Research article

Mathematical modeling of the parasitism and hyperparasitism increase on Halyomorpha halys eggs in a five-year survey in Northern Italy

  • The invasive stink bug Halyomorpha halys has become an important pest of many crops, causing severe economic losses to farmers. Control of the pest mainly relies on multiple applications of broad-spectrum insecticides, undermining the integrated pest management programs and causing secondary pest outbreaks. In the native area, egg parasitoids are the main natural enemies of H. halys, among which Trissolcus japonicus is considered the predominant species. In Italy, adventive populations of T. japonicus and Trissolcus mitsukurii, another egg parasitoid of H. halys in Japan, have established themselves. These two species, together with the indigenous Anastatus bifasciatus, are capable of attacking the eggs of the exotic host. Focusing on the situation in Northern Italy, where also the hyperparasitoid Acroclisoides sinicus is present, a discrete-time model is developed for the simulation of the pest evolution. It is based on actual field data collected over a timespan of five years. The simulations indicate that egg parasitoid by themselves do not suppress populations to non-pest levels, but can play an important role in reducing their impact. Both the data from the five-year surveys and those available in the literature are used in the model. It has some limitations in the fact that climatic conditions were not considered, while more accurate simulations could be performed with additional collection of field data, which at the moment are based on partial field observations not sampled at the same sites.

    Citation: Ezio Venturino, Francesco Cantaloni, Luciana Tavella, Silvia Moraglio, Francesco Tortorici. Mathematical modeling of the parasitism and hyperparasitism increase on Halyomorpha halys eggs in a five-year survey in Northern Italy[J]. Mathematical Biosciences and Engineering, 2024, 21(11): 7501-7529. doi: 10.3934/mbe.2024330

    Related Papers:

    [1] Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss . Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000. Mathematical Biosciences and Engineering, 2006, 3(3): 545-556. doi: 10.3934/mbe.2006.3.545
    [2] Peter Hinow, Pierre Magal, Shigui Ruan . Preface. Mathematical Biosciences and Engineering, 2015, 12(4): i-iv. doi: 10.3934/mbe.2015.12.4i
    [3] Khalid Hattaf, Noura Yousfi . Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response. Mathematical Biosciences and Engineering, 2020, 17(5): 5326-5340. doi: 10.3934/mbe.2020288
    [4] Ayako Suzuki, Hiroshi Nishiura . Transmission dynamics of varicella before, during and after the COVID-19 pandemic in Japan: a modelling study. Mathematical Biosciences and Engineering, 2022, 19(6): 5998-6012. doi: 10.3934/mbe.2022280
    [5] Deepalakshmi Sarkarai, Kalyani Desikan . QSPR/QSAR analysis of some eccentricity based topological descriptors of antiviral drugs used in COVID-19 treatment via Dε- polynomials. Mathematical Biosciences and Engineering, 2023, 20(9): 17272-17295. doi: 10.3934/mbe.2023769
    [6] Antonios Armaou, Bryce Katch, Lucia Russo, Constantinos Siettos . Designing social distancing policies for the COVID-19 pandemic: A probabilistic model predictive control approach. Mathematical Biosciences and Engineering, 2022, 19(9): 8804-8832. doi: 10.3934/mbe.2022409
    [7] Glenn Ledder . Incorporating mass vaccination into compartment models for infectious diseases. Mathematical Biosciences and Engineering, 2022, 19(9): 9457-9480. doi: 10.3934/mbe.2022440
    [8] Youtian Hao, Guohua Yan, Renjun Ma, M. Tariqul Hasan . Linking dynamic patterns of COVID-19 spreads in Italy with regional characteristics: a two level longitudinal modelling approach. Mathematical Biosciences and Engineering, 2021, 18(3): 2579-2598. doi: 10.3934/mbe.2021131
    [9] Guest Editors: Azmy S. Ackleh, Rinaldo M. Colombo, Paola Goatin, Sander Hille, Adrian Muntean . Special issue: Mathematical Modeling with Measures. Mathematical Biosciences and Engineering, 2020, 17(3): 2451-2452. doi: 10.3934/mbe.2020133
    [10] Gilberto González-Parra, Cristina-Luisovna Pérez, Marcos Llamazares, Rafael-J. Villanueva, Jesus Villegas-Villanueva . Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile. Mathematical Biosciences and Engineering, 2025, 22(7): 1680-1721. doi: 10.3934/mbe.2025062
  • The invasive stink bug Halyomorpha halys has become an important pest of many crops, causing severe economic losses to farmers. Control of the pest mainly relies on multiple applications of broad-spectrum insecticides, undermining the integrated pest management programs and causing secondary pest outbreaks. In the native area, egg parasitoids are the main natural enemies of H. halys, among which Trissolcus japonicus is considered the predominant species. In Italy, adventive populations of T. japonicus and Trissolcus mitsukurii, another egg parasitoid of H. halys in Japan, have established themselves. These two species, together with the indigenous Anastatus bifasciatus, are capable of attacking the eggs of the exotic host. Focusing on the situation in Northern Italy, where also the hyperparasitoid Acroclisoides sinicus is present, a discrete-time model is developed for the simulation of the pest evolution. It is based on actual field data collected over a timespan of five years. The simulations indicate that egg parasitoid by themselves do not suppress populations to non-pest levels, but can play an important role in reducing their impact. Both the data from the five-year surveys and those available in the literature are used in the model. It has some limitations in the fact that climatic conditions were not considered, while more accurate simulations could be performed with additional collection of field data, which at the moment are based on partial field observations not sampled at the same sites.



    The special issue webpage is avaiable at: https://aimspress.com/mbe/article/5630/special-articles.

    An outbreak of atypical pneumonia caused by a novel coronavirus was first identified in Wuhan, China in December 2019. The causative agent was initially called 2019 novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the formal name for the associated disease given by the World Health Organization (WHO) is Coronavirus Disease 2019 (COVID-19). The virus swiftly spread to all areas of China and other countries. The WHO declared the coronavirus outbreak a public health emergency of international concern (PHEIC) on January 30, 2020. Mathematical models play an increasingly important role in forecasting transmission potential, optimizing control strategies, understanding the progression of infections within hosts, managing vaccine distribution and so on. These contributions have been recognized by many public health agencies like the WHO and the U.S. CDC.

    To serve the needs of the fight against the COVID-19 pandemic, it is critical to accelerate the publication of modeling studies on COVID-19. With the support of Mathematical Biosciences and Engineering (MBE), we initiated a special issue entitled "Modeling the Biological, Epidemiological, Immunological, Molecular, Virological Aspects of COVID-19" on January 31, 2020. By the deadline of September 1, 2020, a total of 118 formal submissions from researchers across 40 countries around the world had been received, among which 38 papers were finally accepted for publication after peer review. Among the accepted contributions, the average times from submission to acceptance, and from acceptance to publication are 43 days and 9 days, respectively. The special issue covers a wide range of topics using different modeling approaches and different data sources.

    The works of Zhou et al. (doi: 10.3934/mbe.2020147), Yang and Wang (10.3934/mbe.2020148), Chang et al. (10.3934/mbe.2020178), Feng et al. (10.3934/mbe.2020204), Aldila et al. (10.3934/mbe.2020335), Wang (10.3934/mbe.2020380), and Johnston and Pell (10.3934/mbe.2020401) investigate the role of behavior change or social distancing driven by media coverage or governmental action in curtailing the spread of COVID-19. The information propagation about COVID-19 in Chinese social media during the early phase of the epidemic is modeled and analyzed by Yin et al. (10.3934/mbe.2020146). Some studies focus on evaluating the impact of non-pharmaceutical interventions such as quarantine, isolation, personal hygiene, travel restriction and city lockdown on curbing the disease spread (Dai et al., 10.3934/mbe.2020152; Tian et al., 10.3934/mbe.2020158; Saldaña et al., 10.3934/mbe.2020231; Bugalia et al., 10.3934/mbe.2020318; Yousif and Ali, 10.3934/mbe.2020412; Srivastav et al., 10.3934/mbe.2021010). Some concentrate on assessing the importance of the timing to relax or lift mobility restrictions (Santana-Cibrian et al., 10.3934/mbe.2020330; Iboi et al., 10.3934/mbe.2020369). Some authors estimate key epidemiological parameters including basic reproduction number and effective reproduction number, peak time and peak size, final size, serial interval (Liu et al., 10.3934/mbe.2020172; Wang et al., 10.3934/mbe.2020173; Zhao, 10.3934/mbe.2020198; Feng et al., 10.3934/mbe.2020205). Besides human-to-human transmission, Yang and Wang (10.3934/mbe.2020148), Rong et al. (10.3934/mbe.2020149), Saldaña et al. (10.3934/mbe.2020231), and Zhong and Wang (10.3934/mbe.2020357) also take environment-to-human transmission into consideration. Some address the effect of delay in diagnosis (Rong et al., 10.3934/mbe.2020149), lack of medical resources (Wang et al., 10.3934/mbe.2020165), difference in interventions (Xia et al., 10.3934/mbe.2020274), incoming travelers (Deeb and Jalloul, 10.3934/mbe.2020302), superspreading events (Santana-Cibrian et al., 10.3934/mbe.2020330), nosocomial infections (Martos et al., 10.3934/mbe.2020410), transient behavior after mass vaccination (Akhavan Kharazian and Magpantay, 10.3934/mbe.2021019). Two models are proposed to describe SARS-CoV-2 dynamics in infected hosts (Li et al., 10.3934/mbe.2020159; Hattaf and Yousfi, 10.3934/mbe.2020288).

    Most studies are based on deterministic ordinary differential equation type models whereas partial differential equation models (Zhu and Zhu, 10.3934/mbe.2020174; Wang and Yamamoto, 10.3934/mbe.2020266), complex network model (Yang et al., 10.3934/mbe.2020248), stochastic models (He et al., 10.3934/mbe.2020153; Olabode et al., 10.3934/mbe.2021050), discrete models (He et al., 10.3934/mbe.2020153, Li et al., 10.3934/mbe.2020208), individual-based model (Martos et al., 10.3934/mbe.2020410), and statistical models (Zhao, 10.3934/mbe.2020198; Nie et al., 10.3934/mbe.2020265; Xia et al., 10.3934/mbe.2020274; Chowdhury et al., 10.3934/mbe.2020323) are developed and analyzed as well. Early studies mainly deal with COVID-19 case data from China, and later studies fit models to data from various countries and regions including the United Kingdom (Feng et al., 10.3934/mbe.2020204), South Korea (Feng et al., 10.3934/mbe.2020205; Xia et al., 10.3934/mbe.2020274), Mexico (Saldaña et al., 10.3934/mbe.2020231; Santana-Cibrian et al., 10.3934/mbe.2020330), the United States (Wang and Yamamoto, 10.3934/mbe.2020266), Lebanon (Deeb and Jalloul, 10.3934/mbe.2020302), India (Bugalia et al., 10.3934/mbe.2020318; Srivastav et al., 10.3934/mbe.2021010), Indonesia (Aldila et al., 10.3934/mbe.2020335), Nigeria (Iboi et al., 10.3934/mbe.2020369), Canada (Wang, 10.3934/mbe.2020380), Saudi Arabia (Yousif and Ali, 10.3934/mbe.2020412) and so on. Mobile terminal positioning data (Nie et al., 10.3934/mbe.2020265) and Google community mobility data (Wang and Yamamoto, 10.3934/mbe.2020266) have also been used. In addition, Costris-Vas et al. (10.3934/mbe.2020383) write a survey paper on evaluating the accuracy of various models from recent pandemics.

    With the broad spectrum of topics, we believe that these 38 peer-reviewed papers could represent a significant contribution of mathematical modeling in the fight against COVID-19. In fact, they have already received considerable attention in the field. For example, the paper by Yang and Wang (10.3934/mbe.2020148) is ranked the first most read paper in MBE with 2765 article views, 4465 PDF downloads and 54 citations. We hope the readers of this special issue will find helpful information for their own research and decision-making. So far, the ongoing COVID-19 pandemic has resulted in more than 85.62 million cases including 1.85 million deaths (data source: https://coronavirus.jhu.edu/map.html). With the joint efforts of health-care workers, vaccine developers, epidemiologists, modelers, the public and others, we look forward to returning to normal life in the near future.

