rise in
amplifying the ecological and epidemiological impact of vectors [15, 16].

Carrier-dependent diseases are significant contributors to localized outbreaks, resulting in
considerable morbidity and mortality worldwide. The implementation of an effective vector (carrier)
control strategy contributes in mitigating the transmission of these diseases. Such measures reduce the
incidence of infections, thereby minimizing the risk of widespread epidemics. The application of
insecticides is one of the most effective strategies to control vectors, provided it is utilized
appropriately [17, 18]. Studies indicate that insecticides can be highly effective in vector control if
used at the appropriate time and in an appropriate amount. The development of a vector, such as a
housefly, typically takes about 7 to 10 days from egg to adult under favorable conditions, which
include warm temperatures. Therefore, for the reduction of infectious diseases, the insecticides
should be used during the vector’s peak activity for optimal efficacy [19, 20]. Alongside this,
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insufficient application of insecticides may fail to adequately control the vector population, thereby
permitting their survival and continued transmission potential. Whereas, the overuse of insecticides to
control the vectors increases the cost as well as possibly having damaging health outcomes for human
beings. Thus, applying the correct amount of insecticides is crucial to control the vector population
with minimum cost, which can be obtained by applying the insecticides in proportion to the vector
population density [21].

During the past few decades, numerous mathematical models have been developed to capture the
dynamics for the proliferation of infectious diseases and their possible control mechanisms, like
vaccination, quarantine, medication, awareness, etc., and it is pointed out that these control
mechanisms can halt the spread of diseases [22-29]. In recent past decades, the role of the carrier
population on the disease transmission has also been studied by formulating mathematical
models [30-33]. In particular, assuming that the carrier population follows logistic growth with an
intrinsic growth rate and carrying capacity as a function of the human population, Singh et al. [34]
analyzed a mathematical model and concluded that the presence of a carrier population renders the
disease endemic in the considered region. To combat the transmission of carrier-dependent infectious
diseases, Misra et al. [35] formulated and analyzed a mathematical model by assuming that the
chemical insecticides are dispersed in proportion to the density of carriers in the considered region to
reduce the density of the carrier population. They pointed out that the use of chemical insecticides is
beneficial to reduce the infection in the region, but delay in spraying the chemical insecticides may
lead to the destabilization of the system. As sprayed chemical insecticides may harm the human
population and may be an economic burden on the government, therefore an optimal control problem
is studied by Lata et al. [36] for optimal use of chemical insecticides to control the carrier population,
and thus the disease.

As previously discussed, it is noted that an increase in the global average temperature significantly
influences the proliferation of the carrier population, which may influence the transmission of
infectious diseases among human beings. Therefore, in this study, we propose a mathematical model
to assess the effect of global average temperature rise on carrier-dependent infectious diseases. We
also aim to discuss a control strategy to reduce the carrier population as well as the proliferation of
infectious diseases among the human population.

2. Mathematical model

We present a non-linear dynamical model by incorporating six variables and some non-negative
parameters, with the aim of assessing their interactions based on certain assumptions. For this, we
consider the dynamic variables, the concentrations of atmospheric CO, and global average temperature,
and denote them as C(¢) and T'(t), respectively. Further, densities of total human population and carriers
are represented as N(¢) and F(t), respectively. Now, we divide the total human population into two
subpopulations, such that N(¢) = S(¢) + I(¢). Here, S (¢) is the density of susceptible individuals, who
are at risk of contracting the infectious disease, and /() are those who are already infected and capable
of spreading the infectious disease. Along with this, the variable P(¢) represents the concentration of
sprayed chemical insecticides to control the population density of carriers.

In the process of modeling, we assume that the concentration of atmospheric carbon dioxide rises
at a constant rate Q and it also increases at a rate u/N due to anthropogenic activities. Since during
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the pre-industrial era, the atmospheric level of CO, and the global average temperature were nearly
constant, we represent the pre-industrial level of carbon dioxide by a constant Cy and take the dilution
rate coefficient as @,. Thus, we incorporate the change in concentration of atmospheric CO, per unit
time by a((C — Cy). Furthermore, it is observed that the increase in the atmospheric CO, also results to
an increase in the level of global average temperature. Therefore, representing the pre-industrial level
of global average temperature by a constant 7)), we assume that the global average temperature raises
at a rate 6(C — Cy) and diminishes naturally at a rate 6o(T — T), where 6 and 6, represent the growth
and depletion rate coefficients [37].

Proceeding further, it is assumed that the population density of susceptible individuals increases at
a constant rate A, encompassing birth and immigration. The spread and proliferation of infectious
disease is supposed to occur among the susceptible population primarily through two routes: direct
contact between susceptible and infected persons and indirectly via carriers. Thus, we assume that the
susceptible population gets infected at a rate S caused by direct interactions with the infected
population, and indirectly due to the carrier population, and the susceptible population gets infected
by consuming the carrier-induced contaminated edibles. In indirect transmission, we consider that the
susceptible population transitions to the infected class in proportion to the density of the carrier
population, having the disease transmission rate A, by following a saturated-type functional response
AS F/(m + F). Here, m represents a half saturation constant as the disease transmission rate becomes
half when F reaches to m. Further, the densities of susceptible and infected individuals are assumed to
be diminished due to natural mortality at a rate dS and dI, respectively; and the density of infected
individuals is also reduced by disease-induced mortality at a rate @/. Since individuals recovering
from carrier-dependent diseases do not obtain lifelong immunity and remain susceptible to
reinfection, therefore, we place the recovered individuals from the infected to the susceptible class
with the recovery rate vI.

Further, the growth rate of the carrier population is supposed to follow a logistic growth equation
governed by

dF F
] PR
dt Ky

where r, represents the intrinsic growth rate, and K, is the carrying capacity of the carrier population.
It is observed that temperature, humidity, precipitation, ecological changes, etc., all are crucial factors
that affect the growth of the carrier population and thus the disease transmission; however, temperature
significantly moderates the birth and growth of carriers. In the modeling phenomenon, we explicitly
consider the global average temperature (7°), which is caused by global carbon dioxide emissions (C).
Though other factors like humidity, precipitation, and ecological changes also play an important role,
to ensure clear, specific, and meaningful results, we focus on studying only one factor, i.e., temperature.
It is noticed that warmer temperature provides more favorable environmental conditions for carriers to
grow and enhance their population, which leads to a larger carrier population. Thus, we assume that
r(T) is the per-capita growth rate of the carrier population, which increases with the change in the
global average temperature (7') such that »(0) = ry > 0 and j—; > 0. Also, K(T) is considered to be
the carrying capacity of the carrier population, affected by the global average temperature such that
K(0) = Ky > 0 and Z—IT( > 0. Thus, the modified change in the growth rate of the carrier population is
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considered as
dF F?

