Based on the Michaelis-Menten reaction model with catalytic effects, a more comprehensive one-dimensional stochastic Langevin equation with immune surveillance for a tumor cell growth system is obtained by considering the fluctuations in growth rate and mortality rate. To explore the impact of environmental fluctuations on the growth of tumor cells, the analytical solution of the steady-state probability distribution function of the system is derived using the Liouville equation and Novikov theory, and the influence of noise intensity and correlation intensity on the steady-state probability distributional function are discussed. The results show that the three extreme values of the steady-state probability distribution function exhibit a structure of two peaks and one valley. Variations of the noise intensity, cross-correlation intensity and correlation time can modulate the probability distribution of the number of tumor cells, which provides theoretical guidance for determining treatment plans in clinical treatment. Furthermore, the increase of noise intensity will inhibit the growth of tumor cells when the number of tumor cells is relatively small, while the increase in noise intensity will further promote the growth of tumor cells when the number of tumor cells is relatively large. The color cross-correlated strength and cross-correlated time between noise also have a certain impact on tumor cell proliferation. The results help people understand the growth kinetics of tumor cells, which can a provide theoretical basis for clinical research on tumor cell growth.
Citation: Yan Fu, Tian Lu, Meng Zhou, Dongwei Liu, Qihang Gan, Guowei Wang. Effect of color cross-correlated noise on the growth characteristics of tumor cells under immune surveillance[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21626-21642. doi: 10.3934/mbe.2023957
[1] | Victor Zhenyu Guo . Almost primes in Piatetski-Shapiro sequences. AIMS Mathematics, 2021, 6(9): 9536-9546. doi: 10.3934/math.2021554 |
[2] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[3] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[4] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[5] | Xiaoqing Zhao, Yuan Yi . High-dimensional Lehmer problem on Beatty sequences. AIMS Mathematics, 2023, 8(6): 13492-13502. doi: 10.3934/math.2023684 |
[6] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[7] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[8] | Rui Wang, Jiangtao Peng . On the inverse problems associated with subsequence sums of zero-sum free sequences over finite abelian groups Ⅱ. AIMS Mathematics, 2021, 6(2): 1706-1714. doi: 10.3934/math.2021101 |
[9] | Jinyan He, Jiagui Luo, Shuanglin Fei . On the exponential Diophantine equation (a(a−l)m2+1)x+(alm2−1)y=(am)z. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401 |
[10] | Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy, Rashad A. R. Bantan, Mohammed Elgarhy . Analysis of information measures using generalized type-Ⅰ hybrid censored data. AIMS Mathematics, 2023, 8(9): 20283-20304. doi: 10.3934/math.20231034 |
Based on the Michaelis-Menten reaction model with catalytic effects, a more comprehensive one-dimensional stochastic Langevin equation with immune surveillance for a tumor cell growth system is obtained by considering the fluctuations in growth rate and mortality rate. To explore the impact of environmental fluctuations on the growth of tumor cells, the analytical solution of the steady-state probability distribution function of the system is derived using the Liouville equation and Novikov theory, and the influence of noise intensity and correlation intensity on the steady-state probability distributional function are discussed. The results show that the three extreme values of the steady-state probability distribution function exhibit a structure of two peaks and one valley. Variations of the noise intensity, cross-correlation intensity and correlation time can modulate the probability distribution of the number of tumor cells, which provides theoretical guidance for determining treatment plans in clinical treatment. Furthermore, the increase of noise intensity will inhibit the growth of tumor cells when the number of tumor cells is relatively small, while the increase in noise intensity will further promote the growth of tumor cells when the number of tumor cells is relatively large. The color cross-correlated strength and cross-correlated time between noise also have a certain impact on tumor cell proliferation. The results help people understand the growth kinetics of tumor cells, which can a provide theoretical basis for clinical research on tumor cell growth.
Let q be an integer. For each integer a with
1⩽a<q, (a,q)=1, |
we know that [1] there exists one and only one ˉa with
1⩽ˉa<q |
such that
aˉa≡1(q). |
Define
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}, |
r(q):=#R(q). |
The work [2] posed the problem of investigating a nontrivial estimation for r(q) when q is an odd prime. Zhang [3,4] gave several asymptotic formulas for r(q), one of which is:
r(q)=12ϕ(q)+O(q12d2(q)log2q), |
where ϕ(q) is the Euler function and d(q) is the divisor function. Lu and Yi [5] studied a generalization of the Lehmer problem over short intervals. Let n⩾2 be a fixed positive integer, q⩾3 and c be integers with
(nc,q)=1. |
They defined
rn(θ1,θ2,c;q)=#{(a,b)∈[1,θ1q]×[1,θ2q]∣ab≡c( mod q),n∤a+b}, |
where 0<θ1,θ2⩽1, and obtained
rn(θ1,θ2,c;q)=(1−1n)θ1θ2φ(q)+O(q1/2τ6(q)log2q), |
where the O constant depends only on n. In addition, Xi and Yi [6] considered generalized Lehmer problem over short intervals. Han and Liu [7] gave an upper bound estimation for another generalization of the Lehmer problem over incomplete interval.
Guo and Yi [8] also found the Lehmer problem has good distribution properties on Beatty sequences. For fixed real numbers α and β, defined by
Bα,β:=(⌊αn+β⌋)∞n=1. |
Beatty sequences are linear sequences. Based on the results obtained, we conjecture the Lehmer problem also has good distribution properties in some non-linear sequences.
The Piatetski-Shapiro sequence is a non-linear sequence, defined by
Nc={⌊nc⌋:n∈N}, |
where c∈R is non-integer with c>1 and z∈R. This sequence was first introduced by Piatetski-Shapiro [9] to study prime numbers in sequences of the form ⌊f(n)⌋, where f(n) is a polynomial. A positive integer is called square-free if it is a product of distinct primes. The distribution of square-free numbers in the Piatetski-Shapiro sequence has been studied extensively. Stux [10] found that, as x tends to infinity,
∑n≤x⌊nc⌋ is square-free 1=(6π2+o(1))x, for 1<c<43. | (1.1) |
In 1978, Rieger [11] improved the range to 1<c<3/2 and obtained
6xπ2+O(x(2c+1)/4+ε), for 1<c<32. |
Considering the results obtained, we develop this problem by investigating
R(c;q):=∑n∈Nc∩R(q)n is square-free 1 |
and range of c when q tends to infinity. By methods of exponential sum and Kloosterman sums and fairly detailed calculations, we get the following result, which is significant for understanding the distribution properties of the Lehmer problem.
Theorem 1.1. Let q be an odd integer and large enough,
γ:=1/candc∈(1,43), |
we obtain
R(c;q)=3π2∏p∣q(1+p−1)−1qγ+O(∑p∣q(1−p−12)−1qγ−12)+O(q713γ+413∏p∣q(1−p−12)−1logq)+O(q34d3(q)logq)+O(qγ−16d2(q)log3q), |
where the O constant only depends on c.
This paper consists of three main sections. Introduction covers the origins and developments of the Lehmer problem, along with several interesting results. It also presents relevant findings related to the Piatetski-Shapiro sequences. The second section includes some definitions and lemmas throughout the paper. The third section outlines the calculation process, where we use additive characteristics to convert the congruence equations into exponential sum problems. We then employ the Kloosterman sums and exponential sums methods to derive an interesting asymptotic formula.
To complete the proof of the theorem, we need the following several definitions and lemmas.
In this paper, we denote by ⌊t⌋ and {t} the integral part and the fractional part of t, respectively. As is customary, we put
e(t):=e2πitand{t}:=t−⌊t⌋. |
The notation ‖t‖ is used to denote the distance from the real number t to the nearest integer; that is,
‖t‖:=minn∈Z|t−n|. |
And ∑′ indicates that the variable summed over takes values coprime to the number q. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O,≪, and ≫ may depend (where obvious) on the parameters c and ε, but are absolute otherwise. For given functions F and G, the notations
F≪G, G≫F andF=O(G) |
are all equivalent to the statement that the inequality
|F|⩽C|G| |
holds with some constant C>0.
Lemma 2.1. Let 1c(m) denote the characteristic function of numbers in a Piatetski-Shapiro sequence, then
1c(m)=γmγ−1+O(mγ−2)+ψ(−(m+1)γ)−ψ(−mγ), |
where
ψ(t)=t−⌊t⌋−12 andγ=1/c. |
Proof. Note that an integer m has the form
m=⌊nc⌋ |
for some integer n if and only if
m⩽nc<m+1,−(m+1)γ<−n⩽−mγ. |
So
1c(m)=⌊−mγ⌋−⌊−(m+1)γ⌋=−mγ−ψ(−mγ)+(m+1)γ+ψ(−(m+1)γ)=γmγ−1+O(mγ−2)+ψ(−(m+1)γ)−ψ(−mγ). |
Thie completes the proof.
Lemma 2.2. Let H⩾1 be an integer, ah,bh be real numbers, we have
|ψ(t)−∑0<|h|⩽Hahe(th)|⩽∑|h|⩽Hbhe(th),ah≪1|h|,bh≪1H. |
Proof. In 1985, Vaaler showed how Beurling's function could be used to construct a trigonometric polynomial approximation to ψ(x). For each positive integer N, Vaaler's construction yields a trigonometric polynomial ψ∗ of degree N which satisfies
|ψ∗(x)−ψ(x)|≤12N+2∑|n|≤N(1−|n|N+1)e(nx), |
where
ψ∗(x)=−∑1≤|n|≤N(2πin)−1ˆJN+1(n)e(nx),H(z)=sin2πzπ2{∞∑n=−∞sgn(n)(z−n)2+2z},J(z)=12H′(z),HN(z)=sin2πzπ2{∑|n|≤Nsgn(n)(z−n)2+2z},JN(z)=12H′N(z), |
and sgn(n) is the sign of n. The Fourier transform ˆJ(t) satisfies
ˆJ(t)={1,t=0;πt(1−|t|)cotπt+|t|,0<|t|<1;0,t≥1. |
To be short, we denote
ah=−(2πih)−1ˆJH+1(h)≪1|h|,bh=12H+2(1−|h|H+1)≪1H. |
There are more details in Appendix Theorem A.6. of [12].
Lemma 2.3. Denote
Kl(m,n;q)=q∑a=1q∑b=1ab≡1(modq)e(ma+nbq), |
then
Kl(m,n;q)≪(m,n,q)12q12d(q), |
where (m,n,q) is the greatest common divisor of m,n and q and d(q) is the number of positive divisors of q.
Proof. The proof is given in [13].
Lemma 2.4. (Korobov [14]) Let α be a real number, Q be an integer, and P be a positive integer, then
|Q+P∑x=Q+1e(αx)|⩽min(P,12‖α‖). |
Lemma 2.5. (Karatsuba [15]) For any number b, U<0, K⩾1, let
a=sr+θr2,(r,s)=1, r⩾1, |θ|⩽1, |
then
∑k⩽Kmin(U,1‖ak+b‖)≪(Kr+1)(U+rlogr). |
Lemma 2.6. Suppose f is continuously differentiable, f′(n) is monotonic, and
‖f′(n)‖⩾λ1>0 |
on I, then
∑n∈Ie(f(n))≪λ−11. |
Proof. See [12, Theorem 2.1].
Lemma 2.7. Let k be a positive integer, k⩾2. Suppose that f(n) is a real-valued function with k continuous derivatives on [N,2N], Further suppose that
0<F⩽f(k)(n)⩽hF. |
Then
|∑N<x⩽2Ne(f(n))|≪FκNλ+F−1, |
where the implied constant is absolute.
Proof. See [12, Chapter 3].
By the definition of Mobius function
μ(n)={(−1)ω(n),∀p|n,p2∤n,0,∃p2|n, |
it is clear that n is square-free if and only if
μ2(n)=1, |
where ω(n) is the number of prime divisor of n. So
R(c;q)=12q∑′n=1(1−(−1)n+ˉn)μ2(n)1c(n)=12(R1−R2), | (3.1) |
where
R1=q∑′n=1μ2(n)1c(n) |
and
R2=q∑′n=1(−1)n+ˉnμ2(n)1c(n). |
From Lemma 2.1, we have
R1=q∑′n=1μ2(n)1c(n)=q∑′n=1μ2(n)(γnγ−1+O(nγ−2)+ψ(−(n+1)γ)−ψ(−nγ))=R11+R12, | (3.2) |
where
R11:=q∑′n=1μ2(n)(γnγ−1+O(nγ−2))=q∑′n=1μ2(n)γnγ−1+O(q∑′n=1μ2(n)nγ−2). |
Let
D={d:p|d⇒p|q} |
and λ(n) is Liouville function. When n∈R(q),
μ2(n)={∑dm=n,d∈Dλ(d)μ2(m),(n,q)=1,0,(n,q)>1. | (3.3) |
We just consider the first term of R11. Applying Euler summuation [1],
q∑′n=1μ2(n)γnγ−1=q∑n=1∑dm=nd∈Dλ(d)μ2(m)γ(dm)γ−1=∑d∈Dλ(d)dγ−1∑m⩽qdμ2(m)γmγ−1=∑d∈Dλ(d)dγ−1∑m⩽qd(∑l2∣mμ(l))γmγ−1=∑d∈Dλ(d)dγ−1∑l⩽(qd)12μ(l)l2γ−2∑m⩽qdl2γmγ−1=∑d∈Dλ(d)dγ−1∑l⩽(qd)12μ(l)l2γ−2((qdl2)γ+O((qdl2)γ−1))=qγ∑d∈Dλ(d)d−1∑l⩽(qd)12μ(l)l−2+O(∑d∈D∑l⩽(qd)12qγ−1)=qγ∑d∈Dλ(d)d−1(∑lμ(l)l−2+O((qd)−12))+O(∏p∣q(1−p−12)−1qγ−12)=6π2∏p∣q(1+p−1)−1qγ+O(∏p∣q(1−p−12)−1qγ−12), |
thus
R11=6π2∏p∣q(1+p−1)−1qγ+O(∏p∣q(1−p−12)−1qγ−12). | (3.4) |
For R12, by Lemma 2.2, we have
R12:=q∑′n=1μ2(n)(ψ(−(n+1)γ)−ψ(−nγ))=R121+O(R122), | (3.5) |
where
R121:=q∑′n=1μ2(n)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh))) |
and
R122:=q∑′n=1μ2(n)(∑|h|⩽Hbh(e(−(n+1)γh)+e(−nγh))). |
Define
f(t)=e(((dt)γ−(dt+1)γ)h)−1, |
then
f(t)≪ |h|(dt)γ−1,∂f(t)∂t≪|h|dγ−1tγ−2. |
By Lemma 2.2 and Eq (3.3),
R121=∑0<|h|⩽Hah∑d∈Dλ(d)(∑1<m⩽qdμ2(m)e(−(dm)γh)f(m))≪∑0<|h|⩽H|h|−1∑d∈D|∫qd0f(t)d(∑1<m⩽tμ2(m)e(−(dm)γh))|≪∑0<|h|⩽H|h|−1∑d∈D|f(qd)(∑1<m⩽qdμ2(m)e(−(dm)γh))|+∑0<|h|⩽H|h|−1∑d∈D|∫qd0∂f(t)∂t∑1<m⩽tμ2(m)e(−(dm)γh)dt|. |
Let
(κ,λ)=(16,23) |
be an exponential pair. Applying Lemma 2.7, it's easy to see
∑1<m⩽tμ2(m)e(−(dm)γh)=∑m⩽t(∑l2∣mμ(l))e(−(dm)γh)≪∑l⩽t12|∑m⩽tl2e(−(dl2m)γh)|≪∑l⩽t12logq(((dl2)γ|h|(tl2)γ−1)16(tl2)23+((dl2)γ|h|(tl2)γ−1)−1)≪logq∑l⩽t12((dγ|h|)16t16γ+12l−1+(dγ|h|)−1t1−γl−2)≪(dγ|h|)16t16γ+12log2q+(dγ|h|)−1t1−γlogq≪(dγ|h|)16t16γ+12log2q, |
thus
R121≪∑0<|h|⩽H|h|−1∑d∈D|h|qγ−1(dγ|h|)16(qd)16γ+12log2q+∑0<|h|⩽H|h|−1∑d∈D∫qd0|h|dγ−1tγ−2(dγ|h|)16t16γ+12log2qdt≪∑0<|h|⩽H|h|16∑d∈Dd−12q76γ−12log2q+∑0<|h|⩽H|h|16∑d∈Dd76γ−1log2q∫qd0t76γ−32dt≪H76∏p∣q(1−p−12)−1q76γ−12log2q. | (3.6) |
For R122, the contribution from h≠0 can be bounded by similar methods of Eq (3.6). Taking
H=q913−713γ⩾1, |
we obtain
R122=b0q∑′n=1μ2(n)+∑0<|h|⩽Hbhq∑′n=1μ2(n)(e(−(n+1)γh)+e(−nγh))≪H−1q+H76∏p∣q(1−p−12)−1q76γ−12logq≪q713γ+413∏p∣q(1−p−12)−1log2q. | (3.7) |
It follows from Eqs (3.5)–(3.7),
R12≪q713γ+413∏p∣q(1−p−12)−1log2q. |
Hence
R1=6π2∏p∣q(1+p−1)−1qγ+O(∑p∣q(1−p−12)−1qγ−12)+O(q713γ+413∏p∣q(1−p−12)−1log2q). | (3.8) |
Similarly,
R2=q∑′n=1(−1)n+ˉnμ2(n)1c(n)=RP21+RP22, | (3.9) |
where
R21=q∑′n=1(−1)n+ˉnμ2(n)(γnγ−1+O(nγ−2)) |
and
R22=q∑′n=1(−1)n+ˉnμ2(n)(ψ(−(n+1)γ)−ψ(−nγ)). |
We also just consider the first term of R21.
q∑′n=1(−1)n+ˉnμ2(n)γnγ−1=q∑′n=1(−1)n+ˉn(∑d2∣nμ(d))γnγ−1=q∑′n=1(−1)n+ˉn∑d2∣nd⩽q14μ(d)γnγ−1+q∑′n=1(−1)n+ˉn∑d2∣nq14<d⩽q12μ(d)γnγ−1. | (3.10) |
It is easy to see
q∑′n=1(−1)n+ˉn∑d2∣nq14<d⩽q12μ(d)γnγ−1≪q∑′n=1∑d2∣nq14<d⩽q12γnγ−1≪qγ−14. | (3.11) |
Since for integers m and a, one has
1qq∑s=1e(s(m−a)q)={1,m≡a( mod q);0,m≢a( mod q). |
This gives
q∑′n=1(−1)n+ˉn∑d2∣nd⩽q14μ(d)γnγ−1=q∑n=1q∑m=1nm≡1(modq)(−1)n+m∑d2∣nd⩽q14μ(d)γnγ−1q−1∑a=1a=mq−1∑b=1b=n1=q∑n=1q∑m=1nm≡1(modq)q−1∑a=1a=mq−1∑b=1b=n(−1)a+b∑d2∣bd⩽q14μ(d)γbγ−1=q∑n=1q∑m=1nm≡1(modq)q−1∑a=1a≡m(modq)q−1∑b=1b≡n(modq)(−1)a+b∑d2∣bd⩽q14μ(d)γbγ−1=q∑n=1q∑m=1nm≡1(modq)q−1∑a=1q−1∑b=1(−1)a+b∑d2∣bd⩽q14μ(d)γbγ−1×(1qq∑s=1e(s(m−a)q))(1qq∑t=1e(t(n−b)q))=1q2q∑s=1q∑t=1(∑nm≡1(modq)e(sm+tnq))×(q−1∑a=1(−1)ae(−saq))(q−1∑b=1(−1)be(−tbq)∑d2∣bd⩽q14μ(d)γbγ−1). | (3.12) |
From Lemma 2.3,
∑nm≡1(modq)e(sm+tnq)=Kl(s,t;q)≪(s,t,q)12q12d(q). | (3.13) |
Note the estimate
|q−1∑a=1(−1)ae(−saq)|≪1|e(12−sq)−1|≪1|cossqπ| | (3.14) |
holds. By Abel summation and Lemma 2.4, we have
q−1∑b=1(−1)be(−tbq)∑d2∣bd⩽q14μ(d)γbγ−1=∑d⩽q14μ(d)⌊q−1d2⌋∑b=1(−1)d2be(−td2bq)γ(d2b)γ−1≪∑d⩽q14d2(γ−1)|⌊q−1d2⌋∑b=1(−1)d2be(−td2bq)γbγ−1|≪∑d⩽q14d2(γ−1)γ(qd2)γ−1max1⩽β⩽⌊q−1d2⌋|β∑b=1(−1)d2be(−td2bq)|≪∑d⩽q142∣dγqγ−1max1⩽β⩽⌊q−1d2⌋|β∑b=1e(−td2bq)|+∑d⩽q142∤dγqγ−1max1⩽β⩽⌊q−1d2⌋|β∑b=1(−1)be(−td2bq)|≪∑d⩽q142∣dqγ−1min(⌊q−1d2⌋,12‖d2qt‖)+∑d⩽q142∤dqγ−1min(⌊q−1d2⌋,12‖12−d2qt‖). | (3.15) |
To be short, combining Eqs (3.13)–(3.15), we denote
R211:=q−2q∑s=1q∑t=1(s,t,q)12d(q)q121|cossqπ|∑d⩽q142∣dqγ−1min(⌊q−1d2⌋,12‖d2qt‖)≪qγ−3q∑s=1q∑t=1(s,t,q)12d(q)q121|cossqπ|∑d⩽q14min(q−1d2,12‖d2qt‖)≪qγ−3∑u∣qu12d(q)q12qu∑s=11|cossuqπ|∑d⩽q14qu∑t=1min(q−1d2,12‖d2qut‖) |
and
R212:=q−2q∑s=1q∑t=1(s,t,q)12d(q)q121|cossqπ|∑d⩽q142∤dqγ−1min(⌊q−1d2⌋,12‖12−d2qt‖). |
Let
(d2,qu)=r, (d2r,qur)=1, |
making use of Lemma 2.5, we have
qu∑t=1min(q−1d2,12‖d2qut‖)≪(ququr+1)(q−1d2+qurlogq)≪qrd2+qulogq. |
Insert it to R211, then
R211≪qγ−3∑u∣qu12d(q)q12qu∑s=11|1−2suq|∑d⩽q14∑(d2,qu)=r(qrd2+qulogq)≪qγ−3∑u∣qu12d(q)q12qulogq∑d⩽q14∑r|d2r|qu(qrd2+qulogq)≪qγ−3∑u∣qu12d(q)q12qulogq∑r|qu∑d⩽q14r12(qd2+qulogq)≪qγ−3∑u∣qu12d(q)q12qulogq(qd(q)+q54ud(q)logq)≪qγ−14d3(q)log3q. |
By the same method of R211,
R212≪qγ−14d3(q)log3q. |
Following from Eqs (3.10) and (3.11), estimations of R211 and R212,
R21≪qγ−14+RP211+RP212≪qγ−14d3(q)log3q. | (3.16) |
By the similar method of R12 and R21,
R22=R221+O(R222), | (3.17) |
where
R221:=q∑′n=1(−1)n+ˉnμ2(n)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh))) |
and
R222:=q∑′n=1(−1)n+ˉnμ2(n)(∑|h|⩽Hbh(e(−(n+1)γh)+e(−nγh))). |
It is obvious that
R221=q∑′n=1(−1)n+ˉn(∑d2∣nμ(d))(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))=q∑′n=1(−1)n+ˉn∑d2∣nd⩽q16μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))+q∑′n=1(−1)n+ˉn∑d2∣nq16<d⩽q12μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh))). | (3.18) |
From the estimate
e(nγh−(n+1)γh)−1≪(nγ−(n+1)γ)h≪γnγ−1h, |
by partial summation,
q∑′n=1(−1)n+ˉn∑d2∣nq16<d⩽q12μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))≪q∑′n=1∑d2∣nq16<d⩽q12|∑0<|h|⩽Hahe(−nγh)(e(nγh−(n+1)γh)−1)|≪q∑′n=1∑d2∣nq16<d⩽q12γnγ−1HlogH≪qγ−16HlogH. | (3.19) |
For another term of R221,
q∑′n=1(−1)n+ˉn∑d2∣nd⩽q16μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))=q∑′n=1(−1)n+ˉn∑d2∣nd⩽q16μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))×(1qq∑a=1q∑s=1e(s(m−a)q))(1qq∑b=1q∑t=1e(t(n−b)q))=1q2q∑s=1q∑t=1(∑nm≡1(modq)e(sm+tnq))(q−1∑a=1(−1)ae(−saq))×(q−1∑b=1(−1)be(−tbq)∑d2∣bd⩽q16μ(d)∑0<|h|⩽Hah(e(−(b+1)γh)−e(−bγh))). | (3.20) |
We just need to give an estimation of the last part in (3.20). Similarly, let
g(x)=e(((d2x)γ−(d2x+1)γ)h)−1, |
then
g(x)≪ |h|(d2x)γ−1,∂g(x)∂x≪|h|d2γ−2xγ−2. |
By partial summation,
q−1∑b=1(−1)be(−tbq)∑d2∣bd⩽q16μ(d)∑0<|h|⩽Hah(e(−(b+1)γh)−e(−bγh))=∑0<|h|⩽Hah∑d⩽q16μ(d)∑1⩽b⩽⌊q−1d2⌋e((d22−td2q)b−(d2b)γh)g(b),≪∑0<|h|⩽H|h|−1∑d⩽q16|∫⌊q−1d2⌋1g(x)d(∑1<b⩽xe((d22−td2q)b−(d2b)γh))|≪∑0<|h|⩽H|h|−1∑d⩽q16|g(⌊q−1d2⌋)∑1⩽b⩽⌊q−1d2⌋e((d22−td2q)b−(d2b)γh)|+∑0<|h|⩽H|h|−1∑d⩽q16|∫⌊q−1d2⌋1∂g(x)∂x∑1⩽b⩽xe((d22−td2q)b−(d2b)γh)dx|, |
where
g(⌊q−1d2⌋)≪|h|qγ−1 |
and
∑1⩽b⩽⌊q−1d2⌋e((d22−td2q)b−(d2b)γh)=∑1⩽b⩽q16e((d22−td2q)b−(d2b)γh)+∑q16<b⩽⌊q−1d2⌋e((d22−td2q)b−(d2b)γh). |
It is obvious that
∑1⩽b⩽q16e((d22−td2q)b−(d2b)γh)≪q16. |
Suppose q be large enough and for b>q16, when 2∤d or q∤td2,
‖(d22−td2q)−γd2γbγ−1h‖−1⩾12‖(12−tq)d2‖−1>0, |
and applying Lemma 2.6, we have
∑q16<b⩽⌊q−1d2⌋e((d22−td2q)b−(d2b)γh)≪‖(d22−td2q)−γd2γbγ−1h‖−1≪‖(12−tq)d2‖−1. |
So
∑1⩽b⩽⌊q−1d2⌋e((d22−td2q)b−(d2b)γh)≪{q16+‖(12−tq)d2‖−1,2∤d or q∤td2;qd2,2∣d and q∣td2; |
which means
q−1∑b=1(−1)be(−tbq)∑d2∣bd⩽q16μ(d)∑0<|h|⩽Hah(e(−(b+1)γh)−e(−bγh))≪∑0<|h|⩽H|h|−1∑d⩽q162∤d or q∤td2|h|qγ−1(q16+‖(12−tq)d2‖−1)+∑0<|h|⩽H|h|−1∑d⩽q162∣d and q∣td2|h|qγd−2≪Hqγ−1(q13+∑d⩽q162∤d or q∤td2‖(12−tq)d2‖−1)+Hqγ∑d⩽q162∣d and q∣td2d−2. |
We denote
\begin{align} T(c)&: = \sum\limits_{d\leqslant q^{\frac{1}{6} }} \# \left\{ (\frac{q}{u}-2t)d^{2} \equiv c (\bmod 2\frac{q}{u}), t\leqslant \frac{q}{u}\right\} \\ &\ll \sum\limits_{d\leqslant q^{\frac{1}{6} }} (\frac{q}{u}, d^{2}) \\ &\ll q^{\frac{1}{3} }d(q), \end{align} |
thus,
\begin{align} &\mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mathop{\sum\limits_{d^{2} \mid n}}_{d \leqslant q^{\frac{1}{6}} }\mu(d) \left( \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(n+1)^{\gamma}h\right)-\mathbf{e}(-n^{\gamma}h)\right)\right)\\ & \ll q^{-2}\sum\limits_{s = 1}^{q}\sum\limits_{t = 1}^{q}(s,t,q)^{\frac{1}{2}}d(q)q^{\frac{1}{2}}\frac{H q^{ \gamma- 1}}{|\cos\frac{s}{q}\pi|}\left(q^{\frac{1}{ 3}}+ \mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \nmid d \text{ or } q \nmid td^2} \left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1}\right) \\ &\quad+q^{-2}\sum\limits_{s = 1}^{q}\sum\limits_{t = 1}^{q}(s,t,q)^{\frac{1}{2}}d(q)q^{\frac{1}{2}}\frac{H q^{ \gamma}}{|\cos\frac{s}{q}\pi|}\mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \mid d \text{ and } q \mid td^2}d^{-2} \\ & \ll Hq^{ \gamma-\frac{5}{2}}\sum\limits_{u\mid q}u^{\frac{1}{2}} d(q) \sum\limits_{s = 1}^{\frac{q}{u}}\frac{1}{|1-2 \frac{su}{q} |} \sum\limits_{t = 1}^{\frac{q}{u}} \left(q^{\frac{1}{3}}+ \sum\limits_{d \leqslant q^{\frac{1}{6} }} \left\| (\frac{1}{2}-\frac{ut }{q})d^{2}\right\|^{-1} \right) \\ &\quad+Hq^{ \gamma-\frac{3}{2}} \sum\limits_{u\mid q}u^{\frac{1}{2}} d(q) \sum\limits_{s = 1}^{\frac{q}{u}}\frac{1}{|1-2 \frac{su}{q} |} \sum\limits_{d \leqslant q^{ \frac{1}{6} }}\mathop{\sum\limits_{t = 1}^{\frac{q}{u}}}_{ q \mid td^2}d^{-2} \\ & \ll H q^{ \gamma-\frac{1}{6}} d^2(q) \log q+ Hq^{ \gamma-\frac{1}{3}}d^2(q) \log q \\ &\quad+ Hq^{ \gamma- \frac{3}{2}}\sum\limits_{u\mid q}u^{-\frac{1}{2}} d(q) \log^{2}q \max\limits_{C} \sum\limits_{C < c\leqslant2C} \|\frac{C}{2\frac{q}{u}}\|^{-1} T(c) \\ &\ll Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q. \end{align} | (3.21) |
With Eqs (3.18) and (3.19), we have
\begin{align} R_{221}&\ll Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q+H q^{ \gamma -\frac{1}{6}} \log H. \end{align} | (3.22) |
For R_{222} , the contribution from h = 0 can be bounded by similar methods of R_{21} , and the contribution from h \neq 0 can be bounded by similar methods of R_{221} . Taking
H = \log q , |
we obtain
\begin{align} R_{222}& = b_{0} \mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mu^{2}(n) +\mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}}\mu^{2}(n)\left(\sum\limits_{0 < |h|\leqslant H}b_{h} \left(e\left(-(n+1)^{\gamma}h\right)+e\left(-n^{\gamma}h\right)\right)\right) \\ &\ll H^{-1}q^{\frac{3}{4}}d^{3}(q)\log^2 q +Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q\\ &\ll q^{\frac{3}{4}}d^{3}(q)\log q+ q^{ \gamma -\frac{1}{6}}d^{2}(q) \log^3 q . \end{align} | (3.23) |
Following from Eqs (3.16), (3.22), and (3.23),
\begin{align} R_{2}\ll q^{\gamma-\frac{1}{6}} d^{2}(q) \log^3 q+ q^{\frac{3}{4}}d^{3}(q)\log q . \end{align} | (3.24) |
Hence, from Eqs (3.1), (3.8), and (3.24), we derive that
\begin{align} R(c;q) = &\frac{3}{\pi^{2}}\prod\limits_{p\mid q}(1+p^{-1})^{-1}q^{\gamma}+O\left( \sum\limits_{p\mid q}(1-p^{-\frac{1}{2}}) ^{-1} q^{\gamma-\frac{1}{2}}\right)\\ &+O\left(q^{\frac{7}{13}\gamma+\frac{4}{13}}\prod\limits_{p\mid q}(1-p^{-\frac{1}{2}})^{-1}\log q\right)+O\left( q^{\frac{3}{4}}d^{3}(q)\log q \right)+O(q^{ \gamma -\frac{1}{6}} d^{2}(q)\log^3 q). \end{align} |
We need the error terms to be smaller than the main term, so
\begin{cases} \frac{7}{13}\gamma+\frac{4}{13} < \gamma ,\\ \frac{3}{4} < \gamma ,\end{cases} |
which means the range of c is (1, \frac{4}{3}) . The reason why the range of c is changed is that R(c; q) requires q large enough.
In this paper, we generalize the Lehmer problem by considering the count of square-free numbers in the intersection of the Lehmer set and Piatetski-Shapiro sequence when q is an odd integer and large enough. By methods of exponential sum and Kloosterman sum, we study its asymptotic properties and give a sharp asymptotic formula as q tends to infinity.
Based on this result, we will consider some distribution problems similar to the Lehmer problem with more special sequences, which is significant for understanding the distribution properties of those problems.
Xiaoqing Zhao: calculations, writing and editing; Yuan Yi: methodology and reviewing. All authors have read and agreed to the published version of the manuscript.
In preparing this manuscript, we employed the language model ChatGPT-4 for the purpose of grammatical corrections. It did not influence the calculations and conclusion in this paper.
This work is supported by Natural Science Foundation No.12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
L. B. Han, Influences of time delay on logistic growth process driven by colored correlated noises, Acta Phys. Sin., 57 (2008), 2699–2703. https://doi.org/10.7498/aps.57.2699 doi: 10.7498/aps.57.2699
![]() |
[2] |
Z. L. Jia, Influences of noise correlation and time delay on stochastic resonance induced by multiplicative signal in a cancer growth system, Chin. Phys. B, 19 (2010), 020504. https://doi.org/10.1088/1674-1056/19/2/020504 doi: 10.1088/1674-1056/19/2/020504
![]() |
[3] |
C. J. Wang, Q. Wei, B. B. Zheng, D. C. Mei, Transient properties of a tumor cell growth system driven by color Gaussian noises: Mean first-passage time, Acta Phys. Sin., 57 (2008), 1375–1380. https://doi.org/10.1016/S1872-2075(08)60042-4 doi: 10.1016/S1872-2075(08)60042-4
![]() |
[4] |
M. J. Bie, W. R. Zhong, D. H. Chen, L. Li, Y. Z. Shao, Influence of correlated white noises on the immunity of an anti-tumor system, Acta Phys. Sin., 58 (2009), 97–101. https://doi.org/10.3969/j.issn.1674-697X.2014.07.219 doi: 10.3969/j.issn.1674-697X.2014.07.219
![]() |
[5] |
W. Xu, M. Hao, X. Gu, G. Yang, Stochastic resonance induced by Lévy noise in a tumor growth model with periodic treatment, Mod. Phys. Lett. B, 28 (2014), 1450085. https://doi.org/10.1142/S0217984914500857 doi: 10.1142/S0217984914500857
![]() |
[6] |
T. Yang, Q. Han, C. Zeng, H. Wang, Y. Fu, C. Zhang, Delay-induced state transition and resonance in periodically driven tumor model with immune surveillance, Cent. Eur. J. Phys., 12 (2014), 383–391. https://doi.org/10.2478/s11534-014-0460-0 doi: 10.2478/s11534-014-0460-0
![]() |
[7] |
D. Li, W. Xu, Y. Guo, Y. Xu, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment, Phys. Lett. A, 375 (2011), 886–890. https://doi.org/10.1016/j.physleta.2010.12.066 doi: 10.1016/j.physleta.2010.12.066
![]() |
[8] |
P. Han, W. Xu, L. Wang, H. Zhang, S. Ma, Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises, Physica A, 547 (2020), 123833. https://doi.org/10.1016/j.physa.2019.123833 doi: 10.1016/j.physa.2019.123833
![]() |
[9] |
W. R. Zhong, Y. Z. Shao, Z. H. He, Stochastic resonance in the growth of a tumor induced by correlated noises, Chin. Sci. Bull., 50 (2005), 2273–2275. https://doi.org/10.1007/BF03183733 doi: 10.1007/BF03183733
![]() |
[10] |
A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo, E. Gudowska-Nowak, Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment, Eur. Phys. J. B, 65 (2008), 435–442. https://doi.org/10.1140/epjb/e2008-00246-2 doi: 10.1140/epjb/e2008-00246-2
![]() |
[11] |
C. J. Fang, Moment Lyapunov exponent of three-dimensional system under bounded noise excitation, Appl. Math. Mech., 33 (2012), 553–566. https://doi.org/10.1007/sl0483-012-1570-9 doi: 10.1007/sl0483-012-1570-9
![]() |
[12] |
B. Q. Ai, X. J. Wang, G. T. Liu, L. G. Liu, Correlated noise in a logistic growth model, Phys. Rev. E, 67 (2003), 022903. https://doi.org/10.1103/PhysRevE.67.022903 doi: 10.1103/PhysRevE.67.022903
![]() |
[13] |
M. Hua, Y. Wu, Transition in a delayed tumor growth model with non-Gaussian colored noise, Nonlinear Dyn. 111 (2023), 6727–6743. https://doi.org/10.1007/s11071-022-08153-4 doi: 10.1007/s11071-022-08153-4
![]() |
[14] |
H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaib, Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem, Math. Biosci. Eng., 20 (2023), 19270–19299. https://doi.org/10.3934/mbe.2023852 doi: 10.3934/mbe.2023852
![]() |
[15] |
F. A. Rihan, H. J. Alsakaji, S. Kundu, O. Mohamed, Dynamics of a time-delay differential model for tumour-immune interactions with random noise, Alexandria Eng. J., 12 (2022), 11913–11923. https://doi.org/10.1016/j.aej.2022.05.027 doi: 10.1016/j.aej.2022.05.027
![]() |
[16] |
G. Song, T. H. Tian, X. N. Zhang, A mathematical model of cell-mediated immune response to tumor, Math. Biosci. Eng., 18 (2021), 373–385. https://doi.org/10.3934/mbe.2021020 doi: 10.3934/mbe.2021020
![]() |
[17] |
G. W. Wang, D. H. Xu, Q. H. Cheng, Influences of correlated colored-noises on logistic model for tree growth, Acta Phys. Sin., 62 (2013), 224208. https://doi.org/10.7498/aps.62.224208 doi: 10.7498/aps.62.224208
![]() |
[18] |
Z. Jackiewicz, B. Zubik-Kowal, B. Basse, Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics, Math. Biosci. Eng., 6 (2009), 561–572. https://doi.org/10.3934/mbe.2009.6.561 doi: 10.3934/mbe.2009.6.561
![]() |
[19] |
I. K. Elena, M. A. de Quesada, C. M. Pérez-Amor, M. L. Texeira, J. M. Nieto-Villar, The dynamics of tumorgrowth and cells pattern morphology, Math. Biosci. Eng., 6 (2009), 547–559. https://doi.org/10.3934/mbe.2009.6.547 doi: 10.3934/mbe.2009.6.547
![]() |
[20] |
Y. F. Guo, T. Yao, L. J. Wang, Lévy noise-induced transition and stochastic resonance in a tumor growth model, Appl. Math. Model., 94 (2021), 506–515. https://doi.org/10.1016/j.apm.2021.01.024 doi: 10.1016/j.apm.2021.01.024
![]() |
[21] |
S. L. Elliott, E. Kose, A. L. Lewis, A. E. Steinfeld, E. A. Zollinger, Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF-β on tumor growth, Math. Biosci. Eng., 16 (2019), 7177–7194. https://doi.org/10.3934/mbe.2019360 doi: 10.3934/mbe.2019360
![]() |
[22] |
P. Han, W. Xu, L. Wang, H. Zhang, S. Ma, Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises, Physica A, 547 (2020), 123833. https://doi.org/10.1016/j.physa.2019.123833 doi: 10.1016/j.physa.2019.123833
![]() |
[23] |
A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak, Co-occurrence of resonant activation and noise enhanced stability in a model of cancer growth in the presence of immune response, Phys. Rev. E, 74 (2006), 041904. https://doi.org/10.1103/PhysRevE.74.041904 doi: 10.1103/PhysRevE.74.041904
![]() |
[24] |
X. Chen, T. D. Li, W. Cao, Optimizing cancer therapy for individuals based on tumor-immune-drug system interaction, Math. Biosci. Eng., 20 (2023), 17589–17607. https://doi.org/10.3934/mbe.2023781 doi: 10.3934/mbe.2023781
![]() |
[25] |
M. Assaf, E. Roberts, Z. Luthey-Schulten, Determining the stability of genetic switches, explicitly accounting for mRNA noise, Phys. Rev. Lett., 106 (2011), 248102. https://doi.org/10.1103/PhysRevLett.106.248102 doi: 10.1103/PhysRevLett.106.248102
![]() |
[26] |
G. W. Wang, M. Y. Ge, L. L. Lu, Y. Jia, Y. Zhao, Study on propagation efficiency and fidelity of subthreshold signal in feed-forward hybrid neural network under electromagnetic radiation, Nonlinear Dyn., 103 (2021), 2627–2643. https://doi.org/10.1007/s11071-021-06247-z doi: 10.1007/s11071-021-06247-z
![]() |
[27] |
X. Zhao, Q. Ouyang, H. Wang, Designing a stochastic genetic switch by coupling chaos and bistability, Chaos, 25 (2015), 113112. https://doi.org/10.1063/1.4936087 doi: 10.1063/1.4936087
![]() |
[28] |
M. J. Bie, W. R. Zhong, H. D. Chen, L. Li, Y. Z. Shao, Effect of the associated white noise against the immune effect of the tumor system, Acta Phys. Sin., 58 (2009), 97–101. https://doi.org/10.7498/aps.58.97 doi: 10.7498/aps.58.97
![]() |
[29] |
A. I. Reppas, J. C. L. Alfonso, H. Hatzikirou, In silico tumor control induced via alternating immunostimulating and immunosuppressive phases, Virulence, 7 (2016), 174–186. https://doi.org/10.1080/21505594.2015.1076614 doi: 10.1080/21505594.2015.1076614
![]() |
[30] |
Y. Jia, J. R. Li, Steady-state analysis of a bistable system with additive and multiplicative noises, Phys. Rev. E, 53 (1996), 5786–5792. https://doi.org/10.1103/PhysRevE.53.5786 doi: 10.1103/PhysRevE.53.5786
![]() |
[31] |
Q. Liu, Y. Jia, Fluctuations-induced switch in the gene transcriptional regulatory system, Phys. Rev. E, 70 (2004), 041907. https://doi.org/10.1103/PhysRevE.70.041907 doi: 10.1103/PhysRevE.70.041907
![]() |
[32] |
Y. Li, M. Yi, X. Zou, The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast, Sci. Rep., 4 (2014), 1–13. https://doi.org/10.1038/srep05764 doi: 10.1038/srep05764
![]() |
[33] |
Y. Xu, J. Feng, J. Li, H. Zhang, Lévy noise induced switch in the gene transcriptional regulatory system, Chaos, 23 (2013), 013110. https://doi.org/10.1063/1.4775758 doi: 10.1063/1.4775758
![]() |
[34] |
A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, et al., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer, Nature, 449 (2007), 1044–1048. https://doi.org/10.1038/nature06199 doi: 10.1038/nature06199
![]() |
[35] |
C. Wang, M. Yi, K. Yang, L. Yang, Time delay induced transition of gene switch and stochastic resonance in a genetic transcriptional regulatory model, BMC Syst. Biol., 6 (2012), 1–16. https://doi.org/10.1186/1752-0509-6-S1-S9 doi: 10.1186/1752-0509-6-S1-S9
![]() |
[36] |
G. W. Wang, Y. Fu, Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels, Math. Biosci. Eng., 20 (2023), 3944–3969. https://doi.org/10.3934/mbe.2023184 doi: 10.3934/mbe.2023184
![]() |
[37] |
H. C. Wei, Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line, Math. Biosci. Eng., 16 (2019), 6512–6535. https://doi.org/10.3934/mbe.2019325 doi: 10.3934/mbe.2019325
![]() |
[38] |
G. W. Wang, Y. Fu, Modes transition and network synchronization in extended Hindmarsh–Rose model driven by mutation of adaptation current under effects of electric field, Indian J. Phys., 97 (2023), 2327–2337. https://doi.org/10.1007/s12648-023-02613-2 doi: 10.1007/s12648-023-02613-2
![]() |
[39] |
C. H. Zeng, H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response, J. Stat. Phys., 141 (2010), 889–908. https://doi.org/10.1007/s10955-010-0068-8 doi: 10.1007/s10955-010-0068-8
![]() |
[40] |
A. Ochab-Marcinek, A. Fiasconaro, E. Gudowska-Nowak, B. Spagnolo, Coexistence of resonant activation and noise enhanced stability in a model of tumor-host interaction Statistics of extinction times, Acta Phys. Pol. B, 37 (2006), 1651–1666. https://doi.org/10.1051/esomat/200905011 doi: 10.1051/esomat/200905011
![]() |
[41] |
B. Spagnolo, A. Fiasconaro, N. Pizzolato, D. Valenti, D. P. Adorno, P. Caldara, et al., Cancer growth dynamics: stochastic models and noise induced effects, AIP Conf. Proc., 1129 (2009), 539–544. https://doi.org/10.1063/1.3140529 doi: 10.1063/1.3140529
![]() |
[42] |
T. Y. Li, G. W. Wang, D. Yu, Q. Ding, Y. Jia, Synchronization mode transitions induced by chaos in modified Morris-Lecar neural systems with weak coupling, Nonlinear Dyn., 108 (2022), 2611–2625. https://doi.org/10.1007/s11071-022-07318-5 doi: 10.1007/s11071-022-07318-5
![]() |
[43] |
T. Tashiro, K. Imamura, Y. Tomita, D. Tamanoi, A. Takaki, K. Sugahara, et al., Heterogeneous tumor-immune microenvironments between primary and metastatic tumors in a patient with ALK rearrangement-positive large cell neuroendocrine carcinoma, Int. J. Mol. Sci., 21 (2020), 9705. https://doi.org/10.3390/ijms21249705 doi: 10.3390/ijms21249705
![]() |
[44] |
D. Liu, S. Ruan, D. Zhu, Bifurcation analysis in models of tumor and immune system interactions, Discrete Contin. Dyn. Syst., 12 (2012), 151–168. https://doi.org/10.3934/dcdsb.2009.12.151 doi: 10.3934/dcdsb.2009.12.151
![]() |
[45] |
G. W. Wang, L. J. Yang, X. Zhan, A. Li, Y. Jia, Chaotic resonance in Izhikevich neural network motifs under electromagnetic induction, Nonlinear Dyn., 107 (2022), 3945–3962. https://doi.org/10.1007/s11071-021-07150-3 doi: 10.1007/s11071-021-07150-3
![]() |
[46] |
H. Mayer, K. S. Zaenker, U. A. D. Heiden, A basic mathematical model of the immune response, Chaos, 5 (1995), 155–161. https://doi.org/10.1063/1.166098 doi: 10.1063/1.166098
![]() |
[47] |
N. Burić, M. Mudrinic, N. Vasovićet, Time delay in a basic model of the immune response, Chaos, Solitons Fractals, 12 (2001), 483–489. https://doi.org/10.1016/S0960-0779(99)00205-2 doi: 10.1016/S0960-0779(99)00205-2
![]() |
[48] |
C. Yu, J. Wei, Stability and bifurcation analysis in a basic model of the immune response with delays, Chaos, Solitons Fractals, 41 (2009), 1223–1234. https://doi.org/10.1016/j.chaos.2008.05.007 doi: 10.1016/j.chaos.2008.05.007
![]() |
[49] |
H. Wang, X. Tian, Asymptotic properties and stability switch of a delayed-within-host-dengue infection model with mitosis and immune response, Int. J. Bifurcation Chaos, 8 (2022), 32. https://doi.org/10.1142/S0218127422501188 doi: 10.1142/S0218127422501188
![]() |
[50] |
D. Yu, G. W. Wang, T. Y. Li, Q. Ding, Y. Jia, Filtering properties of Hodgkin-Huxley neuron on different time-scale signals, Commun. Nonlinear Sci., 117 (2023), 106894. https://doi.org/10.1016/j.cnsns.2022.106894 doi: 10.1016/j.cnsns.2022.106894
![]() |
[51] |
G. W. Wang, D. Yu, Q. M. Ding, T. Li, Y. Jia, Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems, Chaos, Solitons Fractals, 150 (2021), 111210. https://doi.org/10.1016/j.chaos.2021.111210 doi: 10.1016/j.chaos.2021.111210
![]() |
[52] | S. Asserda, A. Bernoussi, M. E. Fatini, A. Kaddar, A. Laaribi, On the dynamics of a delayed tumor-immune model, Int. J. Ecol. Econ. Stat., 33 (2014), 20–30. |
[53] |
A. Kaddar, H. T. Alaoui, Global existence of periodic solutions in a delayed tumor-immune model, Math. Model. Nat. Phenom., 5 (2010), 29–34. https://doi.org/10.1051/mmnp/20105705 doi: 10.1051/mmnp/20105705
![]() |
[54] |
G. W. Wang, Y. Wu, F. L. Xiao, Z. Ye, Y. Jia, Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction, Physica A, 598 (2022), 127274. https://doi.org/10.1016/j.physa.2022.12727 doi: 10.1016/j.physa.2022.12727
![]() |
[55] |
K. Wang, Y. Jin, A. Fan, The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst., 19 (2017), 3379–3396. https://doi.org/10.1007/s00285-010-0397-x doi: 10.1007/s00285-010-0397-x
![]() |
[56] |
A. Bukkuri, A mathematical model showing the potential of Vitamin-C to boost the innate immune response, Open J. Math. Sci., 3 (2019), 245–255. https://doi.org/10.30538/oms2019.0067 doi: 10.30538/oms2019.0067
![]() |