    The guest editors sincerely appreciate all authors for their valuable contributions and all referees for their constructive feedback. The guest editors thank the Editor-in-Chief, Professor Yang Kuang, and Editor-in-Chief of Mathematics section, Professor Shigui Ruan, for their kind invitation, and the Editorial Assistants for their patience and help, and the publisher AIMS for the generous support. Finally, DG acknowledge the financial support from the NSF of China (12071300), and NSF of Shanghai (20ZR1440600 and 20JC1413800). DH was partially supported by an Alibaba (China) Co. Ltd. Collaborative Research grant.



    [1] T. C. Leskey, A. L. Nielsen, Impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management, Annu. Rev. Entomol., 63 (2018), 599–618. https://doi.org/10.1146/annurev-ento-020117-043226 doi: 10.1146/annurev-ento-020117-043226
    [2] F. Cianferoni, F. Graziani, P. Dioli, F. Ceccolini, Review of the occurrence of Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae) in Italy, with an update of its European and World distribution, Biologia, 73 (2018), 599–607. https://doi.org/10.2478/s11756-018-0067-9 doi: 10.2478/s11756-018-0067-9
    [3] F. Cianferoni, F. Graziani, F. Ceccolini, The unstoppable march of Halyomorpha halys: new first country records (Hemiptera, Pentatomidae), Spixiana, 42 (2019), 60.
    [4] M. Cesari, L. Maistrello, F. Ganzerli, P. Dioli, L. Rebecchi, R. Guidetti, A pest alien invasion in progress: potential pathways of origin of the brown marmorated stink bug Halyomorpha halys populations in Italy, J. Pest Sci., 88 (2015), 1–7. https://doi.org/10.1007/s10340-014-0634-y doi: 10.1007/s10340-014-0634-y
    [5] L. Bosco, S. T. Moraglio, L. Tavella, Halyomorpha halys, a serious threat for hazelnut in newly invaded areas, J. Pest Sci., 91 (2018), 661–670. https://doi.org/10.3390/insects11120866 doi: 10.3390/insects11120866
    [6] E. Costi, T. Haye, L. Maistrello, . Biological parameters of the invasive brown marmorated stink bug, Halyomorpha halys, in southern Europe, J. Pest Sci., 90 (2017), 1059–1067. https://doi.org/10.1007/s10340-017-0899-z doi: 10.1007/s10340-017-0899-z
    [7] N. Mills, Parasitoids, in Encyclopedia of insects, Academic Press, (2009), 748–751.
    [8] J. M. Stahl, D. Babendreier, C. Marazzi, S. Caruso, E. Costi, L. Maistrello, et al., Can Anastatus bifasciatus be used for augmentative biological control of the brown marmorated stink bug in fruit orchards?, Insects, 10 (2019), 108. https://doi.org/10.3390/insects10040108 doi: 10.3390/insects10040108
    [9] S. T. Moraglio, F. Tortorici, M. G. Pansa, G. Castelli, M. Pontini, S. Scovero, et al., A 3-year survey on parasitism of Halyomorpha halys by egg parasitoids in Northern Italy, J. Pest Sci., 93 (2020), 183–194. https://doi.org/10.1007/s10340-019-01136-2 doi: 10.1007/s10340-019-01136-2
    [10] J. Zhang, F. Zhang, T. Gariepy, P. Mason, D. Gillespie, E. Talamas, et al., Seasonal parasitism and host specificity of Trissolcus japonicus in Northern China, J. Pest Sci., 90 (2017), 1127–1141. https://doi.org/10.1007/s10340-017-0863-y doi: 10.1007/s10340-017-0863-y
    [11] M. T. Kamiyama, K. Matsuura, T. Hata, T. Yoshimura, C. C. S. Yang, Seasonal parasitism of native egg parasitoids of brown marmorated stink bug (Halyomorpha halys) in Japan, J. Pest Sci., 95 (2022), 1067–1079. https://doi.org/10.1007/s10340-021-01455-3 doi: 10.1007/s10340-021-01455-3
    [12] J. R. Lara, C. H. Pickett, M. T. Kamiyama, S. Figueroa, M. Romo, C. Cabanas, et al., Physiological host range of Trissolcus japonicus in relation to Halyomorpha halys and other pentatomids from California, BioControl, 64 (2019), 513–528. https://doi.org/10.1007/s10526-019-09950-4 doi: 10.1007/s10526-019-09950-4
    [13] T. Haye, S. T. Moraglio, J. Stahl, S. Visentin, T. Gregorio, L. Tavella, Fundamental host range of Trissolcus japonicus in Europe, J. Pest Sci., 93 (2020), 171–182. https://doi.org/10.1007/s10340-019-01127-3 doi: 10.1007/s10340-019-01127-3
    [14] G. Sabbatini-Peverieri, L. Boncompagni, G. Mazza, F. Paoli, L. Dapporto, L. Giovannini, et al., Combining physiological host range, behavior and host characteristics for predictive risk analysis of Trissolcus japonicus, J. Pest Sci., 94 (2021), 1003–1016. https://doi.org/10.1007/s10340-020-01311-w doi: 10.1007/s10340-020-01311-w
    [15] G. Sabbatini Peverieri, E. Talamas, M. C. Bon, L. Marianelli, I. Bernardinelli, G. Malossini, et al., Two asian egg parasitoids of Halyomorpha halys (Stål) (Hemiptera, Pentatomidae) emerge in Northern Italy: Trissolcus mitsukurii (Ashmead) and Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae), J. Hymen. Res., 67 (2018), 37–53. https://doi.org/10.3897/jhr.67.30883 doi: 10.3897/jhr.67.30883
    [16] D. Scaccini, M. Falagiarda, F. Tortorici, I. Martinez-Sañudo, P. Tirello, Y. Reyes-Domínguez, et al., An insight into the role of Trissolcus mitsukurii as biological control agent of Halyomorpha halys in Northeastern Italy, Insects, 11 (2020), 306. https://doi.org/10.3390/insects11050306 doi: 10.3390/insects11050306
    [17] L. Giovannini, G. Sabbatini-Peverieri, L. Marianelli, G. Rondoni, E. Conti, P. F. Roversi, Physiological host range of Trissolcus mitsukurii, a candidate biological control agent of Halyomorpha halys in Europe, J. Pest Sci., 95 (2022), 605-618. https://doi.org/10.1007/s10340-021-01415-x doi: 10.1007/s10340-021-01415-x
    [18] L. Zapponi, F. Tortorici, G. Anfora, S. Bardella, M. Bariselli, L. Benvenuto, et al., Assessing the distribution of exotic egg parasitoids of Halyomorpha halys in Europe with a large-scale monitoring program, Insects, 12 (2021), 316. https://doi.org/10.3390/insects12040316 doi: 10.3390/insects12040316
    [19] J. K. Konopka, T. Haye, T. D. Gariepy, J. N. McNeil, Possible coexistence of native and exotic parasitoids and their impact on control of Halyomorpha halys, J. Pest Sci., 90 (2017), 1119–1125. https://doi.org/10.1007/s10340-017-0851-2 doi: 10.1007/s10340-017-0851-2
    [20] G. Sabbatini-Peverieri, M. D. Mitroiu, M. C. Bon, R. Balusu, L. Benvenuto, I. Bernardinelli, et al., Surveys of stink bug egg parasitism in Asia, Europe and North America, morphological taxonomy, and molecular analysis reveal the Holarctic distribution of Acroclisoides sinicus (Huang and Liao) (Hymenoptera, Pteromalidae), J. Hymen. Res., 74 (2019), 123–151. https://doi.org/10.3897/jhr.74.46701 doi: 10.3897/jhr.74.46701
    [21] A. Mele, D. Scaccini, A. Pozzebon, Hyperparasitism of Acroclisoides sinicus (Huang and Liao) (Hymenoptera: Pteromalidae) on two biological control agents of Halyomorpha halys, Insects, 12 (2021), 617. https://doi.org/10.3390/insects12070617 doi: 10.3390/insects12070617
    [22] D. J. Sullivan, Hyperparasitism, in Encyclopedia of insects, Academic Press, (2009), 486–488.
    [23] G. Sabbatini-Peverieri, C. Dieckhoff, L. Giovannini, L. Marianelli, P. F. Roversi, K. Hoelmer, Rearing Trissolcus japonicus and Trissolcus mitsukurii for biological control of Halyomorpha halys, Insects, 11 (2020), 787. https://doi.org/10.3390/insects11110787 doi: 10.3390/insects11110787
    [24] B. N. Govindan, W. D. Hutchison, Influence of temperature on age-stage, two-sex life tables for a Minnesota-acclimated population of the brown marmorated stink bug (Halyomorpha halys), Insects, 11 (2020), 108. https://doi.org/10.3390/insects11020108 doi: 10.3390/insects11020108
    [25] J. M. Stahl, D. Babendreier, T. Haye, Using the egg parasitoid Anastatus bifasciatus against the invasive brown marmorated stink bug in Europe: can non-target effects be ruled out?, J. Pest Sci., 91 (2018), 1005–1017. https://doi.org/10.1007/s10340-018-0969-x doi: 10.1007/s10340-018-0969-x
    [26] D. M. Lowenstein, H. Andrews, R. J. Hilton, C. Kaiser, N. G. Wiman, Establishment in an introduced range: dispersal capacity and winter survival of Trissolcus japonicus, an adventive egg parasitoid, Insects, 10 (2019), 443. https://doi.org/10.3390/insects10120443 doi: 10.3390/insects10120443
    [27] L. Giovannini, G. Sabbatini-Peverieri, P. G. Tillman, K. A. Hoelmer, P. F. Roversi, Reproductive and developmental biology of Acroclisoides sinicus, a hyperparasitoid of scelionid parasitoids, Biology, 10 (2021), 229. https://doi.org/10.3390/biology10030229 doi: 10.3390/biology10030229
    [28] J. M. Stahl, D. Babendreier, T. Haye, Life history of Anastatus bifasciatus, a potential biological control agent of the brown marmorated stink bug in Europe, Biol. Control, 129 (2019), 178–186. https://doi.org/10.1016/j.biocontrol.2018.10.016 doi: 10.1016/j.biocontrol.2018.10.016
    [29] R. Arakawa, M. Miura, M. Fujita, Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs, Appl. Entomol. Zool., 39 (2004), 177–181. https://doi.org/10.1303/aez.2004.177 doi: 10.1303/aez.2004.177
    [30] H. R. McIntosh, V. P. Skillman, G. Galindo, J. C. Lee, Floral Resources for Trissolcus japonicus, a Parasitoid of Halyomorpha halys. Insects, 11 (2020), 413. https://doi.org/10.3390/insects11070413
    [31] M. Rot, L. Maistrello, E. Costi, S. Trdan, Biological parameters, phenology and temperature requirements of Halyomorpha halys (Hemiptera: Pentatomidae) in the Sub-Mediterranean climate of Western Slovenia, Insects, 13 (2022), 956. https://doi.org/10.3390/insects13100956 doi: 10.3390/insects13100956
    [32] T. Haye, S. Abdallah, T. Gariepy, D. Wyniger, Phenology, life table analysis and temperature requirements of the invasive brown marmorated stink bug, Halyomorpha halys, in Europe, J. Pest Sci., 87 (2014), 407–418. https://doi.org/10.1007/s10340-014-0560-z doi: 10.1007/s10340-014-0560-z
    [33] E. Costi, T. Haye, L. Maistrello, Surveying native egg parasitoids and predators of the invasive Halyomorpha halys in Northern Italy, J. Appl. Entomol., 143 (2019), 299–307. https://doi.org/10.1111/jen.12590 doi: 10.1111/jen.12590
    [34] D. J. Sullivan, Insect hyperparasitism, Ann. Rev. Entomol., 32 (1987), 49–70.
    [35] M. R. Nematollahi, Y. Fathipour, A. A. Talebi, J. Karimzadeh, M. P. Zalucki, Parasitoid- and Hyperparasitoid-Mediated seasonal dynamics of the cabbage aphid (Hemiptera: Aphididae), Environ. Entomol., 43 (2014), 1542–1551. https://doi.org/10.1603/EN14155 doi: 10.1603/EN14155