E = I"(T)F - I’om.
Moreover, it is observed that the haphazard disposal of garbage by humans contributes to the
proliferation of carrier habitats. Therefore, we consider that the density of the carrier population
increases at a rate pNF due to anthropogenic activities. Also, carrier population density naturally
decreases because of unfavorable environmental conditions at a rate ¢oF. To control the carriers,
chemical insecticides are assumed to be sprayed in the habitat of carriers in proportion to the density
of the carrier population at a rate ppF. It is also assumed that the concentration of chemical
insecticides naturally depletes at a rate poP. The concentration of chemical insecticides depletes at a
rate u; PF because of its uptake by the carriers, and due to the absorption by carriers, their population
density decreases in proportion to the uptake of chemical insecticides at a rate mu PF.
Thus, the proposed model system is given by:

dcC

E:Q_Q'O(C_CO)"',UNa

dT

EZH(C_CO)_QO(T_TO)’

d

—S:A—,BSI—/IS +vI—dS,

dt m+F

dl F (2.1
E—ﬁSI'i‘/lSm—(V'l'a"Fd)I,

ar (T)F F + ¢NF — ¢oF PF.
— = —F - -

d k) e b —muPE,
dP— F P PF

dr = M2 Ho mrr,

having initial conditions C(0) > Cy, T(0) > Ty, S(0) > 0, 1(0) > 0, F(0) >0, P(0) > 0.
Now, in order to analyze model system (2.1), we consider S + I = N and rewrite the above model
system as the following model system:

dC
P 0 — ap(C — Cp) + uN,
dT
o7 0(C — Co) — 6o(T —Ty),

N
Cil_t =A—-dN-al,

dl F (2.2)
7 —,B(N—I)I+/1(N—I)m—(v+a+d)1,
ar_ (TF F + ¢NF F PF
dt =7r r() K(T) ¢ ¢0 ﬂ-llJl ’
ap = F P PF

dt =2 Ho M1 )

having initial conditions C(0) > Cy, T(0) > Ty, N(0) > 0, 1(0) >0, F(0) >0, P(0) > 0.
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Lemma 1. The bounded set, containing the region of attraction for model system (2.2), which attracts
all solutions to the interior of the positive orthant, is given as:

S

Qz{(C,T,N,I,F,P)eRi:CosCscm,TOSTSTm,OSISNs

Fo
0<F<F,0<p<? }
Ho
where C,, = Co+$(Q+#T}4)’ T, = To+$(Q+”7A), and F,, = %ﬁ’”){r(Tm)+%—¢o}. Here,

(r(Tm) + % - ¢0) is assumed to be positive. The proof can be followed by [38, 39].
3. Feasibility of equilibrium points

We determine the equilibrium points of model system (2.2) by nullifying the time derivative of all
dynamic variables. Results of the analyzed equilibria are summarized in the below-mentioned theorem.
Theorem 1. For the model system (2.2), three non-negative equilibria exist:

e Disease-free equilibrium (DFE), Ey(C,T, %, 0,0,0). Here, C = Cy + %(Q + ,u%) and T = Ty +

0 A
a2+ 1)

A n A a N A + +a+d
e Carrier-free equilibrium (CFE) E\(C,T, N, 1,0,0), where C = Cy + g + HB oy + @ )),

g aoB(a +d)
- 00 OGuBA+a(v+a+d) . PA+av+a+d) . PA-(v+a+dd .
T=tot ™ atfard VT pard i =T Bt s

equilibrium is feasible if the basic reproduction number Ry = m > 1
V+a

e [Interior equilibrium E*(C*,T*,N*,I", F*, P*) exists provided Fy > 0, where F is defined in the
proof.
Proof. The existence of all three equilibria can be determined by analyzing the following set of

equations. For simplicity, we keep the same variables with different symbols, using the overline, hat,
and asterisk to distinguish the carrier-free, disease-free, and interior equilibrium points, respectively.

0 —ay(C - Cy) +uN =0, (3.1)
0(C — Cy) — 6(T - Ty) =0, 3.2)
A—dN —-al =0, 3.3)
BN DI+ AN -D—— v+ a+di =0, (3.4)
m+ F
F2
}"(T)F - r()K T) + ¢NF - ¢0F - 7T1/.11PF = O, (35)
W F — ugP — u PF = 0. (3.6)

Since it is readily apparent that the disease-free equilibrium Ey(C, T, %, 0,0,0) exists, the proof is

omitted. Now, the proofs for the existence of carrier-free equilibrium E I(C’, T.N,1,0, 0) and interior
equilibrium E*(C*,T*,N*, I, F*, P*) are as follows:
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3.1. Feasibility of carrier-free equilibrium (CFE) EI(C’, T,N,1,0, 0)
For the case when F =0, P = 0, and I # 0, from Eq (3.4), we have

BIN-1)-(v+a+d)=0. (3.7)

By Eq (3.3), we have

(3.8)
Thus, using Eq (3.8) in (3.7), we get

A av+a+d) PA+taiv+ta+d) .

= =+ = 39
a+d Bla +d) Bla +d) (3-9)
Thus, from Egs (3.8) and (3.9), we obtain
A—dN BA- dyd .
I = _pA-Uratdd (3.10)
a Bla +d)
hich i itive if BA —d(v+a +d) i ter th i.e., R pA > 1
which is positive i - is greater than zero, i.e., Ry = ————
P v g T dvtatd
Further, using Eqgs (3.1) and (3.2), we get
QO uPBA+a(v+a+d) A
C=Cy+—+ =C
0 o7 aof(a +d)
and 0 Ou(BA d
T =Tyt 0 N u(BA + a(v+ a + )):: P
(1’090 Ckogoﬁ(a’ + d)
Hence, CFE equilibrium E 1(@ , T, N, i, 0, 0) exists only when Ry > 1.
3.2. Feasibility of interior equilibrium E*(C*,T*, N*,I", F*, P*)
Using Eqgs (3.1) and (3.3) in Eq (3.2), we obtain the variable T as a function of /, given as
0 Ou(A — al
r=r,+ 22 WA aD (3.11)

(1’()90 da()HO

Now, putting Eq (3.11) into Eq (3.5), we obtain an equation involving both the variables / and F, and
denote it by H(I, F') as follows:

(A —al)p
H(I,F) = D) - + - —— — ¢ =0. 3.12
(I, F) = r(f(D) rOK(f(I)) p ﬂlﬂl/lz(u0+mF) $o (3.12)
Differentiating the function H(I, F) partially with respect to F, we get
OH ro TO1 M1 Moo ( A)
— =- - #0,VI1e(0,—], 3.13
oF K(f(D)  (uo+mF)? a 613

because the parameters ry, 7y, Ui, M2, Mo are non-zero. Thus, by the implicit function theorem, we
can write F = g(I), VI € (O, g‘) By Eq (3.12), we can observe that the function H(I, F) is a decreasing
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function of F for every fixed I. Thus, for every fixed value of I, if a solution exists, it is unique. That
defines FF = g(I). Here, it is worth noting that the functions f(I) and g(I) are defined for I € (O, f;‘)
Here, it may also be noted that we always have a unique positive value of F (say Fy) for I = 0 if and
only if
A¢

r(f(0)) + " oo > 0. (3.14)
Here, F is the unique positive solution of H(0, F') = 0, which yields a quadratic equation and provides
a positive value F) under the necessary and sufficient condition (3.14).
Proceeding further, using Eqs (3.3) and (3.4), and substituting F' = g(I), we derive an equation in the
variable I and denote it by G(/) as:

A- (a+d)1}l+/l{A—(a+d)I} (D)
d d m+ g(I)

G(I) :B{ ~(v+a+d)I=0. (3.15)

From (3.15), we may note that

_ AAF, A __(v+a+a’)A
G0)=— >0, and G(—)— —(a+d)

0. 3.16
d(m + Fy) a+d = (3-16)

To show the uniqueness of the obtained positive root, first we differentiate the function G(I) with
respect to / and get

A—(a+d)l
d

G'() :/3{ (3.17)

}_(V+a+d)_ﬂ(oz+d)l_ Ae + d)g() Mm{A—(cHd)I} g

d d(m + g(I)) d (m + g(D)*

Since fi—’; = g'(I) < 0, this implies that G’(I) < 0 for I*. Now, let us assume the contrary that there
exist two distinct roots I # I3, such that G(I7) = G(I7) = 0. If both the roots I7 and I are of odd

multiplicity (in particular, one), then G(0) > 0, G(I*) = 0, G(%) <0, G(I3) = 0,and G () > 0.
The last inequality contradicts the fact that G (ﬁ) < 0 as shown in (3.16). Hence, one of I} and I has
an even multiplicity (say, 2). Then, we may assume that /{ has multiplicity two, and then G’(I7) = 0.
But, according to Eq (3.17), G’(I7) < 0. Hence, this is a contradiction.

Further, let us assume that there exist three distinct roots I7 # I; # I3, and they all must be of odd
multiplicity, so that G (-2;) < 0. But, according to Eq (3.17), G'(I) < 0; i = 1,2,3, and this is

a+d
impossible as G(/) must be increasing at one of these three intersections. Hence, multiple solutions of
G(I) are not possible. Thus, Eq (3.15) has a unique solution /* in the interval (O, ﬁ) if and only if
A
r(f(0)) + 7¢ — ¢o| > 0. Thus, using this unique positive value of I*, we obtain the unique positive

values of C*, T*, N*, F*, and P*. Hence, the interior equilibrium (E*) exists.

Remark 1. The analytical results show that % > 0, % > 0, % > 0, and % > 0. These findings
highlight that an increase in the emission rate of carbon dioxide due to human activities leads to
enhance the density of infected individuals as well as the density of carriers. Additionally, the findings
”‘fl—g > 0 and ”% > 0 depict that as the density of carriers caused by human-driven activities increases,
the densities of infected persons as well as carriers both increase. Thus, these findings suggest a direct
correlation between carbon dioxide emissions and infectious disease transmission. The environmental
changes, like global warming or altered ecosystems, may create conditions more favorable for the

proliferation of the carrier population, and thus may increase the endemicity of disease.
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4. Local stability analysis

To analyze the local stability of DFE and CFE, we evaluate the Jacobian matrix for our model (2.2)
at the corresponding equilibrium points, i.e., Ey and E;, and examine the sign of the real parts of the
roots of the obtained characteristic equation. For this, we have the matrix J(E) for system (2.2) as

-0 0 u O 0 0
6 -6 0 O 0 0
0 0 -d -« 0 0
JB) = 0 0 a3 au ass 0 ’
0 a, ¢F O ass —mu F
0 0 0 0 (u-mP) —(uo+mF) |
where
=Bl+ A F =B(N-2I)-2 F v+a+d) =AN-1)
a3 = m+ F’ das = m+F yra s = (m+ F)*’
) F2K'(T)
as; = r'(1)F + FOW, ass =r(T) - 2FOK(T) + ¢N — ¢o — iy P.
Now, on evaluating the matrix J(E) at DFE Eo(a T, %, 0,0,0), we get four negative eigenvalues given
as —ag, —80y, —Ho, —d, and the other two eigenvalues are obtained as r(T) + ¢% - ¢¢ and
A

2 — (v + @ + d). Here, it may be noted that the eigenvalue ﬁ% — (v + a+d) can be written as
(v + @ + d)(Ry — 1), which is positive (or negative) for Ry > 1 (or Ry < 1). Thus, DFE
Eo(C,T, %, 0,0,0) is stable only when r(T) + ¢§ —¢o < 0 and Ry < 1. Further, the analysis of the
evaluated Jacobian matrix, corresponding to CFE E,(C,T,N,1,0,0) reveals that one of the
eigenvalues r(T) + qﬁN — ¢o > 0 if the interior equilibrium E* exists. Thus, CFE E; is unstable if E*

exists. The results for the local stability of DFE and CFE are summarized in the following theorem.

Theorem 2. (i). The disease-free equilibrium Eo(C,T, ’3, 0,0,0) is stable only when rn(T) + ¢% -
¢0 < OandRO <1
(ii). The carrier-free equilibrium EI(C', T.N,1,0, 0) is stable ifr(f") + ¢N — ¢y <O.

The given theorem provides conditions for the stability of the DFE and CFE of the
epidemiological model (2.2). Practically, the DFE implies that the system will tend to eliminate the
disease and maintain a state free of infectious disease if the two mentioned criteria are satisfied for its
stability. First, the intrinsic growth rate of the carrier population (#(7)) and the increase in carriers due
to the anthropogenic activities (¢>%) collectively must not exceed the natural depletion rate of the
density of carriers because of unfavorable environmental conditions (¢,). Also, the basic reproduction
number being less than unity indicates that, on average, an infected individual transmits the disease to
fewer than one person. This theorem underscores the importance of reducing R, through public health
interventions and controlling factors contributing to disease spread. Further, the stability of the
carrier-free equilibrium E 1(6‘ JT.N,I,0, 0) indicates that the system will eliminate the carrier
population while allowing other components of the system to persist in a balanced state. The

condition 7(T) + 9N — ¢y < 0 implies that the intrinsic growth rate of carriers, 7(7") combined with
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the increment in carrier population due to anthropogenic activities (¢N), must be less than the natural
depletion rate of carriers resulting from unfavorable environmental factors (¢y). In this condition,
carriers cannot sustain their population, which is crucial in breaking the transmission cycle of
carrier-dependent infectious diseases. From a practical perspective, it emphasizes the importance of
controlling environmental and anthropogenic factors that promote carrier proliferation to achieve a
stable carrier-free equilibrium.

Proceeding further, we present the following theorem and its proof using Lyapunov’s stability theory
regarding the local stability behavior of interior equilibrium [40].

Theorem 3. The interior equilibrium E*(C*, T*, N*,I*, F*, P*) exhibits the local asymptotic stability
provided the underlying inequalities are satisfied:

3a P F? < 2B8%dI™*(m + F*)?, (4.1)

27a’(N* - I'V’m?  rgp*dl”

St P KT “2)
a(uy — u PHK(TY) 4ag6;ropd
T ) 9262 L (T oK' (T*)F*\* @
WO\ T = Koy

Proof. Let us consider the small perturbations around the interior equilibrium E*(C*, T*, N*, I*, F*, P*)
as

C=¢+C, T=0,+T, N=it+N*, I=i+I', F=f+F, P=p+P,
and define a function
mo_, Mi.p; Ny _o, M3~m My zyp M5 5
¢ — —f 4+ —=p°, 4.4
2 2 2 TR Y “44)
where the constants ms,i = 0, 1,..., 5, have arbitrary positive values. Now, we get the time derivative
of the function V along a linearized solution of system (2.2) as

dv AF*N* | - - ~
E =—my {m} iz — mS(/J() +/11F*)ﬁ2 — moaoéz - m190t32 - mzdflz - m3ﬁl*i2

if + (mopnc + (m,0)ct,

F* AF* ~
—m4r0—f7+m3( )ﬁl+m3/l(N*—I*)
m

m
K(T%) + F* (m + F*)?

’ * * rOK’(T*)F*z ~ N\~ [ * %) ~
+ my {r (THF" + KT Lof + (mapF)if + {ms(uo — iy P*) — mymypu F3p f
+ (m3BI" — mya)iti. 4.5)
Now, on choosing the constants m, = f—j, my =+, my = % and ms = 1, 4 remains negative

definite provided the underlying inequalities hold:

30 °F? < 2B8%dI™*(m + F*)?, (4.6)
2004,
amy < 22098 @.7)
3u
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b,
my < %mo, (4.8)
2 * _ p\2,,,2 * _ *
A“(N I)mK(T)<2(Mz H1P?) 4.9)
roﬁl*z(m + F*)4 371'1/11
a(uy — ui P*) - 4Bdr, N 4.10)
Ty 9K(T~)¢
4(ﬂ29—,u1P') < 2rofom; N @11
M roK' (T*)F*
3K(T*) {r’(T*) + —}
(K(T))?
Using the inequalities (4.7), (4.8), and (4.11), we get
- * 4ryf2ald
G =P robyrodp . (4.12)
T roK'(T")F”
The inequalities (4.9) and (4.10) reduce to
2 * *\2 .2 202 J7+2
27a>(N* = I')*m roBdl 4.13)

< )
8(m + F*)* ¢*(K(T*))>?
Thus, E* exhibits the local asymptotic stability under the conditions (4.6), (4.12), and (4.13).

Remark 2. For @ = 0, we noticed that N* = A/d, which is a fixed value. It clearly says that the
equilibrium value of N*, i.e., the sum of susceptible and infected individuals, will always be constant
irrespective of infection in the community. In this case, the interior equilibrium, if it exists, will always
be stable and the endemicity of disease will be independent of other parameters.

The local asymptotic stability of the interior equilibrium is contingent on satisfying a set of
inequalities that collectively govern the interplay between disease dynamics, environmental
conditions, and anthropogenic influences. The obtained inequalities define the thresholds and
conditions under which the interior equilibrium remains locally stable. Practically, this means that
disease persistence and coexistence of infected and carrier populations are possible but require finely
tuned ecological and epidemiological parameters to prevent instability. This analysis underscores the
importance of managing resources, reducing anthropogenic pressures, and controlling
transmission—related factors to achieve stability in complex disease ecosystems.

5. Global stability analysis

We analyze the global stability of equilibrium E* by employing Lyapunov’s direct method [41,42]
and provide the underlying theorem.

Theorem 4. With the consideration that r(T) satisfies 0 < r'(T) < p for a positive constant p,
and K(T) satisfies 0 < K'(T) < q for a positive constant g, the interior equilibrium E* exhibits the
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global asymptotic stability behavior inside the region of attraction Q provided the underlying
inequalities hold:

3(}//12 < 2ﬁ2d1*2’ (51)
4ﬁdi’0
o | 52
/12m2(N* — ]*)2 - 2(uo —,UIP*)”Oﬁ’ (5.3)
(m+ F*)2(m + F,)* 12 3K(T™)
4a26%rodp
Wy — 11 P*) < 0’0 5.4

2
9022 K(T™) {p + rOFm%}
KO

Here, F,, represents the maximum value of the density of the carrier population.

Proof. To prove the aforementioned theorem, we employ Lyapunov’s direct method, and consider the
following function:

n * n * n * * * I
W = TO(C—C)2+E](T—T)2+32(N—N)2+n3(1—1 ~1 lnF)
* * F ns 0\ 2
tm|F=F = Fln—|+ 2P~ P, (5.5)

where the constants n)s,i = 0,1,..,5, have arbitrary positive values. Proceeding further, the
differentiation of the function W given by Eq (5.5) with respect to time ¢, and some algebraic
simplifications, yield that,

dw _ >M 2 _ Val _ n1_90 _ 2
— = _2(c C'Y = m(C = CYT = T*) + =52(T T)]
— | 5HC =€) = nou(C = CH(N = N) + ”g—dw - N*)Z]
:nzd 2 AF . " nsf 2
—>T(N—N) —n3m(N—N)(I—I)+T(I—I):|
_ _M _ *\2 _ _ s« _ % n4ro _ 2
3 (N=N") —nyp(N-N")F - F") + 3K(T*)(F F )]
- _nl—QO(T—T*)z—n (F(T) + roFg(T))(T = T*)(F — F*) + —210_(p _ pry?
2 4 08 3K(TY)
[ B 2 Am(N* = I*) . . n4ro 2
S e e R e DT gy F )]

ANF
—n3 {m} (I =TIV + (mff = ma)(N = NYI = I') + (ns(uz — 11 P")

~ mmipu )(F = F)(P = P) = ns(uo + i F)(P = P (5.6)
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Here, we specify f(7T') and g(T) as a function of temperature 7 such that:

() -r@T)
f=2, -1 (5.7)
-, T =T,
dT
KT -KT) 1 T
K2(T*) dT’ o

Now, with the consideration of this theorem, on applying the mean value theorem, the underlying
results are obtained:

f(DI<p and |g(T)| < % (5.9)
0

Proceeding further, by employing Sylvester’s criterion and choosing the constants n, = 8/a, n3; = 1,
ng = (uy — i P*), and ns = mu,, the derivative dstV is negative definite provided the underlying
inequalities hold:

b,
ny < %no, (5.10)
2a06d
any < 22004 (5.11)
3u?
3a? < 2B%dI7, (5.12)
2ro6

(12 = i P < T (5.13)

3K(T™) {p ; rOFm%}

0

4ﬁdi’0

- PHg? : 5.14
a(pp — 1 PH)$” < OK(T") (5.14)

/12 2 N* I 2 2 _ P*
m=( ) - (12 ,Ull roB (5.15)

(m + F*)*(m + F,,)*I*2 3K(T*)

Using the inequalities (5.10), (5.11), and (5.13), we get
4a’0rodf
auy = P") < — 3 (5.16)
96°u>K(T~) {p + rOFm%}
0

where F,, = %ﬁm) {r(Tm) + % - ¢0}, and thus, under the bounded set (2, the equilibrium

E*(C*,T*,N*,I", F*, P*) shows the global asymptotic stability, provided the conditions (5.12), (5.14),
(5.15), and (5.16) are satisfied.
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6. Formulation of the optimal control problem

In the optimal control problem, we present a strategy to minimize the carrier population, along with
the spraying rate of chemical insecticides. We focus on minimizing the carrier population since the
carriers affect the susceptible individuals and infect them leading to the proliferation of the infectious
disease. Therefore, to reduce the spread of carrier-dependent infections, we must focus on reducing the
carriers through which the infection is proliferating. By the proposed model system, it can be seen that
a reduction in the carrier population directly leads to a reduction in the number of infected individuals.
To achieve this, we apply the optimal control measures, aiming at minimizing the carrier population
through the use of chemical insecticides. In the present section, we devise a strategy to minimize
the carrier population, along with the spraying rate of chemical insecticides. Here, the spraying rate
coeflicient y;, is treated as a Lebesgue measurable function over a finite time interval [0, 7], rather than
a constant. As a result, u, becomes a variable, denoted by w(r). With this assumption, our objective is
to minimize the total cost functional J(w), allowing us to reformulate model system (2.2) accordingly.

dcC

o QO — ao(C - Cy) + uN,

dT

i 0(C — Co) — 0o(T — T)),
dN
— =A—-dN-al,

dt

dl F . (6.1)
— =B(N-DI ——— - I

=BV = DI+ AN ~D—— — v+ + d)L.

dF—(T)F— F2+NF— F - PF.

i rOK(T) ¢ ¢oF — 711 PF,

dP

— =w(t)F — uoP — 1, PF,

dt

subject to the initial conditions C(0) > Cy, T(0) > Ty, N(0) > 0, 1(0) > 0, F(0) > 0, P(0) > 0.
Ty
Jw) = [P F(t) + Q\w*(f)dL. (6.2)

0
In the cost functional, the constants P, and Q; represent positive weights that ensure the units of the
integrands in J(w) are balanced. The term P,F(¢) represents the costs incurred due to the epidemic
and the carrier population, while Q;w?(¢) reflects the expenses associated with the application of
chemical insecticides to reduce carrier density [43—45]. Our objective is to determine the optimal
control function w* such that

J(w*) = min J(w), (6.3)

welU

subject to (6.1), where U is the control set, and is defined as:

U= {(w) > wis measurable, 0 < w < w,,,, for t € [0, Tf]} .

6.1. Existence of optimal control
Theorem 5. There exists an optimal control w* € U such that

Jw") = IIIEIIIJI J(w), (6.4)
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subject to the system (6.1) with initial conditions.

Proof. The boundedness of the solution to system (6.1) confirms the existence of a valid control
solution. Consequently, both the control variable and corresponding state variables are guaranteed to
exist. Additionally, the convexity condition for the objective functional in w(f) is satisfied. It is
defined that the control set is characterized as both convex and closed, and there exist positive
constants py, p, > 0, and g > 1 such that

PiF(t) + Quw*(t) = pa( w )Y - pu,

where p; and p, depend on F(¢) and Qy, respectively. For details to assess the feasibility of the optimal
control problem, follow the results from Lukes (Theorem 9.2.1, page 182) [46], and Fleming and
Rishel (Theorem 4.1, pages 68 and 69) [47].

6.2. Characterization of optimal control

After defining the optimal control problem, the principle of optimal control, known as
Pontryagin’s maximum principle [48,49] is utilized to establish the necessary conditions for obtaining
the optimal control strategy. This leads to the formulation of the Hamiltonian function, which
represents the dynamics and cost structure of the control problem:

H(C’T’N’I’F’P’W’gl’{29{3’é’4’§5’é’6) = PlF(t) + Q1W2(1)+{1 [Q_QO(C_CO)JF#N]

+ 4 [6(C = Co) = 6p(T — To)]
+{3[A—dN—a/I]

+4 ﬁ(N—I)H/l(N—I)L —(v+a+dl
m+F
2
+ {5 r(T)F—FOK(T) +¢NF—¢0F—7T1/11PF}
+ 6 [WIOF — poP — iy PF], (6.5)

where {’s, i = 1,2,...,6, stand for the adjoint variables. Now, the below given set defines the
corresponding differential equations for these variables:

OH
&= ~5¢ = Qa0 = &6,
. 0H , , F?
4’2 = _a_T = 4’200 — 55 [r (T)F + r()K (T)W’T)} 5
O0H [ F
&= AN »{1#—§3d+§4(,31+ m+F)+§5¢F ,
OH [ AF
=" =~ —{3a+{4(B(N—21)—m—(V+a+d)) ,
oH | 210F
&==5F = | P+ aw- Do TG (r(T) ~ X N 9o —mmP) + Go(w —mP)},
OH
& = TP S F + Le(po + i F). (6.6)

The transversality conditions are given by {i(Tf) = 0, i = 1,2,...,6. The optimal control w* is
determined through the condition g—fvl = 0 at w = w", valid on the interval r € [0,T/] : 0 < w(r) < w".
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This leads to the expression w* = —% within the interior of the control set. The outcomes are

compiled and presented in the subsequent theorem.

Theorem 6. The optimal control w* € U for system (6.1), which minimizes objective functional (6.2)
in the specified interval [0, T], is defined as

w" = max {0, min (%, wmax)} ) 6.7)

7. Numerical simulation

To verify the analytical results and visualize the dynamic behavior of our model (2.2), we perform
numerical simulation by considering the parameter values listed in Table 1, unless stated otherwise.
Since the per-capita growth rate and carrying capacity of carriers are assumed as a function of global
average temperature as discussed in the modeling process, therefore for performing the numerical
simulation, we consider r(7T") and K(T) as a linear function of temperature 7', such that »(T) = ro + T
and K(T) = Ko + K, T, satisfying the conditions r(0) > 0, 4 > 0 and K(0) > 0 45 > 0, respectively.

Table 1. Values of the parameters used in model system (2.2).

Parameter Unit Value Parameter Unit Value

0 ppm day~! 0.05 6o day~! 0.01

A persons day ™! 100 u ppm persons™ 'day ™! 0.0008
Ko flies 1000 ¢ persons~'day™! 0.00002
K, flies °C~! 50 b0 day™! 0.04

d day™! 0.01 ro day~! 0.05

m flies 2000 T day~! °C™! 0.0001
o day™! 0.0125 m flies kg™! 1

@ day™! 0.2 o day~! 0.0002
A day™! 0.02 U kg flies™! day™! 0.03

B persons™!day~! 0.00001 flies™! day™! 0.00004
% day™! 0.02 Co ppm 280

0 °C ppm~! day™! 0.0005 T, °C 15

Now, at the parameter values, given in Table 1, the calculated value of the basic reproduction number
(Rp) 1s 0.4347, which is less than unity; and the equilibrium E* of the system (2.2) is evaluated as:

C* =555.16, T* = 28.76, N* = 4236.87, I' = 288.16, F* = 4560.24, P* = 749.18.

On evaluating the eigenvalues of the Jacobian matrix at the interior equilibrium E*, we get six
negative eigenvalues as —0.03736, —0.08158, —0.1926, —0.1826, —0.0109 =+ 0.0032i, which are
either negative or possess negative real parts. Thus, the interior equilibrium (E*) is locally
asymptotically stable. Moreover, to visualize the global stability of E*, we plot the solution
trajectories of model system (2.2) in the N-I-F and I-F-P spaces with different initial conditions that
lie in the basin of attraction. The resulting solution trajectories consistently converge toward the

Mathematical Biosciences and Engineering Volume 22, Issue 7, 1722-1750.



1738

equilibrium point (E*), confirming that (E*) is globally asymptotically stable, as illustrated in
Figure 1.
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Figure 1. Nonlinear stability plot of interior equilibrium E* in (a) N-I-F and (b) I-F-P
spaces.

A bifurcation diagram for the equilibrium level of densities of the infected human population (/(¢))
and total human population (N(?)), corresponding to the basic reproduction number (Ry), is portrayed
in Figure 2(a),(b), respectively, which highlight the stability behavior of the disease-free equilibrium.
In this figure, the stability of DFE E|, is displayed with a solid blue line and instability of Ej, is displayed
with dashed red lines. Here, we can clearly demonstrate that for Ry < 1, the system possesses a stable
disease-free equilibrium, where infections die out in the absence of carriers. At Ry = 1, the transition
in the stability behavior occurs and as the basic reproduction number crosses the critical threshold Ry,
i.e., for Ry > 1, the transcritical bifurcation occurs and the disease-free equilibrium becomes unstable.
Here, it may be noted that for Ry > 1, E; becomes unstable, and the carrier-free equilibrium (E;)
emerges, which is always unstable.

In Figure 3(a),(b), we display the contour plots to visualize the dependency of the basic reproduction
number (R;) on the different pairs of parameter values. These contour plots provide insights into
how the change in the different parameters promote or control the proliferation of infectious disease,
illustrating the conditions under which the infection might persist or die out. Figure 3(a) portrays the
change in the value of the basic reproduction number (R,) corresponding to the immigration rate of
susceptible individuals (A) and the disease transmission rate from infected to susceptible individuals
through direct contact (). The low values of A and S result in a low value of R,. Increasing either A (at
the fixed value of ) or 8 (at the fixed value of A) leads to a higher R,. Moreover, Figure 3(b) is plotted
for visualizing the change in R, corresponding to disease transmission rate (5) and disease-induced
death rate of infected individuals (@). Here, increasing the value of S leads to an increase in Ry, while
increasing « reduces it.
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Figure 2. Bifurcation diagram for the equilibrium level of the densities of (a) infected
individuals and (b) total human population corresponding to the basic reproduction number
(Ry) at the listed parameter values given in Table 1.
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Figure 3. Contour plots of the basic reproduction number R, corresponding to the parameters
(a) Aand B, (b)p and a, at the listed parameter values given in Table 1.

Further, Figure 4(a),(b) is displayed to illustrate the variations in the densities of the infected
population (/(#)) and carrier population (F(¢)), respectively, for the increasing values of per-capita
growth rate of the carrier population caused by temperature rise. On increasing the growth rate of the
carriers (which is elevated due to the global average temperature) with setting
r1 = {0.001,0.003,0.005}, the values of I(¢) and F(¢) increase. Similarly, Figure 5(a),(b) illustrates
the variations in /(¢) and F(¢) corresponding to the carrying capacity of carriers (which is elevated due
to the global average temperature) with setting K; = {50,60,70}. The plot displays the enhanced
values of I(¢) and F'(¢) with the increase in K;. Thus, raising the global average temperature amplifies
the spread and persistence of infectious diseases by enhancing the growth and sustainability of
carriers, and thus the infected population.

Proceeding further, in Figure 6(a),(b), surface plots are generated to visualize the equilibrium
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values of the population densities of infected individuals (/*) and carriers (F*) for the varying
introduction rate of chemical insecticides to control the carrier population (u,) and growth rate of the
carrier population because of anthropogenic activities (¢). Here, the higher values of I* and F* are
attained at the low value of u, and high value of ¢, whereas the lower values of /* and F* are attained
at the high value of , and low value of ¢. These observations highlight the critical balance between
the control strategy and environmental factors in managing infectious disease dynamics. This
physically signifies that how intensifying the control measures (application of chemical insecticides)
or mitigating anthropogenic activities that favor carrier growth can significantly reduce the carrier
population, and thus the infected population.
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Figure 4. Variation plot for the densities of infected individuals /(¢) and the carrier population
F(¢) for increasing values of the intrinsic growth rate of the carrier’s population elevated by
global average temperature (7).
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Figure 5. Variation of densities of infected individuals I(#) and the carrier population F(¢)
for different values of the carrier density elevated by global average temperature K.
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Figure 6. Surface plots of the equilibrium level of densities of the (a) infected population
and (b) carrier population on varying parameters ¢ and ;.

7.1. Sensitivity analysis

Sensitivity analysis is used to understand how variations in input parameters affect the solution of
model (2.2). In the case of the basic reproduction number (Ry), its normalized forward sensitivity
indices quantify the sensitivity of R, for variations in each parameter [50].

The following formula is used to calculate these indices as a relative shift in Ry with respect to a
relative shift in parameter (p):

_O0Ry p
"7 9p Ry
The process involves identifying the system parameters, calculating the partial derivative of R, with
respect to each parameter, and then normalizing the result to allow comparison. A positive sensitivity
index means R, increases with the parameter, while a negative index indicates a decrease. The
magnitude of the index shows the strength of the parameter’s effect on R,. This analysis helps in
determining which parameters are most influential, aiding in decisions about control measures
or interventions.

Figure 7 shows that the normalized forward sensitivity indices associated with the basic
reproduction number (R) exhibit different behaviors. The indices with respect to 8 and A are both
equal to 1, meaning that R, increases proportionally to an increase in these parameters. In contrast,
the sensitivity indices corresponding to the recovery rate (v) and disease-induced mortality rate (@)
are negative, indicating that an increase in either v or a decreases Ry. Specifically, the magnitude of
these negative indices depends on the ratio of the respective parameter to the sum (v + « + d), showing
that as these death/ recovery rates increase, their influence on reducing R, becomes stronger. The
index for d is also negative and more complex, with a value less than —1, indicating that increases in d
(natural death rate) have a stronger dampening effect on R, due to the additional term involving d.
Overall, Ry is the most sensitive to changes in S and A, but increase in d, v, or « significantly reduces
its values as listed in Table 2.
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Sensitivity indices

Figure 7. The normalized forward sensitivity indices of R, with respect to the listed
parameters in Table 2, at the parameter values given in Table 1.

Table 2. Sensitivity indices of the basic reproduction number (Ry).

Parameter Sensitivity index Value
B Sp +1

A Sa +1

14 S, -0.0870
a Se -0.8696
d S4 -1.0435

Global sensitivity analysis (GSA) is used to quantify how uncertainty in model parameters affects
the output by exploring the entire input space. Latin hypercube sampling (LHS) efficiently samples
the parameter space by dividing each parameter’s range into equal intervals and ensuring all portions
are represented, allowing for a broad and uniform exploration of parameter values. Partial rank
correlation coefficients (PRCC) then measure the correlation between each parameter and model
output, controlling for the influence of other parameters and accounting for non-linear relationships.
This method isolates the impact of each parameter on the output while considering interactions
between parameters. By combining LHS and PRCC, one can determine which parameters
significantly influence the model’s behavior, helping to manage uncertainty and improve the
robustness of simulations, particularly for complex systems where parameters are uncertain or
experimentally derived. LHS indeed allows for the simultaneous and efficient sampling of multiple
parameters, capturing their interactions in the model, while PRCC provide a measure of correlation
between those parameters and the infected and carrier population as a response function, with values
ranging from -0.6 (perfect negative correlation) to +1 (perfect positive correlation) and -0.8 to +1.
This combination enhances the understanding of how different parameters influence model outcomes.

Mathematical Biosciences and Engineering Volume 22, Issue 7, 1722-1750.



1743

The magnitude of the PRCC value, regardless of the sign, shows the strength of the correlation. A
value close to 1 (or -1) depicts a strong correlation, indicating that the parameter has a significant
impact on the output, either positively or negatively. A PRCC value near 0 implies a weak or
negligible influence, meaning the parameter has little effect on the output. PRCC help to identify not
just which parameters affect the model’s output, but also whether their effects are strong or weak, and
in what direction they push the system’s behavior. This is crucial for prioritizing parameter estimation
efforts and improving model accuracy. We have conducted 1000 simulations using Latin hypercube
sampling (LHS), assigning uniform distributions to each key parameter. The parameters baseline
values are sourced from Table 1, and we allowed for deviations of + 25% around these values to
account for variability and uncertainty. This approach ensures that the parameter space is
well-explored while reflecting realistic uncertainty levels. After running the simulations, we
calculated the PRCC to estimate the effect of each parameter on the system’s output.

The resulting PRCC values, which indicate both the direction and strength of these influences, are
visualized as bar graphs in Figures 8 and 9. These graphs provide a clear visual representation of
which parameters have the most significant impact on the dynamic variables / and F, helping to focus
attention on those with the greatest influence. In Figure 8, it is observed that the model parameters
A, B, 4, r1, Ky, ¢, 6, and u demonstrate positive associations with the infected individuals under the
epidemic region, suggesting that an increase in these parameters results in the increase of the infected
population. This figure further illustrates that the infected population has a negative correlation with
the parameters m, ¢y, @y, (1o, and p;, meaning that increasing these parameters can reduce the infected
population. Similarly, in Figure 9, we find that parameters A, 8, m, r;, K;, ¢, 6, and u have positive
correlations with the carrier population, while A, ¢, @, s, and y; exhibit negative correlations with
the carrier population. These sensitivity results suggest that increasing the parameters with negative
PRCC values can help to reduce both the infected and carrier population, potentially lowering the
epidemic burden.

PRCC

_0.6 1 1 1 1 1 1 1 1 1 1 1 1 1
e 1 Kooy 0 poag oy py

Figure 8. PRCC of parameter values with infected population (/) as the response function.
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PRCC

1 Kyooo gy 0 poag

Figure 9. PRCC of parameter values with the carrier population (F') as the response function.

Here, it is worth noting that the parameter d represents the natural death rate of the human
population, encompassing both infected and susceptible individuals. A graph illustrating the
normalized forward sensitivity indices of the basic reproduction number (R,) with respect to various
parameters, including d has already been provided in Figure 7. Therefore, we chose not to include d,
in these PRCC graphs, as natural death is beyond human control. Its influence, whether positive or
negative, on the infected and carrier populations, does not offer actionable insights for managing or
controlling the proliferation of the infectious disease.

7.2. Optimal control results

Here, the forward-backward sweep approach is used to numerically solve the optimal control
problem and quantify the effectiveness of control strategies in mitigating carrier-dependent infectious
diseases [49]. This method is widely used as an iterative procedure for optimal control problems that
provides a robust framework for finding the optimal strategy to minimize disease prevalence while
accounting for intervention costs. The procedure starts with an initial estimate for the control variable,
which can represent strategies such as chemical control targeting carriers or other intervention
measures aimed at reducing disease transmission. The state variables, infected human population and
carrier population, are integrated forward in time by applying the highly accurate fourth-order
Runge-Kutta method. In parallel, the system of adjoint (co-state) variables, which reflects the
sensitivity of the objective function to variations in state variables, is computed backward in time. In
each iteration, the control variable is updated based on the adjoint variables and the gradient of the
objective function, ensuring that the intervention strategy moves toward an optimal solution. The
forward-backward sweep method is repeated iteratively until convergence is achieved, i.e., when the
changes in the control variable become sufficiently small between iterations. We set the weight factors
for minimizing both the carrier population and the use of chemical insecticides to P; = Q; = 1, with a
maximum control rate of wy,, = 1. The remaining parameters are consistent with those given in
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Table 1. The simulation results, depicted in Figure 10(a),(b), compare the infected and carrier
population under the time-dependent optimal control (w(f)) and without any control measure.
Figure 10(c) clearly demonstrates that the optimal strategy involves applying chemical insecticides at
the maximum rate during the first 10 days, and then gradually decreases thereafter. Thus, varying P,
and @, allows for tailoring the control strategy based on specific priorities, whether it is aggressively
reducing the disease spread through carrier elimination or focusing on minimizing intervention costs
and side effects. This flexibility enables a more customized approach to disease control in different
scenarios. This also aligns with a real-world scenario that the growth time of egg to adult is
approximately 7 to 10 days. Therefore, the insecticides are often used during the carrier’s peak
activity or life cycle stages (when larvae or adult carriers are present) for optimal efficacy of the
chemical insecticides, and thus for the control of infectious diseases.
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Figure 10. Variation with and without optimal control on the (a) infected population, (b)
carrier population, and (c) control profile w*(z).
8. Conclusions
The world is facing the escalating challenge of climate change with the rising level of atmospheric
carbon dioxide and global average temperature, creating favorable conditions for carriers, like

houseflies, to thrive and increase their population. These carriers transmit diseases such as
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Salmonellosis and Typhoid fever, posing a serious risk to human health. The anthropogenic activities
also create the conditions to expand the habitat of carriers and enhance the chances for the
proliferation of the infectious disease. This study introduces a mathematical model incorporating an
optimal control strategy to examine the impact of chemical insecticides on the dynamics of infectious
diseases dependent on carriers. The model includes key parameters, such as the transmission rate, the
growth rate of carriers due to human-related activities, and the introduction rate of chemical spraying
to control the carrier population, etc. The analysis reveals that a transcritical bifurcation occurs,
indicating a threshold value where the basic reproduction number changes stability between the
disease-free equilibrium and carrier-free equilibrium. The combined impact of chemical insecticides
for controlling the density of carriers and growth rate of the carrier population on the densities of
infected individuals and carriers highlight the balance between the control strategy and environmental
factors in managing infectious diseases. The results show that by intensifying the control measure
(application of chemical insecticides) and mitigating anthropogenic activities that favor carrier growth
collectively reduce the carrier population, and thus the infected population. Normalized sensitivity
analysis and PRCC identify the most effective parameters, providing insight into their contributions to
Ry. Sensitivity analysis using LHS and PRCC identified the most influential parameters affecting the
dynamics of the infected and carrier populations. This analysis enables targeted interventions and
efficient resource allocation in disease control. The immigration rate and transmission rate via carriers
are found to have the greatest impact on the infected population, while the immigration rate and
carrier growth due to human-related activities are identified as having the greatest impact on the
carrier population. Additionally, we also identify the optimal time for spraying the chemical
insecticides to reduce the carriers and thus the proliferation of infectious diseases, which leads to
minimizing the carrier density as well as the associated spraying cost. The optimal spraying period
lasts about 10 days and should be administered during the developmental stages of the carriers.

Thus, this study underscores the need for a balanced and strategic approach to the use of insecticides
as a control strategy in managing carrier-dependent infectious diseases. Also, this study emphasizes the
need for reduction of the anthropogenic activities which promote the growth of carriers and distribution
of the disease.
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