Research article Special Issues

A shiny app for modeling the lifetime in primary breast cancer patients through phase-type distributions

  • Received: 21 November 2023 Revised: 13 December 2023 Accepted: 19 December 2023 Published: 29 December 2023
  • Phase-type distributions (PHDs), which are defined as the distribution of the lifetime up to the absorption in an absorbent Markov chain, are an appropriate candidate to model the lifetime of any system, since any non-negative probability distribution can be approximated by a PHD with sufficient precision. Despite PHD potential, friendly statistical programs do not have a module implemented in their interfaces to handle PHD. Thus, researchers must consider others statistical software such as R, Matlab or Python that work with the compilation of code chunks and functions. This fact might be an important handicap for those researchers who do not have sufficient knowledge in programming environments. In this paper, a new interactive web application developed with shiny is introduced in order to adjust PHD to an experimental dataset. This open access app does not require any kind of knowledge about programming or major mathematical concepts. Users can easily compare the graphic fit of several PHDs while estimating their parameters and assess the goodness of fit with just several clicks. All these functionalities are exhibited by means of a numerical simulation and modeling the time to live since the diagnostic in primary breast cancer patients.

    Citation: Christian Acal, Elena Contreras, Ismael Montero, Juan Eloy Ruiz-Castro. A shiny app for modeling the lifetime in primary breast cancer patients through phase-type distributions[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 1508-1526. doi: 10.3934/mbe.2024065

    Related Papers:

    [1] Shen Helvig, Intan D. M. Azmi, Seyed M. Moghimi, Anan Yaghmur . Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles. AIMS Biophysics, 2015, 2(2): 116-130. doi: 10.3934/biophy.2015.2.116
    [2] David Kirchenbuechler, Yael Mutsafi, Ben Horowitz, Smadar Levin-Zaidman, Deborah Fass, Sharon G. Wolf, Michael Elbaum . Cryo-STEM Tomography of Intact Vitrified Fibroblasts. AIMS Biophysics, 2015, 2(3): 259-273. doi: 10.3934/biophy.2015.3.259
    [3] Gayane Semerjyan, Inesa Semerjyan, Mikayel Ginovyan, Nikolay Avtandilyan . Characterization and antibacterial/cytotoxic activity of silver nanoparticles synthesized from Dicranum scoparium moss extracts growing in Armenia. AIMS Biophysics, 2025, 12(1): 29-42. doi: 10.3934/biophy.2025003
    [4] Vittoria Raimondi, Alessandro Grinzato . A basic introduction to single particles cryo-electron microscopy. AIMS Biophysics, 2022, 9(1): 5-20. doi: 10.3934/biophy.2022002
    [5] Kazushige Yokoyama, Christa D. Catalfamo, Minxuan Yuan . Reversible peptide oligomerization over nanoscale gold surfaces. AIMS Biophysics, 2015, 2(4): 649-665. doi: 10.3934/biophy.2015.4.649
    [6] James C. L. Chow . Recent progress in Monte Carlo simulation on gold nanoparticle radiosensitization. AIMS Biophysics, 2018, 5(4): 231-244. doi: 10.3934/biophy.2018.4.231
    [7] Adam Redzej, Gabriel Waksman, Elena V Orlova . Structural studies of T4S systems by electron microscopy. AIMS Biophysics, 2015, 2(2): 184-199. doi: 10.3934/biophy.2015.2.184
    [8] Zaynah Sheeraz, James C.L. Chow . Evaluation of dose enhancement with gold nanoparticles in kilovoltage radiotherapy using the new EGS geometry library in Monte Carlo simulation. AIMS Biophysics, 2021, 8(4): 337-345. doi: 10.3934/biophy.2021027
    [9] Michael B. Sherman, Juan Trujillo, Benjamin E. Bammes, Liang Jin, Matthias W. Stumpf, Scott C. Weaver . Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment. AIMS Biophysics, 2015, 2(2): 153-162. doi: 10.3934/biophy.2015.2.153
    [10] Sebastian Kube, Petra Wendler . Structural comparison of contractile nanomachines. AIMS Biophysics, 2015, 2(2): 88-115. doi: 10.3934/biophy.2015.2.88
  • Phase-type distributions (PHDs), which are defined as the distribution of the lifetime up to the absorption in an absorbent Markov chain, are an appropriate candidate to model the lifetime of any system, since any non-negative probability distribution can be approximated by a PHD with sufficient precision. Despite PHD potential, friendly statistical programs do not have a module implemented in their interfaces to handle PHD. Thus, researchers must consider others statistical software such as R, Matlab or Python that work with the compilation of code chunks and functions. This fact might be an important handicap for those researchers who do not have sufficient knowledge in programming environments. In this paper, a new interactive web application developed with shiny is introduced in order to adjust PHD to an experimental dataset. This open access app does not require any kind of knowledge about programming or major mathematical concepts. Users can easily compare the graphic fit of several PHDs while estimating their parameters and assess the goodness of fit with just several clicks. All these functionalities are exhibited by means of a numerical simulation and modeling the time to live since the diagnostic in primary breast cancer patients.



    1. Introduction

    Investment is an important means of earning profit for insurance companies, reinsurance is in use for controlling insurers' risk exposure. Recently, it became a hot point in optimization and control fields to consider reinsurance and investment synthetically under risk models. There are two main models of reinsurance-investment problem, that is, maximizing the insurer's expected utility of terminal wealth and minimizing the probability of ruin under reinsurance-investment strategies, and each model is based on the quantitative description for insurer's surplus processes. From the known literature, we see that two major types of mathematical model for the surplus of the insurance company are usually exploited, which are the Cramer-Lundberg model and the diffusion model, the former is the so called classical risk process, and the later is an approximation to the former which is feasible as one deals with large insurance portfolios, where an individual claim is relatively small compared to the size of the surplus.