    [36] A. P. Gutierrez, G. Sabbatini Peverieri, L. Ponti, L. Giovannini, P. F. Roversi, A. Mele, et al., Tritrophic analysis of the prospective biological control of brown marmorated stink bug, Halyomorpha halys, under extant weather and climate change, J. Pest Sci., 96 (2023), 921–942. https://doi.org/10.1007/s10340-023-01610-y doi: 10.1007/s10340-023-01610-y
    [37] W. R. Morrison III, B. R. Blaauw, A. L. Nielsen, E. Talamas, T. C. Leskey, Predation and parasitism by native and exotic natural enemies of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) eggs augmented with semiochemicals and differing host stimuli. Biol. Control, 121 (2018), 140–150. https://doi.org/10.1016/j.biocontrol.2018.02.016
    [38] G. Bulgarini, Z. Badra, S. Leonardi, L. Maistrello, Predatory ability of generalist predators on eggs, young nymphs and adults of the invasive Halyomorpha halys in southern Europe, BioControl, 66 (2021), 355–366. https://doi.org/10.1007/s10526-020-10066-3 doi: 10.1007/s10526-020-10066-3
    [39] D. H. Lee, B. D. Short, S. V. Joseph, J. C. Bergh, T. C. Leskey, Review of the biology, ecology, and management of Halyomorpha halys (Hemiptera: Pentatomidae) in China, Japan, and the Republic of Korea, Environ. Entomol., 42 (2013), 627–641. https://doi.org/10.1603/EN13006 doi: 10.1603/EN13006
    [40] G. A. Avila, J. G. Charles, Modelling the potential geographic distribution of Trissolcus japonicus: a biological control agent of the brown marmorated stink bug, Halyomorpha halys, BioControl, 63 (2018), 505–518. https://doi.org/10.1007/s10526-018-9866-8 doi: 10.1007/s10526-018-9866-8
    [41] D. J. Kriticos, J. M. Kean, C. B. Phillips, S. D. Senay, H. Acosta, T. Haye, The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity, J. Pest Sci., 90 (2017), 1033–1043. https://doi.org/10.1007/s10340-017-0869-5 doi: 10.1007/s10340-017-0869-5
    [42] S. Stoeckli, R. Felber, T. Haye, Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model, International Journal of Biometeorology, 64 (2020), 2019–2032. https://doi.org/10.1007/s00484-020-01992-z
    [43] T. Yonow, D. J. Kriticos, N. Ota, G. A. Avila, K. A. Hoelmer, H. Chen, et al., Modelling the potential geographic distribution of two Trissolcus species for the brown marmorated stink bug, Halyomorpha halys, Insects, 12 (2021), 491. https://doi.org/10.3390/insects12060491 doi: 10.3390/insects12060491
    [44] F. Tortorici, P. Bombi, L. Loru, A. Mele, S. T. Moraglio, D. Scaccini, et al., Halyomorpha halys and its egg parasitoids Trissolcus japonicus and T. mitsukurii: the geographic dimension of the interaction, NeoBiota, 85 (2023), 197–221. https://doi.org/10.3897/neobiota.85.102501 doi: 10.3897/neobiota.85.102501
    [45] A. Mele, D. S. Avanigadda, E. Ceccato, G. B. Olawuyi, F. Simoni, C. Duso, et al., Comparative life tables of Trissolcus japonicus and Trissolcus mitsukurii, egg parasitoids of Halyomorpha halys, Biol. Control, 195 (2024), 105548.
  • This article has been cited by:

    1. Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang, Jingjing Lu, Dynamical properties in an SVEIR epidemic model with age‐dependent vaccination, latency, infection, and relapse, 2021, 44, 0170-4214, 12810, 10.1002/mma.7583
    2. Tongrui Zhang, Zhijie Zhang, Zhiyuan Yu, Qimin Huang, Daozhou Gao, Effects of behaviour change on HFMD transmission, 2023, 17, 1751-3758, 10.1080/17513758.2023.2244968
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(833) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog