Loading [Contrib]/a11y/accessibility-menu.js
Research article

Safety and efficacy of carbamazepine in the treatment of trigeminal neuralgia: A metanalysis in biomedicine

  • Received: 24 October 2023 Revised: 04 January 2024 Accepted: 12 January 2024 Published: 07 March 2024
  • Trigeminal neuralgia is a debilitating condition characterized by severe facial pain. Carbamazepine has been widely used as a first-line treatment option for trigeminal neuralgia, but there is a need to evaluate its safety and efficacy based on existing evidence. This meta-analysis aims to systematically assess the available literature and provide a comprehensive evaluation of the safety and efficacy of carbamazepine in the treatment of trigeminal neuralgia. A thorough search of electronic databases yielded a total of 15 relevant studies that met the inclusion criteria. The pooled analysis of these studies revealed that carbamazepine demonstrated significant efficacy in reducing pain intensity and frequency in patients with trigeminal neuralgia. Moreover, the drug was generally well-tolerated, with the most common adverse events being mild and transient. Subgroup analyses based on different dosages and treatment durations further supported the overall findings. However, caution should be exercised in patients with certain comorbidities or specific populations, as some rare but severe adverse events were reported. In conclusion, this meta-analysis provides strong evidence supporting the safety and efficacy of carbamazepine as a valuable therapeutic option for the management of trigeminal neuralgia. These results can guide clinicians in making informed decisions regarding the use of carbamazepine and contribute to optimizing treatment strategies for patients with trigeminal neuralgia. Further research is warranted to explore long-term safety and efficacy outcomes, as well as to compare carbamazepine with alternative treatment modalities.

    Citation: M. Guo, W. Shen, M. Zhou, Y. Song, J. Liu, W. Xiong, Y. Gao. Safety and efficacy of carbamazepine in the treatment of trigeminal neuralgia: A metanalysis in biomedicine[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5335-5359. doi: 10.3934/mbe.2024235

    Related Papers:

    [1] Kochar Khasro Saleh, Semih Dalkiliç, Lütfiye Kadioğlu Dalkiliç, Bahra Radhaa Hamarashid, Sevda Kirbağ . Targeting cancer cells: from historic methods to modern chimeric antigen receptor (CAR) T-Cell strategies. AIMS Allergy and Immunology, 2020, 4(2): 32-49. doi: 10.3934/Allergy.2020004
    [2] Stefano Regis, Fabio Caliendo, Alessandra Dondero, Francesca Bellora, Beatrice Casu, Cristina Bottino, Roberta Castriconi . Main NK cell receptors and their ligands: regulation by microRNAs. AIMS Allergy and Immunology, 2018, 2(2): 98-112. doi: 10.3934/Allergy.2018.2.98
    [3] Caterina Marangio, Rosa Molfetta, Erisa Putro, Alessia Carnevale, Rossella Paolini . Exploring the dynamic of NKG2D/NKG2DL axis: A central regulator of NK cell functions. AIMS Allergy and Immunology, 2025, 9(2): 70-88. doi: 10.3934/Allergy.2025005
    [4] Rosa Molfetta, Beatrice Zitti, Angela Santoni, Rossella Paolini . Ubiquitin and ubiquitin-like modifiers modulate NK cell-mediated recognition and killing of damaged cells. AIMS Allergy and Immunology, 2017, 1(4): 164-180. doi: 10.3934/Allergy.2017.4.164
    [5] Daniel Amsterdam . Unique natural and adaptive response mechanisms to control and eradicate HIV infection. AIMS Allergy and Immunology, 2018, 2(3): 113-125. doi: 10.3934/Allergy.2018.3.113
    [6] Mujibullah Sheikh, Pranita S. Jirvankar . Innovative immunotherapeutic strategies for gastric cancer: A comprehensive review. AIMS Allergy and Immunology, 2025, 9(1): 27-55. doi: 10.3934/Allergy.2025003
    [7] Mansur Aliyu, Fatema Zohora, Ali Akbar Saboor-Yaraghi . Spleen in innate and adaptive immunity regulation. AIMS Allergy and Immunology, 2021, 5(1): 1-17. doi: 10.3934/Allergy.2021001
    [8] Mansur Aliyu, Ali Akbar Saboor-Yaraghi, Sadegh Khodavaisy, Behrouz Robat-Jazi, Muhammad Ibrahim Getso . Glucuronoxylomannan: the salient polysaccharide in cryptococcal immunity. AIMS Allergy and Immunology, 2022, 6(2): 71-89. doi: 10.3934/Allergy.2022008
    [9] Holly E Perry, Ivan Ryzhov, Oxana Galanina, Nicolai V Bovin, Stephen M Henry . Incidence in plasma of low level antibodies against three xenotransplantation and immunotherapeutic glycan antigens. AIMS Allergy and Immunology, 2020, 4(4): 75-87. doi: 10.3934/Allergy.2020007
    [10] Darrell O. Ricke . Antibodies and infected monocytes and macrophages in COVID-19 patients. AIMS Allergy and Immunology, 2022, 6(2): 64-70. doi: 10.3934/Allergy.2022007
  • Trigeminal neuralgia is a debilitating condition characterized by severe facial pain. Carbamazepine has been widely used as a first-line treatment option for trigeminal neuralgia, but there is a need to evaluate its safety and efficacy based on existing evidence. This meta-analysis aims to systematically assess the available literature and provide a comprehensive evaluation of the safety and efficacy of carbamazepine in the treatment of trigeminal neuralgia. A thorough search of electronic databases yielded a total of 15 relevant studies that met the inclusion criteria. The pooled analysis of these studies revealed that carbamazepine demonstrated significant efficacy in reducing pain intensity and frequency in patients with trigeminal neuralgia. Moreover, the drug was generally well-tolerated, with the most common adverse events being mild and transient. Subgroup analyses based on different dosages and treatment durations further supported the overall findings. However, caution should be exercised in patients with certain comorbidities or specific populations, as some rare but severe adverse events were reported. In conclusion, this meta-analysis provides strong evidence supporting the safety and efficacy of carbamazepine as a valuable therapeutic option for the management of trigeminal neuralgia. These results can guide clinicians in making informed decisions regarding the use of carbamazepine and contribute to optimizing treatment strategies for patients with trigeminal neuralgia. Further research is warranted to explore long-term safety and efficacy outcomes, as well as to compare carbamazepine with alternative treatment modalities.



    Despite decades of research, no drug has so far been fully effective against HIV. Although currently available antiretroviral therapy (ART) can effectively suppress HIV replication by acting at different levels of the HIV life cycle, it does not completely eradicate infected cells but instead converts them into latent viral reservoirs which upon non-adherence to treatment leads to viral rebound. Moreover, ART presents many challenges in terms of long-term drug toxicities and side effects [1]. It has therefore become crucial to seek novel ways of approaching HIV cure. Immunotherapy seems to have paved the way for this. Importantly, NK cell-based immunotherapy has gained ground in cancer treatment with promising results [2]. NK cells are well known for their anti-tumor and antiviral activity, and they do not require prior antigenic stimuation for activation [3]. Therefore, NK-based immunotherapies against HIV are currently under consideration and are being tested in clinical trials. Some of those include CAR-NK cell therapy, toll-like receptor (TLR) agonists, broadly neutralizing Abs (bNAbs), bi- and tri-specific killer engagers (BiKEs & TriKEs), facilitating antibody-dependent cellular cytotoxicity (ADCC), blocking inhibitory NK receptors during infection, IL-15 and IL-15 superagonists (eg: ALT-803), etc. [4] (Figure 1).

    Figure 1.  NK-based immunotherapies available against HIV-infection. (a) TLR 3, 7, 8, and 9 found within endosomes are targeted by their respective agonists, leading to a signalling cascade that causes the release of cytokines to enhance the recruitment of anti-HIV responses. (b) Killer Engagers and bNAbs work by enhancing ADCC. (c) IL-15 superagonist ALT-803 and the IL-15 component of the TriKE binds to IL-15Rα to improve NK cell function, persistence, and expansion. (d) Chimeric antigen receptor with the red arrow pointing to the universal CAR-NK cell consisting of the anti-DNP CAR (e) Monalizumab blocks NKG2A whereas IPH2102/Lirilumab blocks KIR. Blocking of either KIR or NKG2A, both of which are inhibitory NK receptors results in relieving the inhibition exerted on the ADCC pathway. Created using biorender.com and adapted from one of our manuscripts submitted for publication.

    A major cause of frustration and a fact that is immensely challenging in HIV drug development attempts is overcoming HIV diversity. In fact, previous studies on multi-specific bNAbs have shown that focusing on two or three epitopes are inadequate to cover all HIV-1 variants. However, we recently came across an interesting article by Lim et al. where they have introduced for the first time in history, a universal CAR-NK cell approach providing an effective solution to counteract this HIV variability [5]. In contrast to currently available CARs which target a single epitope of HIV envelope glycoprotein gp160 (a complex between gp120 and gp41) and thus have failed to address this issue, the universal CAR model developed by Lim et al. indirectly targets different gp160 epitope variants. Their CAR-NK cell has been designed to recognize 2,4-dinitrophenyl (2,4-DNP) tagged to gp160 specific Abs, given that anti-gp160 Abs with different specificities are readily available. See Figure 1d [5]. This kind of approach has several potential advantages. Firstly, it is compatible with all types of Abs including those which are not effective in inducing ADCC. Also, it has higher specificity and can be considered safer as ADCC will not be induced by naturally produced serum Abs. Furthermore, they do not impair the primary NK cell response against gp160+ HIV-infected cells [5] As a solution to the competition exerted by natural anti-2,4-DNP Abs that exist in minor proportions in serum (≈1%), Lim et al. have suggested increasing the affinity of their universal CAR for DNP [6]. Compared to the use of T cell-based approaches, allogeneic NK cells are a better alternative since it is linked to a lower risk of inducing GvHD [7]. Their approach will be further evaluated through mouse models in future studies.

    Thus, we conclude that in order to tackle the tremendous diversity of HIV epitopes similar cost-effective and flexible universal strategies will be necessary. Furthermore, under the current situation, this approach alone will not be sufficient since the latent HIV reservoir will have to be reactivated and thus combination therapy with LRAs (latency reversing agents) and possibly other agents such as antiretroviral combinations seem essential as under pressure HIV is known to generate escape mutants or lead to selection [8],[9].



    [1] M. Yuan, H. Y. Zhou, Z. L. Xiao, W. Wang, X. L. Li, S. J. Chen, et al., Efficacy and safety of gabapentin vs. carbamazepine in the treatment of trigeminal neuralgia: A meta‐analysis, Pain Pract., 16 (2016), 1083–1091. https://doi.org/10.3389/fneur.2023.1045640 doi: 10.3389/fneur.2023.1045640
    [2] X. Zhao, S. Ge, The efficacy and safety of gabapentin vs. carbamazepine in patients with primary trigeminal neuralgia: A systematic review and meta-analysis, Front. Neurol., 14 (2023), 1045640.
    [3] H. Hu, L. Chen, R. Ma, H. Gao, J. Fang, Acupuncture for primary trigeminal neuralgia: A systematic review and PRISMA-compliant meta-analysis, Complement Ther. Clin. Pract., 34 (2019), 254–267. https://doi.org/10.1016/j.ctcp.2018.12.013 doi: 10.1016/j.ctcp.2018.12.013
    [4] Q. P. Wang, M. Bai, Topiramate versus carbamazepine for the treatment of classical trigeminal neuralgia: A meta-analysis, CNS Drugs, 25 (2011), 847–857. https://doi.org/10.2165/11595590-000000000-00000 doi: 10.2165/11595590-000000000-00000
    [5] M. E. Morra, A. Elgebaly, A. Elmaraezy, A. M. Khalil, A. M. Altibi, T. L. H. Vu, et al., Therapeutic efficacy and safety of Botulinum Toxin A Therapy in Trigeminal Neuralgia: A systematic review and meta-analysis of randomized controlled trials, J. Headache Pain, 17 (2016), 1–9. https://doi.org/10.1186/s10194-016-0651-8 doi: 10.1186/s10194-016-0651-8
    [6] Z. Yin, F. Wang, M. Sun, L. Zhao, F. Liang, Acupuncture methods for primary trigeminal neuralgia: A systematic review and network meta-analysis of randomized controlled trials, Evid. Based Complement. Alternat. Med., 6 (2022). https://doi.org/10.1155/2022/3178154 doi: 10.1155/2022/3178154
    [7] Z. Qin, S. Xie, Z. Mao, Y. Liu, J. Wu, Z. Furukawa, et al., Comparative efficacy and acceptability of antiepileptic drugs for classical trigeminal neuralgia: A Bayesian network meta-analysis protocol, BMJ open, 8 (2018), e017392. https://doi.org/10.1136/bmjopen-2017-017392 doi: 10.1136/bmjopen-2017-017392
    [8] A. Khandan, H. Jazayeri, M. Fahmy, M. Razavi, Hydrogels: Types, structure, properties, and applications, Biomat. Tiss. Eng., 4 (2017), 143–169.
    [9] A. Muñoz-Vendrell, R. Tena-Cucala, S. Campoy, B. García-Parra, J. Prat, et al., Oral lacosamide for the treatment of refractory trigeminal neuralgia: A retrospective analysis of 86 cases, J. Headache Pain, 63 (2023), 559–564. https://doi.org/10.1111/head.14505 doi: 10.1111/head.14505
    [10] G. De Stefano, G. Di Pietro, A. Truini, G. Cruccu, G. Di Stefano, Considerations when using gabapentinoids to treat trigeminal neuralgia: A review, Neuropsychiatr. Dis. Treat., 8 (2023), 2007–2012. https://doi.org/10.2147/NDT.S407543 doi: 10.2147/NDT.S407543
    [11] N. B. Finnerup, Trigeminal neuralgia and the merit of small clinical trials, Lancet Neurol., 21 (2022), 951–953. https://doi.org/10.1016/S1474-4422(22)00389-1 doi: 10.1016/S1474-4422(22)00389-1
    [12] L. Ang, H. J. Kim, J. W. Heo, T. Y. Choi, H. W. Lee, J. I. Kim, et al., Acupuncture for the treatment of trigeminal neuralgia: A systematic review and meta-analysis, Complement. Ther. Clin. Pract., 5 (2023), 101763. https://doi.org/10.1016/j.ctcp.2023.101763 doi: 10.1016/j.ctcp.2023.101763
    [13] S. Khijmatgar, Z. Naik, A. Carmichael, S. M. Siddique, A. Bagewadi, A. Dey Chowdhury, et al., Observational studies on the efficacy of carbamazepine and ascorbyl palmitate in managing trigeminal neuralgia, Eur. Rev. Med. Pharmacol. Sci., 26 (2022), 94–105. https://dx.doi.org/10.26355/eurrev_202212_30799 doi: 10.26355/eurrev_202212_30799
    [14] A. M. A. Kayani, M. S. Silva, M. Jayasinghe, M. Singhal, S. Karnakoti, S. Jain, et al., Therapeutic efficacy of botulinum toxin in trigeminal neuralgia, Cureus, 14 (2022). https://doi.org/10.7759/cureus.26856 doi: 10.7759/cureus.26856
    [15] A. S. Abduhamid, S. A. Mohammed, A. G. Abdullah, N. M. Abdullah, A. Abdullah, A. M. Alqrni, et al., Radiofrequency thermoablation of the peripheral branches of trigeminal nerve versus the Gasserian ganglion for treating idiopathic trigeminal neuralgia: A systematic review and meta-analysis, J. Clin. Neurosci., 104 (2022), 42–47. https://doi.org/10.1016/j.jocn.2022.08.005 doi: 10.1016/j.jocn.2022.08.005
    [16] P. Parikh, H. M. Abdallah, A. Patel, R. K. Shariff, K. W. Nowicki, A. Mallela, et al., Bibliometric analysis of the top 100 cited articles on stereotactic radiosurgery for trigeminal neuralgia., Asian J. Neurosurg., 18 (2023), 101–107. https://doi.org/10.1055/s-0043-1761240 doi: 10.1055/s-0043-1761240
    [17] S. S. Kaya, Ş. Çelik, Y. AKÇABOY, Efficacy and safety of combined thermocoagulation radiofrequency and pulse radiofrequency in the treatment of V2/3 trigeminal neuralgia, J. Med. Palliat. Care, 4 (2023), 252–257. https://doi.org/10.47582/jompac.1303163 doi: 10.47582/jompac.1303163
    [18] F. Saldaña, H. Flores-Arguedas, J. A. Camacho-Gutiérrez, I. Barradas, Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak, Math. Biosci. Eng., 17 (2020), 4165–4183. https://doi.org/10.3934/mbe.2020231 doi: 10.3934/mbe.2020231
    [19] M. C. Penn, W. Choi, K. Brasfield, K. Wu, R. G. Briggs, R. Dallapiazza, et al. A Review of Medical and Surgical Options for the Treatment of Facial Pain, Otolaryngol. Clin. N. Am., 55 (2022), 607–632. https://doi.org/10.1016/j.otc.2022.03.001 doi: 10.1016/j.otc.2022.03.001
    [20] A. K. Allam, H. Sharma, M. B. Larkin, A. Viswanathan, Trigeminal neuralgia: Diagnosis and treatment, Neurol. Clin., 41 (2023), 107–121. https://doi.org/10.1016/j.ncl.2022.09.001 doi: 10.1016/j.ncl.2022.09.001
    [21] M. Ghosh, S. Mondal, S. Chakraborty, N. Ghosh, A stability indicating method was developed and validation for the estimation of carbamazepine in bulk and tablet dosage form by UV-spectroscopic techniques, JDDT, 13 (2023), 85–104. https://doi.org/10.22270/jddt.v13i3.5987 doi: 10.22270/jddt.v13i3.5987
    [22] J. Gao, Q. Jiang, B. Zhou, D. Chen, Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview, Math. Biosci. Eng., 16 (2019), 6536–6561. https://doi.org/10.3934/mbe.2019326 doi: 10.3934/mbe.2019326
    [23] R. F. V. Nascimento, L. Z. Pipek, P. H. P. de Aguiar, Is percutaneous balloon compression better than microvascular decompression to treat trigeminal neuralgia? A systematic review and meta-analysis, J. Clin. Neurosci., 109 (2023), 11–20. https://doi.org/10.1016/j.jocn.2023.01.002 doi: 10.1016/j.jocn.2023.01.002
    [24] Z. Sun, L. Liu, H. Liu, F. Luo, Effectiveness and safety of radiofrequency thermocoagulation treatment guided by computed tomography for infraorbital neuralgia following failed conservative treatment: A retrospective study, J. Pain Res., 4 (2023), 1005–1015. https://doi.org/10.2147/JPR.S395420 doi: 10.2147/JPR.S395420
    [25] A. Agarwal, S. Rastogi, N. Singh, M. K. Singh, Y. Litin, S. Bhasin, Percutaneous treatment of trigeminal neuralgia: A narrative review, Indian J. Pain, 36 (2022), 31–39. https://doi.org/10.4103/ijpn.ijpn_119_22 doi: 10.4103/ijpn.ijpn_119_22
    [26] H. Q. Ling, Z. H. Chen, L. He, F. Feng, C. G. Weng, S.J. Cheng, et al., Comparative efficacy and safety of 11 drugs as therapies for adults with neuropathic pain after spinal cord injury: A Bayesian network analysis based on 20 randomized controlled trials, Front. Neurol., 13 (2022), 818522. https://doi.org/10.3389/fneur.2022.818522 doi: 10.3389/fneur.2022.818522
    [27] T. Tangney, E. S. Heydari, B. L. Sheldon, A. Shetty, C. E. Argoff, O. Khazen, et al., Botulinum toxin as an effective treatment for trigeminal neuralgia in surgical practices, Stereotact. Funct. Neurosurg., 100 (2022), 314–320. https://doi.org/10.1159/000526053 doi: 10.1159/000526053
    [28] R. Xu, S. K. Nair, P. P. Shah, N. Kannapadi, J. Materi, S. Alomari, et al., A potential role for steroids in acute pain management in patients with trigeminal neuralgia, World Neurosurg., 167 (2022), e1291–e1298. https://doi.org/10.1016/j.wneu.2022.09.025 doi: 10.1016/j.wneu.2022.09.025
    [29] S. Li, G. Cheng, Y. Wu, C. Liao, W. Zhang, Long-term pain outcomes in trigeminal neuralgia patients with concomitant continuous pain: A comparison of first-time microvascular decompression and percutaneous balloon compression, Neurosurg. Rev., 46 (2023), 183. https://doi.org/10.1007/s10143-023-02089-y doi: 10.1007/s10143-023-02089-y
    [30] T. Sari, M. El Hajji, J. Harmand, The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627–645. https://doi.org/10.3934/mbe.2012.9.627 doi: 10.3934/mbe.2012.9.627
    [31] J. J. Ierano, D. M. Richards, Atlas orthogonal chiropractic management of trigeminal neuralgia: A series of case reports, Explore, 4 (2023). https://doi.org/10.1016/j.explore.2023.06.004 doi: 10.1016/j.explore.2023.06.004
    [32] W. Yoshizaki, Y. Fujikawa, S. Torikoshi, T. Katayama, K. Iwasaki, H. Toda, Effects of microvascular decompression on quality-of-life in trigeminal neuralgia patients aged 70 years and older, Surg. Neurol. Int., 14 (2023). https://doi.org/10.25259/SNI_997_2022 doi: 10.25259/SNI_997_2022
    [33] B. Kumar, Ayurvedic management of Trigeminal neuralgia by Jalauka Avacharana-An Experience, J. Ayurveda Integr. Med., 8 (2023), 279–282. https://doi.org/10.21760/jaims.8.6.45 doi: 10.21760/jaims.8.6.45
    [34] A. S. S. Andersen, T. B. Heinskou, M. S. Asghar, B. Rossen, N. Noory, E. A. Smilkov, et al., Intravenous fosphenytoin as treatment for acute exacerbation of trigeminal neuralgia: A prospective systematic study of 15 patients, Cephalalgia, 42 (2022), 1138–1147. https://doi.org/10.1177/03331024221094536 doi: 10.1177/03331024221094536
    [35] K. Karatsu, R. Tamura, T. Miyauchi, J. Sogano, U. Hino, T. Iwama, et al., Clinical effectiveness of mirogabalin besylate for trigeminal neuropathy after skull base surgery: Illustrative Cases, Medicine, 10 (2023), 48. https://doi.org/10.3390/medicines10080048 doi: 10.3390/medicines10080048
    [36] H. Jiang, D. Zou, P. Wang, L. Zeng, J. Liu, C. Tang, et al., Case report: Fully endoscopic microvascular decompression for trigeminal neuralgia, Front. Neurol., 13 (2023), 1090478. https://doi.org/10.3389/fneur.2022.1090478 doi: 10.3389/fneur.2022.1090478
    [37] Q. Chen, D. I. Yi, J. N. J. Perez, M. Liu, S. D. Chang, M. Barad, et al., The molecular basis and pathophysiology of trigeminal neuralgia, Int. J. Mol. Sci., 23 (2022), 3604. https://doi.org/10.3390/ijms23073604 doi: 10.3390/ijms23073604
    [38] X. Cao, Z. Shen, X. Wang, J. Zhao, W. Liu, G. Jiang, A meta-analysis of randomized controlled trials comparing the efficacy and safety of pregabalin and gabapentin in the treatment of postherpetic neuralgia, Pain Ther., 12 (2023), 1–18. https://doi.org/10.1007/s40122-022-00451-4 doi: 10.1007/s40122-022-00451-4
    [39] A. S. S. Andersen, T. B. Heinskou, P. Rochat, J. B. Springborg, N. Noory, E. A. Smilkov, et al., Microvascular decompression in trigeminal neuralgia-a prospective study of 115 patients, J. Headache Pain, 23 (2022), 1–15. https://doi.org/10.1186/s10194-022-01520-x doi: 10.1186/s10194-022-01520-x
    [40] L. Bendtsen, J. M. Zakrzewska, T. B. Heinskou, M. Hodaie, P. R. L. Leal, T. Nurmikko, et al., Advances in diagnosis, classification, pathophysiology, and management of trigeminal neuralgia, Lancet Neurol., 19 (2020), 784–796. https://doi.org/10.1016/S1474-4422(20)30233-7 doi: 10.1016/S1474-4422(20)30233-7
    [41] G. Di Stefano, G. De Stefano, C. Leone, A. Di Lionardo, G. Di Pietro, A. Sgro, et al., Real‐world effectiveness and tolerability of carbamazepine and oxcarbazepine in 354 patients with trigeminal neuralgia, Eur. J. Pain, 25 (2021), 1064–1071. https://doi.org/10.1002/ejp.1727 doi: 10.1002/ejp.1727
    [42] L. Zhou, Y. Liu, H. Sun, H. Li, Z. Zhang, P. Hao, Usefulness of enzyme-free and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction, Sens. Actuators B Chem., 369 (2022), 132315. https://doi.org/10.1016/j.snb.2022.132315 doi: 10.1016/j.snb.2022.132315
    [43] S. Hao, P. Jiali, Z. Xiaomin, W. Xiaoqin, L. Lina, Q. Xin, et al., Group identity modulates bidding behavior in repeated lottery contest: neural signatures from event-related potentials and electroencephalography oscillations, Front. Neurosci., 17 (2023). https://doi.org/10.3389/fnins.2023.1184601 doi: 10.3389/fnins.2023.1184601
    [44] Q. Guo, T. Li, Y. Qu, M. Liang, Y. Ha, Y. Zhang, et al., New research development on trans fatty acids in food: Biological effects, analytical methods, formation mechanism, and mitigating measures, Prog. Lipid Res., 89 (2023), 101199. https://doi.org/10.1016/j.plipres.2022.101199 doi: 10.1016/j.plipres.2022.101199
    [45] Y. Zhu, R. Huang, Z. Wu, S. Song, L. Cheng, R. Zhu, Deep learning-based predictive identification of neural stem cell differentiation, Nat. Commun., 12 (2021), 2614. https://doi.org/10.1038/s41467-021-22758-0 doi: 10.1038/s41467-021-22758-0
    [46] Z. Tian, Y. Zhang, Z. Zheng, M. Zhang, T. Zhang, J. Jin, et al., Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation, Cell Host Microbe, 30 (2022), 1450–1463. https://doi.org/10.1016/j.chom.2022.09.004 doi: 10.1016/j.chom.2022.09.004
    [47] J. Li, Y. Chen, Q. Xiang, J. Xiang, Y. Tang, L. Tang, 5HTTLPR polymorphism and postpartum depression risk A meta-analysis, Medicine, 99 (2020), e22319. https://doi:10.1097/MD.0000000000022319 doi: 10.1097/MD.0000000000022319
    [48] Y. Chen, L. Chen, Q. Zhou, Genetic association between eNOS gene polymorphisms and risk of carotid atherosclerosis A meta-analysis, Herz, 46 (2021), 253–264. https://doi.org/10.1007/s00059-020-04995-z doi: 10.1007/s00059-020-04995-z
    [49] J. Li, J. Luo, L. Liu, H. Fu, L. Tang, The genetic association between apolipoprotein E gene polymorphism and Parkinson disease: A meta-Analysis of 47 studies, Medicine, 97 (2018), e12884. https://doi.org/10.1097/MD.0000000000012884 doi: 10.1097/MD.0000000000012884
    [50] Y. X. Song, X. Li, S. D. Nie, Z. X. Hu, D. Zhou, D. Y. Sun, et al., Extracellular vesicles released by glioma cells are decorated by Annexin A2 allowing for cellular uptake via heparan sulfate, Cancer Gene Ther., 30 (2023), 1156–1166. https://doi.org/10.1038/s41417-023-00627-w doi: 10.1038/s41417-023-00627-w
    [51] W. Tang, Y. Luo, X. Duan, Distribution of the Retinal Microcirculation Based on the Morphology of the Optic Nerve Head in High Myopia, Semin. Ophthalmol., 38 (2023), 584–591. https://doi.org/10.1080/08820538.2023.2169581 doi: 10.1080/08820538.2023.2169581
    [52] L. Tang, Q. Xiang, J. Xiang, J. Li, D. Chen, A variant in the 3ʹ-untranslated region of the MC2R gene decreases the risk of schizophrenia in a female Han Chinese population, Int. J. Med. Res., 49 (2021), 675876864. https://doi.org/10.1177/03000605211029504 doi: 10.1177/03000605211029504
  • This article has been cited by:

    1. María Velasco‐de Andrés, Guillermo Muñoz‐Sánchez, Laura Carrillo‐Serradell, María del Mar Gutiérrez‐Hernández, Cristina Català, Marcos Isamat, Francisco Lozano, Chimeric antigen receptor–based therapies beyond cancer, 2023, 0014-2980, 2250184, 10.1002/eji.202250184
    2. Arosh S Perera Molligoda Arachchige, NK cell-based therapies for HIV infection: Investigating current advances and future possibilities, 2022, 111, 0741-5400, 921, 10.1002/JLB.5RU0821-412RR
    3. Linxin Yang, Jinshen He, Jiahao Liu, Tianjian Xie, Qi Tang, Application of chimeric antigen receptor therapy beyond oncology: A bibliometric and visualized analysis, 2024, 72, 24523186, 103442, 10.1016/j.retram.2024.103442
    4. Abdolreza Esmaeilzadeh, Kaveh Hadiloo, Marjan Jabbari, Reza Elahi, Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors, 2024, 337, 00243205, 122381, 10.1016/j.lfs.2023.122381
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3197) PDF downloads(316) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog