We considered a time-inhomogeneous diffusion process able to describe the dynamics of infected people in a susceptible-infectious (SI) epidemic model in which the transmission intensity function was time-dependent. Such a model was well suited to describe some classes of micro-parasitic infections in which individuals never acquired lasting immunity and over the course of the epidemic everyone eventually became infected. The stochastic process related to the deterministic model was transformable into a nonhomogeneous Wiener process so the probability distribution could be obtained. Here we focused on the inference for such a process, by providing an estimation procedure for the involved parameters. We pointed out that the time dependence in the infinitesimal moments of the diffusion process made classical inference methods inapplicable. The proposed procedure were based on the generalized method of moments in order to find a suitable estimate for the infinitesimal drift and variance of the transformed process. Several simulation studies are conduced to test the procedure, these include the time homogeneous case, for which a comparison with the results obtained by applying the maximum likelihood estimation was made, and cases in which the intensity function were time dependent with particular attention to periodic cases. Finally, we applied the estimation procedure to a real dataset.
Citation: Giuseppina Albano, Virginia Giorno, Francisco Torres-Ruiz. Inference of a Susceptible–Infectious stochastic model[J]. Mathematical Biosciences and Engineering, 2024, 21(9): 7067-7083. doi: 10.3934/mbe.2024310
[1] | Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193 |
[2] | Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013 |
[3] | Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663 |
[4] | Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang . Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8(3): i-ii. doi: 10.3934/nhm.2013.8.3i |
[5] | Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525 |
[6] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[7] | Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783 |
[8] | Alberto Bressan, Anders Nordli . The Riemann solver for traffic flow at an intersection with buffer of vanishing size. Networks and Heterogeneous Media, 2017, 12(2): 173-189. doi: 10.3934/nhm.2017007 |
[9] | F. A. Chiarello, J. Friedrich, S. Göttlich . A non-local traffic flow model for 1-to-1 junctions with buffer. Networks and Heterogeneous Media, 2024, 19(1): 405-429. doi: 10.3934/nhm.2024018 |
[10] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
We considered a time-inhomogeneous diffusion process able to describe the dynamics of infected people in a susceptible-infectious (SI) epidemic model in which the transmission intensity function was time-dependent. Such a model was well suited to describe some classes of micro-parasitic infections in which individuals never acquired lasting immunity and over the course of the epidemic everyone eventually became infected. The stochastic process related to the deterministic model was transformable into a nonhomogeneous Wiener process so the probability distribution could be obtained. Here we focused on the inference for such a process, by providing an estimation procedure for the involved parameters. We pointed out that the time dependence in the infinitesimal moments of the diffusion process made classical inference methods inapplicable. The proposed procedure were based on the generalized method of moments in order to find a suitable estimate for the infinitesimal drift and variance of the transformed process. Several simulation studies are conduced to test the procedure, these include the time homogeneous case, for which a comparison with the results obtained by applying the maximum likelihood estimation was made, and cases in which the intensity function were time dependent with particular attention to periodic cases. Finally, we applied the estimation procedure to a real dataset.
[1] |
D.M. Rao, A. Chernyakhovsky, V. Rao, Modeling and analysis of global epidemiology of avian influenza, Environ. Model. Softw., 24 (2009), 124–134. https://doi.org/10.1016/j.envsoft.2008.06.011 doi: 10.1016/j.envsoft.2008.06.011
![]() |
[2] |
M. Tizzoni, P. Bajardi, C. Poletto, J.J. Ramasco, D. Balcan, B. Goncalves, et al., Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm, BMC Med., 10 (2012), 165. https://doi.org/10.1186/1741-7015-10-165.3 doi: 10.1186/1741-7015-10-165.3
![]() |
[3] |
G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi, P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing, PLoS Curr., 7 (2015). https://doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a doi: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a
![]() |
[4] |
S. Ahmetolan, A.H. Bilge, A. Demirci, A. Peker-Dobie, What can we estimate from fatality and infectious case data using the susceptible-infected-removed (SIR) model? A case study of Covid-19 pandemic, Front. Med., 7 (2020), 570. https://doi.org/10.3389/fmed.2020.556366 doi: 10.3389/fmed.2020.556366
![]() |
[5] |
D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Solitons Fract., 134 (2020), 109761. https://doi.org/10.1016/j.chaos.2020.109761 doi: 10.1016/j.chaos.2020.109761
![]() |
[6] | L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, 2nd edition, Chapman and Hall/CRC, Lubbock, Texas, USA, 2010. https://doi.org/10.1007/978-1-4612-0873-0 |
[7] | L.J.S. Allen, Stochastic Population and Epidemic Models, Persistence and Extinction, Springer International Publishing, Switzerland, 2015. https://doi.org/10.1007/978-3-319-21554-9 |
[8] |
M. Aguiar, V. Anam, K.B. Blyuss, C.D.S. Estadilla, B.V. Guerrero, D. Knopoff, et al., Mathematical models for dengue fever epidemiology: A 10–year systematic review, Phys. Life Rev., 40 (2022), 65–92. https://doi.org/10.1016/j.plrev.2022.02.001 doi: 10.1016/j.plrev.2022.02.001
![]() |
[9] |
F. Brauer, The Kermack-McKendrick epidemic model revisited, Math. Biosci., 198 (2005), 119–131. https://doi.org/10.1016/j.mbs.2005.07.006 doi: 10.1016/j.mbs.2005.07.006
![]() |
[10] |
S. Ahmetolan, A.H. Bilge, A. Demirci, A. Peker-Dobie, A Susceptible-Infectious (SI) model with two infective stages and an endemic equilibrium, Math. Comput. Simulat., 194 (2022), 19–35. https://doi.org/10.1016/j.matcom.2021.11.003 doi: 10.1016/j.matcom.2021.11.003
![]() |
[11] |
G. Albano, V. Giorno, Inferring time non-homogeneous Ornstein Uhlenbeck type stochastic process, Comput. Stat. Data Anal., 150 (2020), 107008–107008. https://doi.org/10.1016/j.csda.2020.107008 doi: 10.1016/j.csda.2020.107008
![]() |
[12] |
G. Albano, V. Giorno, Inference on the effect of non homogeneous inputs in Ornstein Uhlenbeck neuronal modeling, Math. Biosci. Eng., 17(2020), 328–348. https://doi.org/10.3934/mbe.2020018 doi: 10.3934/mbe.2020018
![]() |
[13] |
G. Albano, Detecting time-changes in PM10 during Covid pandemic by means of an Ornstein Uhlenbeck type process, Math. Biosci. Eng., 18 (2021), 888–903. https://doi.org/10.3934/mbe.2021047 doi: 10.3934/mbe.2021047
![]() |
[14] |
X. Zhu, B. Gao, Y. Zhong, C. Gu, K. Choi, Extended Kalman filter based on stochastic epidemiological model for COVID-19 modelling, Comput. Biol. Med., 137 (2021), 104810. https://doi.org/10.1016/j.compbiomed.2021.104810 doi: 10.1016/j.compbiomed.2021.104810
![]() |
[15] |
A. Sebbagh, S. Kechida, EKF-SIRD model algorithm for predicting the coronavirus (COVID-19) spreading dynamics, Sci. Rep., 12 (2022), 13415. https://doi.org/10.1038/s41598-022-16496-6 doi: 10.1038/s41598-022-16496-6
![]() |
[16] |
J.R. Artalejo, M.J. Lopez-Herrero, Stochastic epidemic models: New behavioral indicators of the disease spreading, Appl. Math. Model., 38 (2014), 4371–4387. https://doi.org/10.1016/j.apm.2014.02.017 doi: 10.1016/j.apm.2014.02.017
![]() |
[17] |
M. Gamboa, M.J. Lopez-Herrero, Measuring infection transmission in a stochastic SIV model with infection reintroduction and imperfect vaccine, Acta Biotheor., 68 (2020), 395–420. https://doi.org/10.1007/s10441-019-09373-9 doi: 10.1007/s10441-019-09373-9
![]() |
[18] |
V.E. Papageorgiou, G. Tsaklidis, A stochastic SIRD model with imperfect immunity for the evaluation of epidemics, Appl. Math. Mod., 124 (2023), 768–790. https://doi.org/10.1016/j.apm.2023.08.011 doi: 10.1016/j.apm.2023.08.011
![]() |
[19] |
J. Amador, M.J. Lopez-Herrero, Cumulative and maximum epidemic sizes for a nonlinear SEIR stochastic model with limited resources, Discret. Contin. Dyn. Syst. Series B, 23 (2018), 3137–3181. https://doi.org/10.3934/dcdsb.2017211 doi: 10.3934/dcdsb.2017211
![]() |
[20] |
V.E. Papageorgiou, Novel stochastic descriptors of a Markovian SIRD model for the assessment of the severity behind epidemic outbreaks, J. Franklin I., 361 (2024), 107022. https://doi.org/10.1016/j.jfranklin.2024.107022 doi: 10.1016/j.jfranklin.2024.107022
![]() |
[21] |
J.R. Artalejo, A. Economou, M.J. Lopez-Herrero, The maximum number of infected individuals in SIS epidemic models: Computational techniques and quasi-stationary distributions, J. Comput. Appl. Math., 233 (2010), 2563–2574. https://doi.org/10.1016/j.cam.2009.11.003 doi: 10.1016/j.cam.2009.11.003
![]() |
[22] |
V.E. Papageorgiou, G. Tsaklidis, An improved epidemiological-unscented Kalman filter (hybrid SEIHCRDV-UKF) model for the prediction of COVID-19, Application on real-time data, Chaos Soliton Fract., 166 (2023), 112914. https://doi.org/10.1016/j.chaos.2022.112914 doi: 10.1016/j.chaos.2022.112914
![]() |
[23] |
V.E. Papageorgiou, P. Kolias, A novel epidemiologically informed particle filter for assessing epidemic phenomena. Application to the monkeypox outbreak of 2022, Inverse Probl., 40 (2024), 035006. https://doi.org/10.1088/1361-6420/ad1e2f doi: 10.1088/1361-6420/ad1e2f
![]() |
[24] |
S.P. Rajasekar, M. Pitchaimani, Q. Zhu, Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function, Phys. A, 535 (2019), 122300. https://doi.org/10.1016/j.physa.2019.122300 doi: 10.1016/j.physa.2019.122300
![]() |
[25] | G. Li, Y. Liu, The Dynamics of a Stochastic SIR Epidemic Model with Nonlinear Incidence and Vertical Transmission, Discrete Dyn. Nat. Soc., (2021), Article ID 4645203. https://doi.org/10.1155/2021/4645203 |
[26] |
T. Xue, X. Fan, Z. Chang, Dynamics of a stochastic SIRS epidemic model with standard incidence and vaccination, Math. Biosci. Eng., 19 (2022), 10618–10636. https://doi.org/10.3934/mbe.2022496 doi: 10.3934/mbe.2022496
![]() |
[27] |
V.E. Papageorgiou, G. Tsaklidis, A stochastic particle extended SEIRS model with repeated vaccination: Application to real data of COVID-19 in Italy, Math. Meth. Appl. Sci., 47 (2024), 6504–-6538. https://doi.org/10.1002/mma.9934 doi: 10.1002/mma.9934
![]() |
[28] |
Y.C. Mao, X.B. Liu, Exit problem of stochastic SIR model with limited medical resource, Theor. Appl. Mech. Lett., 13 (2023), 100393. https://doi.org/10.1016/j.taml.2022.100393 doi: 10.1016/j.taml.2022.100393
![]() |
[29] |
Z. Chang, X. Mengb, T. Hayatd, A. Hobiny, Modeling and analysis of SIR epidemic dynamicsin immunization and cross-infection environments: Insights from a stochastic model, Nonlinear Anal. Model, 27 (2022), 740–765. https://doi.org/10.15388/namc.2022.27.27446 doi: 10.15388/namc.2022.27.27446
![]() |
[30] |
A. Bodini, S. Pasquali, A. Pievatolo, F. Ruggeri, Underdetection in a stochastic SIR model for the analysis of the COVID-19 Italian epidemic, Stoch. Environ. Res. Risk. Assess., 36 (2022), 137–-155. https://doi.org/10.1007/s00477-021-02081-2 doi: 10.1007/s00477-021-02081-2
![]() |
[31] |
A. Leitao, C. Vázquez, The stochastic θ-SEIHRDmodel. Adding randomness to the COVID-19 spread, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106731. https://doi.org/10.1016/j.cnsns.2022.106731 doi: 10.1016/j.cnsns.2022.106731
![]() |
[32] |
J. Pan, A. Gray, D. Greenhalgh, X. Mao, Parameter estimation for the stochastic SIS epidemic model, Stat. Inference Stoch. Process, 17 (2014), 75–98. https://doi.org/10.1007/s11203-014-9091-8 doi: 10.1007/s11203-014-9091-8
![]() |
[33] |
A. Pugliese, Population models for diseases with no recovery, J. Math. Biol., 28 (1990), 65–82. https://doi.org/10.1007/BF00171519 doi: 10.1007/BF00171519
![]() |
[34] |
V. Giorno, A.G. Nobile, Time-inhomogeneous finite birth processes with applications in epidemic models. Mathematics, 11 (2023), 4521. https://doi.org/10.3390/math11214521 doi: 10.3390/math11214521
![]() |
[35] | V. Giorno, A.G. Nobile, Time-inhomogeneous diffusion process for the SI epidemic model, Lecture Notes in Computer Science, (2024). (in press). |
[36] |
H. Ramaswamy, A.A. Oberai, Y.C. Yortsos, A comprehensive spatial-temporal infection model, Chem. Eng. Sci., 233 (2021), 116347. https://doi.org/10.1016/j.ces.2020.116347 doi: 10.1016/j.ces.2020.116347
![]() |
[37] | L. Arnold, Stochastic Differential Equations: Theory and Applications. Wiley & Sons, New York (1974). |
[38] |
A.D. Becker, B.T. Grenfell, tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics PLoS ONE, 12 (2017), e0185528. https://doi.org/10.1371/journal.pone.0185528 doi: 10.1371/journal.pone.0185528
![]() |
[39] |
D. He, E.L. Ionides, A.A. King, Plug-and-play inference for disease dynamics: measles in large and small populations as a case study, J. R. Soc. Interface, 7 (2010), 271–283. https://doi.org/10.1098/rsif.2009.0151 doi: 10.1098/rsif.2009.0151
![]() |
1. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 5, 978-1-4614-7241-4, 69, 10.1007/978-1-4614-7242-1_5 | |
2. | RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025 | |
3. | Max-Olivier Hongler, Olivier Gallay, Michael Hülsmann, Philip Cordes, Richard Colmorn, Centralized versus decentralized control—A solvable stylized model in transportation, 2010, 389, 03784371, 4162, 10.1016/j.physa.2010.05.047 | |
4. | S. Lämmer, R. Donner, D. Helbing, Anticipative control of switched queueing systems, 2008, 63, 1434-6028, 341, 10.1140/epjb/e2007-00346-5 | |
5. | Dirk Helbing, Amin Mazloumian, 2013, Chapter 7, 978-3-642-32159-7, 357, 10.1007/978-3-642-32160-3_7 | |
6. | Dirk Helbing, 2021, Chapter 7, 978-3-030-62329-6, 131, 10.1007/978-3-030-62330-2_7 | |
7. | Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001 | |
8. | Daniele De Martino, Luca Dall’Asta, Ginestra Bianconi, Matteo Marsili, A minimal model for congestion phenomena on complex networks, 2009, 2009, 1742-5468, P08023, 10.1088/1742-5468/2009/08/P08023 | |
9. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 2, 978-1-4614-7241-4, 11, 10.1007/978-1-4614-7242-1_2 | |
10. | Martin Pilat, 2018, Evolving Ensembles of Traffic Lights Controllers, 978-1-5386-7449-9, 958, 10.1109/ICTAI.2018.00148 | |
11. | R. Donner, Multivariate analysis of spatially heterogeneous phase synchronisation in complex systems: application to self-organised control of material flows in networks, 2008, 63, 1434-6028, 349, 10.1140/epjb/e2008-00151-8 | |
12. | Reik Donner, 2009, Chapter 8, 978-3-642-04226-3, 237, 10.1007/978-3-642-04227-0_8 | |
13. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 4, 978-1-4614-7241-4, 51, 10.1007/978-1-4614-7242-1_4 | |
14. | Gui-Jun Pan, Xiao-Qing Yan, Zhong-Bing Huang, Wei-Chuan Ma, Gradient networks on uncorrelated random scale-free networks, 2011, 83, 0031-8949, 035803, 10.1088/0031-8949/83/03/035803 | |
15. | Luigi Rarità, Ciro D'Apice, Benedetto Piccoli, Dirk Helbing, Sensitivity analysis of permeability parameters for flows on Barcelona networks, 2010, 249, 00220396, 3110, 10.1016/j.jde.2010.09.006 | |
16. | Massimiliano Daniele Rosini, 2013, Chapter 15, 978-3-319-00154-8, 193, 10.1007/978-3-319-00155-5_15 | |
17. | D. Helbing, Derivation of a fundamental diagram for urban traffic flow, 2009, 70, 1434-6028, 229, 10.1140/epjb/e2009-00093-7 | |
18. | Mauro Garavello, Benedetto Piccoli, 2013, Chapter 6, 978-1-4614-6242-2, 143, 10.1007/978-1-4614-6243-9_6 | |
19. | Carlos Gershenson, Guiding the Self-Organization of Cyber-Physical Systems, 2020, 7, 2296-9144, 10.3389/frobt.2020.00041 | |
20. | Qian Wan, Guoqing Peng, Zhibin Li, Felipe Hiroshi Tahira Inomata, Spatiotemporal trajectory characteristic analysis for traffic state transition prediction near expressway merge bottleneck, 2020, 117, 0968090X, 102682, 10.1016/j.trc.2020.102682 | |
21. | S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Critical phenomena in complex networks, 2008, 80, 0034-6861, 1275, 10.1103/RevModPhys.80.1275 | |
22. | D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the controlof traffic intersections, 2009, 70, 1434-6028, 257, 10.1140/epjb/e2009-00213-5 | |
23. | S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. W. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugali, S. Solomon, Challenges in network science: Applications to infrastructures, climate, social systems and economics, 2012, 214, 1951-6355, 273, 10.1140/epjst/e2012-01695-x | |
24. | Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2012, How can macroscopic models reveal self-organization in traffic flow?, 978-1-4673-2066-5, 6989, 10.1109/CDC.2012.6426549 | |
25. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 1, 978-1-4614-7241-4, 1, 10.1007/978-1-4614-7242-1_1 | |
26. | S. Blandin, G. Bretti, A. Cutolo, B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, 2009, 210, 00963003, 441, 10.1016/j.amc.2009.01.057 | |
27. | Lele Zhang, Jan de Gier, Timothy M. Garoni, Traffic disruption and recovery in road networks, 2014, 401, 03784371, 82, 10.1016/j.physa.2014.01.034 | |
28. | Gabriella Bretti, Benedetto Piccoli, A Tracking Algorithm for Car Paths on Road Networks, 2008, 7, 1536-0040, 510, 10.1137/070697768 | |
29. | Jan de Gier, Timothy M Garoni, Omar Rojas, Traffic flow on realistic road networks with adaptive traffic lights, 2011, 2011, 1742-5468, P04008, 10.1088/1742-5468/2011/04/P04008 | |
30. | Jorge E. Macías‐Díaz, Nauman Ahmed, Muhammad Jawaz, Muhammad Rafiq, Muhammad Aziz ur Rehman, Design and analysis of a discrete method for a time‐delayed reaction–diffusion epidemic model, 2021, 44, 0170-4214, 5110, 10.1002/mma.7096 | |
31. | Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The spatial variability of vehicle densities as determinant of urban network capacity, 2010, 368, 1364-503X, 4627, 10.1098/rsta.2010.0099 | |
32. | Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity, 2009, 1556-5068, 10.2139/ssrn.1596042 | |
33. | Kai Lu, Jianwei Hu, Jianghui Huang, Deliang Tian, Chao Zhang, Optimisation model for network progression coordinated control under the signal design mode of split phasing, 2017, 11, 1751-9578, 459, 10.1049/iet-its.2016.0326 | |
34. | Dirk Helbing, The Automation of Society is Next: How to Survive the Digital Revolution, 2015, 1556-5068, 10.2139/ssrn.2694312 | |
35. | Gabor Karsai, Xenofon Koutsoukos, Himanshu Neema, Peter Volgyesi, Janos Sztipanovits, 2019, Chapter 18, 978-3-319-77491-6, 425, 10.1007/978-3-319-77492-3_18 | |
36. | Alessia Marigo, Benedetto Piccoli, A Fluid Dynamic Model for T-Junctions, 2008, 39, 0036-1410, 2016, 10.1137/060673060 | |
37. | Stefan Lämmer, Dirk Helbing, Self-control of traffic lights and vehicle flows in urban road networks, 2008, 2008, 1742-5468, P04019, 10.1088/1742-5468/2008/04/P04019 | |
38. | Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits, SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems, 2018, 106, 0018-9219, 93, 10.1109/JPROC.2017.2731741 | |
39. | Ding-wei Huang, Persistent oscillations in a traffic model with decision-making, 2020, 2, 2523-3963, 10.1007/s42452-019-1893-2 | |
40. | A. Cascone, R. Manzo, B. Piccoli, L. Rarità, Optimization versus randomness for car traffic regulation, 2008, 78, 1539-3755, 10.1103/PhysRevE.78.026113 | |
41. | Gui-Jun Pan, Sheng-Hong Liu, Mei Li, Jamming in the weighted gradient networks, 2011, 390, 03784371, 3178, 10.1016/j.physa.2011.03.018 | |
42. | CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042 | |
43. | Martin Schönhof, Dirk Helbing, Criticism of three-phase traffic theory, 2009, 43, 01912615, 784, 10.1016/j.trb.2009.02.004 | |
44. | Massimiliano Caramia, Ciro D’Apice, Benedetto Piccoli, Antonino Sgalambro, Fluidsim: A Car Traffic Simulation Prototype Based on FluidDynamic, 2010, 3, 1999-4893, 294, 10.3390/a3030294 | |
45. | Hossein Zangoulechi, Shahram Babaie, An adaptive traffic engineering approach based on retransmission timeout adjustment for software-defined networks, 2024, 15, 1868-5137, 739, 10.1007/s12652-023-04732-4 |