    In our paper, the continuous-time mean-variance reinsurance-investment problem is to be considered, where multiple risky assets for investment exist in the market and diffusion model is exploited to describe the risk process of the insurance company. Under diffusion model of the risk process, related reinsurance-investment problems have attracted a great deal of interest. Promislow et al. (2005) studied the optimal reinsurance-investment strategy to minimize the probability of ruin for insurance companies. Taksar et al. (2003) also obtained the optimal reinsurance-investment strategy to minimize the probability of ruin for insurance companies under diffusion model of surplus process. By solving the corresponding Hamilton-Jacobi-Bellman equations, Cao et al. (2009) obtained the optimal reinsurance-investment strategies for maximizing the utility of terminal wealth with exponential and power utility functions. Luo et al. (2008) studied the similar problem as Cao et al. (2009) in Black-Scholes market subject to some investment constraints. All of the literature (Browne, 1995; Promislow et al., 2005; Taksar et al., 2003; Cao et al., 2009; Luo et al., 2008) researched their optimization problems in Black-Scholes market with single risky asset. Bai et al. (2008) considered the reinsurance-investment problem in Black-Scholes market with multiple risky assets and no-shorting constraint. Zhang et al. (2009) studied the optimal reinsurance-investment problem of maximizing the expected exponential utility of terminal wealth and solve it by using the corresponding Hamilton-Jacobi-Bellman equation. It is noted that the transaction costs when investing in the risky assets and conditional Value-at-Risk to control the whole risk have been considered.

    For the sack of practical need in management, mean-variance portfolio selection model initiated by Markowitz has attracted much attention all the time. There has been few literature up to now which devoted themselves to studying the continuous-time mean-variance reinsurance-investment problem, however, the continuous-time mean-variance portfolio selection problem was researched by Zhou et al. (2000)with the help of stochastic linear-quadratic method. As the subsequent paper, Lim et al. (2002) pointed out: there are many advantages of using the framework of stochastic linear-quadratic control to study dynamic mean-variance problems, meanwhile it was recognized that the solution to the problem could also have been obtained via dynamic programming and the associated Hamilton-Jacobi-Bellman equation when the market coefficients are assumed to be deterministic. It is observed that, when the market coefficients are assumed to be deterministic, the Lagrange method can be applied to solving the continuous-time mean-variance portfolio selection problems, which was expounded in Chow (1997) in a general way and was applied to investment decisions and pricing of contingent claims in Chow (1996) and Chow (1999), respectively. The Lagrange method is more popular than other dynamic optimization methods. For our continuous-time mean-variance reinsurance-investment problem with deterministic market coefficients, the Lagrange method is also a simple one to obtain our results, which is the main reason for this research. It should be recognized that the Lagrange method is limited to complex circumstances such as random market coefficients, which induces more complex backward stochastic differential equation for solving the process of the Lagrange multiplier. For more details on the subject, we refer to the recent work such as Chen et al. (2013), Shen et al. (2015), and so on.

    This paper is organized as follows: In Section 2, we state the mean-variance optimization problem. In Section 3, we use the Lagrange method to analysis the mean-variance problem, necessary and sufficient conditions for the problem are discussed, the optimal strategy and its effective frontier in explicit forms are obtained. In Section 4, we show a numerical example.


    2. Problem Formulation

    Throughout this paper we denote by M the transpose of any matrix or vector M=(mij), ||M||=i,jm2ij its norm, Rm the mdimensional real space, 1 the vector with unit entries, [0,T] the finite horizon of investment and Et the expectation at time t[0,T].

    Market uncertainty is modeled by a filtered complete probability space (Ω,F,P,{Ft}t[0,T]). Assume that the filtration {Ft}t[0,T] is generated by an (m+1)-dimensional standard Brownian motion {(W0t,W1t,,Wmt):t[0,T]} for a positive integer m. F0={Φ,Ω}, FT=F.

    We recall that the space LF,2([0,T];Rm) of mean square integrable functions u(t,x) from R×Ω to Rm possesses a natural Hilbert space structure, inducing the norm

    ||u||F,2=(E0T0||u(t,X)||2dt)12<+.

    Following the framework of Promislow and Young (2005), we model the insurer's claim process C according to a Brownian motion with drift as follows:

    dC(t)=adtbdW0t, (1)

    where a and b are positive constants. Assume that the premium be paid continuously at the constant rate c0=(1+θ)a with safety loading θ>0, and that the insurer purchase the proportional reinsurance to reduce the underlying risk. Let q(t) represent the proportion reinsured at time t. Similar to the premium paid to the insurer, the reinsurance premium is paid continuously at the constant rate c1=(1+η)aq with safety loading η>θ>0. Based on Eq. (1), the surplus process R(t) is given by the dynamics

    dR(t)=c0dt(1q(t))dC(t)c1dt=(θηq(t))adt+b(1q(t))dW0t. (2)

    In addition to reinsurance, the insurer is allowed to invest its surplus in a financial market in which (m+1) assets are traded continuously over [0,T] in a self-financing fashion (i.e., there is no consumption nor income). The 0th asset is a bond whose price S0(t) is subject to the following deterministic ordinary differential equation:

    dS0(t)=r(t)S0(t)dt,S0(0)=1, (3)

    where r(t)C([0,T];R+) is the interest rate of the risk-free asset. The remaining m assets are risky and their price processes S1(t),S2(t),,Sm(t) satisfy the following stochastic differential equations:

    dSi(t)=μi(t)Si(t)dt+σi(t)Si(t)dWt,Si(0)=si>0,i=1,2,,m, (4)

    where μi(t) and σi(t)=[σi1(t),,σim(t)] are the appreciation rate and dispersion (or volatility) rate of the ith asset, respectively, and W=(W1t,,Wmt). We assume that μi(t) and σi(t) are scalar-valued deterministic bounded functions. Denoting

    σ(t)=[σ1(t)σm(t)]Rm×m, (5)

    we assume throughout that σ(t) is uniformly nondegenerate: that is, there exists δ>0 such that

    σ(t)σ(t)δI,t[0,T]. (6)

    A strategy s is described by a stochastic process (q(t),π(t)), where π(t) :=(π1(t),π2(t),,πm(t)), πi(t) is the dollar amount invested in asset i(i=1,2,,m) at time t.

    Let X(t) denote the resulting surplus process after incorporating strategy s into (2). The dynamics of X(t) can be represented as follows.

    dX(t)=[r(t)X(t)+(θηq(t))a+τ(t)π(t)]dt+b(1q(t))dW0t+π(t)σ(t)dWt, (7)

    where τ(t)=(μ1(t)r(t),,μm(t)r(t)), X(0)=x0.

    The admissible strategy set with initial wealth x0 is defined as

    A(x0):={s=(q(t),π(t))|q(t),π(t)satisfies(2.7)}

    The objective of the insurer is to determine an optimal strategy sA(x0) such that the variance of the terminal wealth, Var[X(T)], is minimized, subject to that the expected terminal wealth, E0[X(T)], takes a given level K>x0exp(T0r(t)dt). This can be expressed as the optimization problem:

    {minsA(x0)Var[X(T)]=E0[X2(T)K],s.t.E0[X(T)]=K. (8)

    We introduce a Lagrange multiplier 2ξR and after rearranging terms arrive at the new cost function,

    E0[(X(T)2K)2+2ξ(X(T)K)]=E0[X(T)(Kξ)]2ξ2.

    Letting γ=Kξ leads to the following optimal stochastic control problem,

    maxsA(x0){(Kγ)2E0[X(T)2γ]2}. (9)

    Remark 2.1. The link between problem (8) and (9) is provided by the Lagrange duality theorem, see e.g. Luenberger (1968)

    minsA(x0)Var[X(T)]=maxγRmaxsA(x0){(Kγ)2E0[X(T)2γ]2}.

    3. Mean-Variance Analysis by the Lagrange Method

    For the first step, we consider problem (9) for a fixed γ. Follow the Lagrange method introduced by Chow (1997), recognizing dX(t)=X(t+dt)X(t), and let dt be a very small time interval. The Lagrange expression for the optimization problem (9) beginning from t=0 is

    L=(Kγ)2Et[X(T)2γ]2
    T0Etλ(t+dt)[X(t+dt)X(t)(r(t)X(t)+(θηq(t))a+τ(t)π(t))dt
    b(1q(t))dW0tπ(t)σ(t)dWt]. (10)

    For simplicity, denote by

    f(X(t),q(t),π1(t),,πm(t))=r(t)X(t)+(θηq(t))a+τ(t)π(t),
    R(q(t))=b(1q(t)).

    The Lagrange expression (10) can be rewritten as follows.

    L=(Kγ)2Et[X(T)2γ]2
    T0Etλ(t+dt)[X(t+dt)fdtR(q)dW0tπ(t)σ(t)dWt]. (11)

    Remark 3.1: By theorem 4.2 of Yong and Zhou(1999), problem (9) with dynamic constraint (7) admits a pathwise unique admissible strategy in A(x0), which implies, for a given γR, maximization of the cost function L in (11) is uniquely solvable, henceforth, the Lagrange multiplier λ=λ(t,X(t)) can be uniquely determined.


    3.1. Necessary conditions

    Let the function λ be in the form λ=λ(t,X(t)), applying Ito's differentiation rule to evaluate dλ yields

    dλ=[λt+λXf+122λX2(R2(q)+||π(t)σ(t)||2)]dt
    +λXR(q)dW0t+λXπ(t)σ(t)dWt. (12)

    Differentiating (11) with respect to X(T), we have

    λ(T)=2X(T)+2γ. (13)

    Differentiating (11) with respect to q(t) gives

    Lq=fqEtλ(t+dt)dt+EtdW0tRqλ(t+dt)
    =fq(λdt+Etdλdt)+EtdW0tRqλ(t+dt)
    =[fqλ(t)+RqλXR(q)]dt+o(dt)
    =[aηλ(t)bR(q)λX]dt+o(dt)=0.

    Hence

    aηλ(t)+bR(q)λX=0. (14)

    Differentiating (11) with respect to π(t) yields

    Lπ=[λ(t)τ(t)+λXσ(t)σ(t)π(t)]dt+o(dt)=0.

    Hence

    λ(t)τ(t)+λXσ(t)σ(t)π(t)=0. (15)

    Noting the term λ(t)[X(t)] in the integrand of (11), differentiating (11) with respect to X(t)(0t<T) gives

    LX=λ(t)+Etλ(t+dt)+fXEtλ(t+dt)dt
    =λ(t)+Et(λ(t)+dλ(t))+fXEt(λ(t)+dλ(t))dt
    =[λt+λXf+fXλ(t)+122λX2(R2(q)+||π(t)σ(t)||2)]dt+o(dt)
    =0.

    Hence

    λt+λXf+fXλ(t)+122λX2(R2(q)+||π(t)σ(t)||2)=0. (16)

    Now we state the necessary conditions for the optimization problem (9) as follows.

    Proposition 3.1. Let s=(q(t),π(t)) be the optimal reinsurance-investment strategy for the optimization problem (9), then the equations (12)-(16) hold.


    3.2. Sufficient conditions

    First, we give the explicit expression of the wealth process X(t). Let

    Y(t)=X(t)exp(t0r(s)ds),

    which yields

    dY(t)=exp(t0r(s)ds)[dX(t)r(t)X(t)dt],

    In view of (7), we have

    dY(t)=exp(t0r(s)ds)[((θηq(t))a+τ(t)π(t))dt+R(q)dW0t+π(t)σ(t)dWt],

    and thus

    Y(t)Y(0)=t0exp(s0r(u)du)[((θηq(s))a+τ(s)π(s))ds+R(q)dW0s+π(s)σ(s)dWs].

    So, we have

    X(t)=x0exp(t0r(s)ds)+t0exp(tsr(u)du)[(θηq(s))a+τ(s)π(s))ds.
    +R(q)dW0s+π(s)σ(s)dW. (17)

    In view of (17), it is not difficulty to find that both Et[X(T)2/q2] and Et[X(T)2/πi2] are positive, which guarantees that the necessary conditions stated in proposition 3.1 are also sufficient conditions for the optimization problem (9) according to Chow (1997).


    3.3. Optimal reinsurance-investment strategy

    Noting that f=r(t)X(t)(θηq(t))a+(θηq(t))a+τ(t)π(t), from (3.7) and (3.4), we have

    {λt+[r(t)X(t)+(θηq(t))a+τ(t)π(t)]λX    12[R2(q)+||π(t)σ(t)||2]2λX2+r(t)λ(t)=0,λ(T)=2X(T)+2γ. (18)

    According to Remark 3.1, problem (18) has an unique solution λ(t,X(t)). So, in view of (14) and (15), the components of admissible strategy, q(t) and π(t), are uniquely determined. For purpose of getting the unique solution of (18), we start by finding q(t) and π(t) in linear feedback form as follows.

    q(t)=ϕ1(t)X(t)+φ1(t),π(t)=ϕ2(t)X(t)+φ2(t), (19)

    where ϕ1,φ1C1[0,T;R] and ϕ2,φ2C1[0,T;Rm] are deterministic functions to be determined.

    From (14) and (19), remarking that R(q)=b(1q(t)), we have

    aηλ(t)+b2(1ϕ1(t)X(t)φ1(t))λX=0. (20)

    Differentiating (20) with respect to X(t) arrives at

    (aηb2ϕ1(t))λX+bR(q)2λX2=0.

    Hence

    R2(q)2λX2=(ϕ1(t)aη/b2)bR(q)2λX2=aη(ϕ1(t)aη/b2)λ, (21)

    where (14) is incorporated in the second equality in (21).

    From (15) and (19), we have

    λ(t)τ(t)+λXσ(t)σ(t)(ϕ2(t)X(t)+φ2(t))=0. (22)

    Differentiating (22) with respect to X(t) arrives at

    λX(τ(t)+σ(t)σ(t)ϕ2(t))+2λX2σ(t)σ(t)π(t)=0. (23)

    Hence

    ||π(t)σ(t)||22λX2=λXπ(t)(τ(t)+σ(t)σ(t)ϕ2(t)).
    =λXτ(t)π(t)+λ(t)ϕ2(t)τ(t), (24)

    where (15) is incorporated in the second equality in (23). Substituting from (21) and (24) into (18) gives

    {λt+[r(t)X(t)+(θηq(t))a+12τ(t)π(t)]λX    +12[2r(t)aη(ϕ1(t)aη/b2)+ϕ2(t)τ(t)]λ=0,λ(T)=2X(T)+2γ. (25)

    Characteristic equation of the first order partial differential equation in (25) is

    dt1=dXr(t)X(t)+(θηq(t))a+12τ(t)π(t)
    =dλ12(2r(t)aη(ϕ1(t)aη/b2)+ϕ2(t)τ(t))

    In view of

    dt1=dXr(t)X(t)+(θηq(t))a+12τ(t)π(t)

    we obtain a first integration as follows.

    C1=X(t)exp(t0(r(s)aηϕ1(s)+12τ(s)ϕ2(s)ds)
    Tt(aθaηφ1(u)+12τ(u)ϕ2(u))×exp(u0(r(s)aηϕ1(s)+12τ(s)ϕ2(s)ds)du,

    where C1 is constant. In view of

    dt1=dλ12(2r(t)aη(ϕ1(t)aη/b2)+ϕ2(t)τ(t)),

    we get another first integration:

    C2=λ(t)+12Tt[2r(s)aη(ϕ1(s)aη/b2)+ϕ2(s)τ(s)]ds,

    where C2 is constant. It is obvious that both the first integrations obtained above are mutual independent. Invoking the boundary condition in (25), that is, λ(T)=2X(T)+2γ, relationship between C1 and C2 is

    C2=2exp(T0(r(s)aηϕ1(s)+12τ(s)ϕ2(s))ds)C1+2γ

    so we get the solution of (25) as following.

    λ(t)+12Tt[2r(s)aη(ϕ1(s)aη/b2)+ϕ2(s)τ(s)]ds
    =2exp(T0(r(s)aηϕ1(s)+12τ(s)ϕ2(s))ds)
    ×[X(t)exp(t0(r(s)aηϕ1(s)+12τ(s)ϕ2(s)ds)
    Tt(aθaηφ1(u)+12τ(u)φ2(u))
    ×exp(u0(r(s)aηϕ1(s)+12τ(s)φ2(s))du]+2γ. (26)

    From (26), we see that

    {λX=2exp(Tt(r(s)aηϕ1(s)+12τ(s)ϕ2(s)ds)0,2λX2=0. (27)

    By (21) and the second equation in (27), we get ϕ1(t)=aη/b2. By (23) and (27), we get ϕ2(t)=(σ(t)σ(t))1τ(t). Substituting from the results of ϕ1(t) and ϕ2(t) into (27) shows

    λX=2exp(Tt(r(s)a2η2b212||σ1(s)τ(s)||2)ds):=H(t). (28)

    Substituting from the results of ϕ1(t) and ϕ2(t) into (26) gives

    λ(t)=H(t)X(t)+h(t), (29)

    where

    h(t)=2Tt(aθaηφ1(u)+12τ(u)φ2(u))
    ×exp(Tu(r(s)a2η2b212||σ1(s)τ(s)||2)ds)du
    12Tt[2r(s)||σ1(s)τ(s)||2]ds+2γ.

    Then h(T)=2γ, and

    dhdt=[(aθaηφ1(t)+12τ(t)φ2(t))]H(t)
    +12[2r(s)||σ1(t)τ(t)||2], (30)

    where H(t) is given by (28).

    By (22), (29) and ϕ2(t)=(σ(t)σ(t))1τ(t), we have

    H(t)φ2(t)=h(t)(σ(t)σ(t))1τ(t). (31)

    By (20), (29) and ϕ1(t)=aη/b2, we have

    H(t)φ1(t)=aηb2h(t)+H(t). (32)

    Substituting from (31) and (32) into (30) gives

    dhdt=(a2η2b2+12||σ1(t)τ(t)||2)h(t)+aθH(t)+12[2r(t)||σ1(t)τ(t)||2].

    Remarking that h(T)=2γ, we have

    h(t)=2γexp(a2η2b2(Tt)+12Tt||σ1(s)τ(s)||2ds)
    Ttexp(a2η2b2(ut)+12ut||σ1(s)τ(s)||2ds)
    ×[aθH(u)+(r(u)12||σ1(u)τ(u)||2]du. (33)

    From (31) and (32), we have

    φ2(t)=h(t)H(t)(σ(t)σ(t))1τ(t),φ1(t)=aηb2h(t)H(t)+1,

    so we have

    {q(t)=ϕ1(t)X(t)+φ1(t)=aηb(X(t)+h(t)H(t))+1;π(t)=ϕ2(t)X(t)+φ2(t)=(σ(t)σ(t))1τ(t)(X(t)+h(t)H(t)), (34)

    and

    λ(t)=H(t)X(t)+h(t), (35)

    where H(t) and h(t) are given by (28) and (33), respectively. We state one of our main results as follows.

    Proposition 3.2. Let τ(t)=(μ1(t)r(t),,μm(t)r(t)), and γR be given. The optimal reinsurance-investment strategy for problem (2.9) are given by (34), and the Lagrange multiplier λ(t,X(t)) is a linear function of X(t) which is given by (35).


    3.4. The effective frontier

    From (35), we have

    λt=dHdtX(t)+dhdt,λX=H(t),2λX2=0.

    From equations (12) and (13), we have the backward stochastic differential equation (BSDE, for short) with terminal value for the Lagrange multiplier λ.

    {dλ=[dHdtX(t)+dhdt+H(t)f]dt+H(t)R(q)dW0t+H(t)π(t)σ(t)dWt,λ(T)=2X(T)+2γ. (36)

    From (18) we have dHdtX(t)+dhdt+H(t)f=λr(t). Substituting from (34) into (36), one obtains

    {dλ=λ[r(t)dt+aηbdW0t+(σ1(t)τ(t))dWt],λ(T)=2X(T)+2γ. (37)

    BSDE (37) has the following solution.

    λ=2(X(T)γ)exp[Tt(r(s)l(s)2)ds]
    ×exp[aηb(W0TW0t)+Tt(σ1(s)τ(s))dWs], (38)

    where l=a2η2/b2+||σ1τ||2. By λ obtained in (38), we then have

    λ(0,X(0))=H(0)X(0)+h(0)
    =2(X(T)γ)exp[T0(r(t)l(t)2)dt]×exp[aηbW0T+T0(σ1(t)τ(t))dWt].

    Hence

    X(T)=12(H(0)x0+h(0))exp(T0(r(t)l(t)2)dt)
    ×exp(aηbW0TT0(σ1(t)τ(t))dWt)+γ,

    which implies

    E0[X(T)]=12(H(0)x0+h(0))exp(T0(r(t)l(t))dt)+γ.

    From (28) and (33), we have

    H(0)=2exp(T0(r(s)a2η2b212||σ1(s)τ(s)||2)ds),

    and

    h(0)=2γexp(a2η2b2T+12T0||σ1(s)τ(s)||2)ds)h(0),

    where

    h(0)=T0exp(a2η2b2u+12u0||σ1(s)τ(s)||2ds)
    ×[aθH(u)+(r(u)12||σ1(u)τ(u)||2)]du.

    Denoting by A=H(0)x0h(0), we have

    E0[X(T)]=12Aexp(T0(r(t)l(t))dt)
    +γ[1exp(T0(r(s)2l(s))ds12T0||σ1(s)τ(s)||2)ds)]. (39)

    Furthermore, we have

    X2(T)=14(H(0)x0+h(0))2exp(T0(2r(t)l(t))dt)
    ×exp(2aηbW0T2T0(σ1(t)τ(t))dWt)+γ2
    γ(H(0)x0+h(0))exp(T0(r(t)l(t)2)dt)
    ×exp(aηbW0TT0(σ1(t)τ(t))dWt),

    which yields

    E0[X2(T)]=14A2exp(T0(2r(t)3l(t))dt)
    +A[exp(T0(2r(s)4l(s))ds12T0||σ1(s)τ(s)||2)ds)exp(T0(r(s)l(s))ds)]γ
    +[1+exp(T0(2r(s)5l(s))dsT0||σ1(s)τ(s)||2)ds)]
    2exp(T0(r(s)2l(s))ds12T0||σ1(s)τ(s)||2)ds)γ2. (40)

    Using (39) and (40) we can thus give an explicit expression for the optimal cost in problem (8), as a one parameter family in γ

    (Kγ)2E0[X(T)γ]2=K22γK+2γE0[X(T)]E0[X2(T)]=K214A2exp(T0(2r(t)3l(t))dt)  [2K+Aexp(T0(2r(s)4l(s))ds12T0||σ1(s)τ(s)||2)ds)]γ  [exp(T0(2r(s)5l(s))dsT0||σ1(s)τ(s)||2)ds)1]γ2.

    Assume that

    T0(5l(s)2r(s))dsT0||σ1(s)τ(s)||2)ds
    =T0[4||σ1(s)τ(s)||22r(s)]ds+5a2η2T/b2:=ρ>0 (41)

    hold, using remark 2.1, we see that the minimum Var[X(T)] is achieved for

    γ=K+A2exp(T0(2r(s)4l(s))ds12T0||σ1(s)τ(s)||2ds)eρ1 (42)

    and

    minsA(x0)Var[X(T)]=eρeρ1[K+A2exp(T0l(s)ds+12T0||σ1(s)τ(s)||2)ds)]2. (43)

    Now we state the conclusion of the effective frontier of our mean-variance problem as follows.

    Proposition 3.3. Let K=E0[X(T)], τ(t)=(μ1(t)r(t),,μm(t)r(t)), l(t)=a2η2/b2+||σ1(t)τ(t)||2, A=H(0)x0h(0). Assume that (41) hold. The effective frontier of the mean-variance reinsurance-investment strategy for problem (8) is given by

    Var[X(T)]=eρeρ1[K+A2exp(T0l(s)ds+12T0||σ1(s)τ(s)||2)ds)]2. (44)

    4. Numerical Example

    Let x0=1, r(t)=0.06, m=3, μ1(t)=0.08, μ2(t)=0.10, μ3(t)=0.15, a=1, b=0.5, θ=0.2, η=0.3, and

    σ(t)=(0.200.150.060.100.300.250.400.050.50).

    Then

    σ1(t)=(2.8701.3570.9481.9712.1570.7652.1740.8701.304),τ(t)=(0.02,0.04,0.09),

    and

    ||σ1(t)τ(t)||2=0.022865,(σ(t)σ(t))1=(16.84801.53454.04781.53457.25101.80214.04781.80213.1843).

    Hence l(t)=a2η2/b2+||σ1(t)τ(t)||2=0.382865. In view of (28) and (33), and let e2.718, direct calculation gives h(t)/H(t)=0.07320.9268×1.9794Tt. According to proposition 3.2, the mean-variance optimal reinsurance-investment strategy are given by (34), that is,

    {q(t)=aηb2(X(t)+h(t)H(t))+1=1+1.2(X(t)+0.07320.9268×1.9794Tt)    =1.0878+1.2X(t)1.1122×1.9794Tt;π(t)=(σ(t)σ(t))1τ(t)(X(t)+h(t)H(t))    =(0.63990.09720.2955)(X(t)++0.07320.9268×1.9794Tt)    =(0.04680.00710.0216)(0.63990.09720.2955)X(t)+(0.59310.09010.2739)×1.9794Tt,

    Remark that

    ρ=T0[4||σ1(s)τ(s)||22r(s)]ds+5a2η2T/b2=1.77146T>0, A=H(0)x0h(0)=0.13082.5858×1.3653T+0.4550×1.4498T. In view of (44), the effective frontier of the mean-variance reinsurance-investment strategy is given by

    Var[X(T)]=eρeρ1[K+A2exp(T0l(s)ds+12T0||σ1(s)τ(s)||2)ds)]2
    =5.8784T5.8784T1(0.0654×1.4498T+0.2775×2.1019T1.2929×1.0619T+E0[X(T)])2.

    Furthermore, let T=1, we have

    Var[X(1)]=1.2050(0.6948+E0[X(1)])2.

    Acknowledgments

    This work is supported by the Foundation of Guangzhou Academy of International Finance (No: 16GFR01A04, 16GFR01A07).


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.




    [1] F. P. Coolen, Parametric probability distributions in reliability, in Encyclopedia of Quantitative Risk Analysis and Assessment, John Wiley & Sons: Chichester, (2008), 1255–1260.
    [2] J. W. McPherson, Reliability physics and engineering: Time-to-failure modelling, Springer: Heidelberg, 2013.
    [3] A. D. Hutson, An accelerated life model analog for discrete survival and count data, Comput. Meth. Prog. Bio., 210 (2021), 106337. https://doi.org/10.1016/j.cmpb.2021.106337 doi: 10.1016/j.cmpb.2021.106337
    [4] M. C. Aguilera-Morillo, A. M. Aguilera, F. Jiménez-Molinos, J. B. Roldán, Stochastic modeling of random access memories reset transitions, Math. Comput. Simulat., 159 (2019), 197–209. https://doi.org/10.1016/j.matcom.2018.11.016 doi: 10.1016/j.matcom.2018.11.016
    [5] R. Kollu, S. R. Rayapudi, S. Narasimham, K. M. Pakkurthi, Mixture probability distribution functions to model wind speed distributions, Int. J. Energ. Environ. Eng., 3 (2012), 27. https://doi.org/10.1186/2251-6832-3-27 doi: 10.1186/2251-6832-3-27
    [6] F. J. Marques, C. A. Coelho, M. de Carvalho, On the distribution of linear combinations of independent Gumbel random variables, Stat. Comput., 25 (2015), 683–701. https://doi.org/10.1007/s11222-014-9453-5 doi: 10.1007/s11222-014-9453-5
    [7] M. F. Neuts, Probability distributions of phase type, Liber Amicorum Prof. Emeritus H. Florin, 1975.
    [8] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, John Hopkins University Press: Baltimore, 1981.
    [9] M. Kijima, Markov processes for stochastic modelling, Springer: New York, 2013.
    [10] V. G. Kulkarni, Modeling and analysis of stochastic systems, Crc Press, 2016.
    [11] Q. M. He, Fundamentals of matrix-analytic methods, Springer: New York, 2014.
    [12] S. Asmussen, Ruin probabilities, World Scientific, 2000.
    [13] S. Mahmoodi, S. H. Ranjkesh, Y. Q. Zhao, Condition-based maintenance policies for a multi-unit deteriorating system subject to shocks in a semi-Markov operating environment, Qual. Eng., 32 (2020), 286–297. https://doi.org/10.1080/08982112.2020.1731754 doi: 10.1080/08982112.2020.1731754
    [14] E. Pérez, D. Maldonado, C. Acal, J. E. Ruiz-Castro, A. M. Aguilera, F. Jiménez-Molinos, et al., Advanced temperature dependent statistical analysis of forming voltage distributions for three different HfO2-based RRAM technologies, Solid State Electron., 176 (2021), 107961. https://doi.org/10.1016/j.sse.2021.107961 doi: 10.1016/j.sse.2021.107961
    [15] J. E. Ruiz-Castro, C. Acal, A. M. Aguilera, J. B. Roldán, A complex model via phase-type distributions to study random telegraph noise in resistive memories, Mathematics, 9 (2021), 390. https://doi.org/10.3390/math9040390 doi: 10.3390/math9040390
    [16] S. Gordon, A.H. Marshall, M. Zenga, Predicting elderly patient length of stay in hospital and community care using a series of conditional coxian phase-type distributions, further conditioned on a survival tree, Health Care Manag. Sc., 21 (2018), 269–280. https://doi.org/10.1007/s10729-017-9411-9 doi: 10.1007/s10729-017-9411-9
    [17] M. Bladt, A review on phase-type distributions and their use in risk theory, ASTIN Bull. J. IAA, 35 (2005), 145–161. https://doi.org/10.1017/s0515036100014100 doi: 10.1017/s0515036100014100
    [18] J. E. Ruiz-Castro, C. Acal, A. M. Aguilera, M. C. Aguilera-Morillo, J. B. Roldán, Linear-phase-type probability modelling of functional PCA with applications to resistive memories, Math. Comput. Simulat., 186 (2021), 71–79. https://doi.org/10.1016/j.matcom.2020.07.006 doi: 10.1016/j.matcom.2020.07.006
    [19] W. Chang, Joe Cheng, J. J. Allaire, C. Sievert, B. Schloerke, Y. H. Xie, et al., R package shiny (2022). Available from: https://CRAN.R-project.org/package = shiny
    [20] M. G. Genton, S. Castruccio, P. Crippa, S. Dutta, R. Huser, Y. Sun, et al., Visuanimation in statistics, Stat, 4 (2015), 81–96. https://doi.org/10.1002/sta4.77 doi: 10.1002/sta4.77
    [21] J. Wrobel, S. Y. Park, A. M. Staicu, J. Goldsmith, Interactive graphics for functional data analyses, Stat, 5 (2016), 108–118. https://doi.org/10.1002/sta4.109 doi: 10.1002/sta4.109
    [22] J. P. Fortin, E. Fertig, K. Hansen, shinyMethyl: Interactive quality control of Illumina 450k DNA methylation arrays in R, F1000research, 3 (2014) 175. https://doi.org/10.12688/f1000research.4680.2 doi: 10.12688/f1000research.4680.2
    [23] C. Tebé, J. Valls, P. Satorra, A. Tobías, COVID19-world: A shiny application to perform comprehensive country-specific data visualization for SARS-CoV-2 epidemic, BMC Med. Res. Methodol., 20 (2020), 235. https://doi.org/10.1186/s12874-020-01121-9 doi: 10.1186/s12874-020-01121-9
    [24] J. Gabry et al., R package shinystan: Interactive visual and numerical diagnostics and posterior analysis for Bayesian models, (2015). Available from: https://CRAN.R-project.org/package = shinystan
    [25] N. T. Stevens, L. Lu, Comparing Kaplan-Meier curves with the probability of agreement, Stat. Med., 39 (2020), 4621–4635. https://doi.org/10.1002/sim.8744 doi: 10.1002/sim.8744
    [26] T. C. Wang, Developing a flexible and efficient dual sampling system for food quality and safety validation, Food Control, 145 (2023), 109483. https://doi.org/10.1016/j.foodcont.2022.109483 doi: 10.1016/j.foodcont.2022.109483
    [27] T. C. Wang, Generalized variable quick-switch sampling as a novel method for improving sampling efficiency of food products, Food Control, 135 (2022), 108841. https://doi.org/10.1016/j.foodcont.2022.108841 doi: 10.1016/j.foodcont.2022.108841
    [28] M. H. Shu, T. C. Wang, B. M. Hsu, Integrated green-and-quality inspection schemes for green product quality with six-sigma yield assurance and risk management, Qual. Reliab. Eng. Int., 39 (2023), 2720–2735. https://doi.org/10.1002/qre.3381 doi: 10.1002/qre.3381
    [29] T. C. Wang, B. M. Hsu, M. H. Shu, Quick-switch inspection scheme based on the overall process capability index for modern industrial web-based processing environment, Appl. Stoch. Model. Bus., 38 (2022), 847–861. https://doi.org/10.1002/asmb.2667 doi: 10.1002/asmb.2667
    [30] H. Okamura, T. Dohi, mapfit: An R-based Tool for PH/MAP parameter estimation, in Quantitative Evaluation of Systems, QEST 2015, Lecture Notes in Computer Science (vol. 9259), Springer, (2015), 105–112. https://doi.org/10.1007/978-3-319-22264-6_7
    [31] C. Acal, J. E. Ruiz-Castro, D. Maldonado, J. B. Roldán, One cut-point phase-type distributions in reliability, an application to resistive random access memories, Mathematics, 9 (2021), 2734. https://doi.org/10.3390/math9212734 doi: 10.3390/math9212734
    [32] N. Belgorodski, M. Greiner, K. Tolksdorf, K. Schueller, R package risk distributions: Fitting distributions to given data or known quantiles, R package version, (2017). https://CRAN.R-project.org/package = rriskDistributions
    [33] J. F. Lawless, Statistical models and methods for lifetime data (2º ed.), John Wiley & Sons, 2003.
    [34] S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the EM algorithm, Scand. J. Stat., 23 (1996), 419–441. http://www.jstor.org/stable/4616418
    [35] P. Buchholz, J. Kriege, I. Felko, Input Modeling with Phase-Type Distributions and Markov Models, Theory and Applications, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-06674-5
    [36] K. Choi, S. M. Park, S. Han, D. S. Yim, A partial imputation EM-algorithm to adjust the overestimated shape parameter of the Weibull distribution fitted to the clinical time-to-event data, Comput. Meth. Prog. Bio., 197 (2020), 105697. https://doi.org/10.1016/j.cmpb.2020.105697 doi: 10.1016/j.cmpb.2020.105697
    [37] A. Thummler, P. Buchholz, M. Telek, A novel approach for phase-type fitting with the EM algorithm, IEEE T. Depend. Secure, 3 (2006), 245–258.
    [38] A. Panchenko, A. Thummler, Efficient phase-type fitting with aggregated traffic traces, Perform. Evaluat., 64 (2007), 629–645. https://doi.org/10.1016/j.peva.2006.09.002 doi: 10.1016/j.peva.2006.09.002
    [39] H. Okamura, T. Dohi, K. S. Trivedi, Improvement of EM algorithm for phase-type distributions with grouped and truncated data, Appl. Stoch. Model. Bus., 29 (2013), 141–156. https://doi.org/10.1002/asmb.1919 doi: 10.1002/asmb.1919
    [40] P. Royston, D. G. Altman, External validation of a Cox prognostic model: Principles and methods, BMC Med. Res. Methodol., 13 (2013), 1–15. https://doi.org/10.1186/1471-2288-13-33 doi: 10.1186/1471-2288-13-33
    [41] J. E. Ruiz-Castro, C. Acal, J. B. Roldán, An approach to non-homogenous phase-type distributions through multiple cut-points, Qual. Eng., 35 (2023), 619–638.
    [42] A. Bobbio, A. Horvath, M. Telek, Matching three moments with minimal acyclic phase type distributions, Stoch. Models, 21 (2005), 303–326. https://doi.org/10.1081/STM-200056210 doi: 10.1081/STM-200056210
    [43] T. Osogami, M. Harchol-Balter, Closed form solutions for mapping general distributions to minimal PH distributions, Perform. Evaluat., 63 (2006), 524–552. https://doi.org/10.1016/j.peva.2005.06.002 doi: 10.1016/j.peva.2005.06.002
    [44] G. Horváth, M. Telek, Markovian performance evaluation with BuTools, in Systems Modeling: Methodologies and Tools, Springer, Cham, 2019. https://doi.org/10.1007/978-3-319-92378-9_16
    [45] A. Alkaff, M. N. Qomarudin, Modeling and analysis of system reliability using phase‐type distribution closure properties, Appl. Stoch. Model. Bus., 36 (2020), 548–569. https://doi.org/10.1002/asmb.2509 doi: 10.1002/asmb.2509
    [46] M. Langer, Y. Zhang, D. Figueirinhas, J.-B. Forien, K. Mom, C. Mouton, et al., PyPhase—A Python package for X-ray phase imaging, J. Synchrotron Radiat., 28 (2021), 1261–1266. https://doi.org/10.1107/S1600577521004951 doi: 10.1107/S1600577521004951
  • This article has been cited by:

    1. L. Pascucci, G. Scattini, Imaging extracelluar vesicles by transmission electron microscopy: Coping with technical hurdles and morphological interpretation, 2021, 1865, 03044165, 129648, 10.1016/j.bbagen.2020.129648
    2. A G Hegazi, A S El-Houssiny, E A Fouad, Egyptian propolis 14: Potential antibacterial activity of propolis-encapsulated alginate nanoparticles against different pathogenic bacteria strains, 2019, 10, 2043-6262, 045019, 10.1088/2043-6254/ab52f4
    3. Ana M. Milosevic, Laura Rodriguez-Lorenzo, Sandor Balog, Christophe A. Monnier, Alke Petri-Fink, Barbara Rothen-Rutishauser, Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods, 2017, 56, 14337851, 13382, 10.1002/anie.201705422
    4. Tobias Köthe, Stefan Martin, Gabriele Reich, Gert Fricker, Dual asymmetric centrifugation as a novel method to prepare highly concentrated dispersions of PEG-b-PCL polymersomes as drug carriers, 2020, 579, 03785173, 119087, 10.1016/j.ijpharm.2020.119087
    5. Ana M. Milosevic, Laura Rodriguez-Lorenzo, Sandor Balog, Christophe A. Monnier, Alke Petri-Fink, Barbara Rothen-Rutishauser, Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods, 2017, 129, 00448249, 13567, 10.1002/ange.201705422
    6. Quy Ong, Ting Mao, Neda Iranpour Anaraki, Łukasz Richter, Carla Malinverni, Xufeng Xu, Francesca Olgiati, Paulo Henrique Jacob Silva, Anna Murello, Antonia Neels, Davide Demurtas, Seishi Shimizu, Francesco Stellacci, Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions, 2022, 9, 2051-6347, 303, 10.1039/D1MH01461G
    7. Raphaël Cornu, Gautier Laurent, Arnaud Beduneau, 2023, 9780323912150, 27, 10.1016/B978-0-323-91215-0.00012-1
    8. Inga C. Kuschnerus, Haotian Wen, Xinrui Zeng, Yee Yee Khine, Juanfang Ruan, Chun-Jen Su, U-Ser Jeng, Hugues A. Girard, Jean-Charles Arnault, Eiji Ōsawa, Olga Shenderova, Vadym Mochalin, Ming Liu, Masahiro Nishikawa, Shery L.Y. Chang, Fabrication process independent and robust aggregation of detonation nanodiamonds in aqueous media, 2023, 09259635, 110199, 10.1016/j.diamond.2023.110199
    9. Aysegul Ekmekcioglu, Ozgul Gok, Devrim Oz-Arslan, Meryem Sedef Erdal, Yasemin Yagan Uzuner, Meltem Muftuoglu, Mitochondria-Targeted Liposomes for Drug Delivery to Tumor Mitochondria, 2024, 16, 1999-4923, 950, 10.3390/pharmaceutics16070950
    10. Fatma Hande Osmanagaoglu, Aysegul Ekmekcioglu, Busel Ozcan, Gunseli Bayram Akcapinar, Meltem Muftuoglu, Preparation and Characterization of Hydrophobin 4-Coated Liposomes for Doxorubicin Delivery to Cancer Cells, 2024, 17, 1424-8247, 1422, 10.3390/ph17111422
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1827) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog