Processing math: 89%
Research article Special Issues

Effect of color cross-correlated noise on the growth characteristics of tumor cells under immune surveillance


  • Based on the Michaelis-Menten reaction model with catalytic effects, a more comprehensive one-dimensional stochastic Langevin equation with immune surveillance for a tumor cell growth system is obtained by considering the fluctuations in growth rate and mortality rate. To explore the impact of environmental fluctuations on the growth of tumor cells, the analytical solution of the steady-state probability distribution function of the system is derived using the Liouville equation and Novikov theory, and the influence of noise intensity and correlation intensity on the steady-state probability distributional function are discussed. The results show that the three extreme values of the steady-state probability distribution function exhibit a structure of two peaks and one valley. Variations of the noise intensity, cross-correlation intensity and correlation time can modulate the probability distribution of the number of tumor cells, which provides theoretical guidance for determining treatment plans in clinical treatment. Furthermore, the increase of noise intensity will inhibit the growth of tumor cells when the number of tumor cells is relatively small, while the increase in noise intensity will further promote the growth of tumor cells when the number of tumor cells is relatively large. The color cross-correlated strength and cross-correlated time between noise also have a certain impact on tumor cell proliferation. The results help people understand the growth kinetics of tumor cells, which can a provide theoretical basis for clinical research on tumor cell growth.

    Citation: Yan Fu, Tian Lu, Meng Zhou, Dongwei Liu, Qihang Gan, Guowei Wang. Effect of color cross-correlated noise on the growth characteristics of tumor cells under immune surveillance[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21626-21642. doi: 10.3934/mbe.2023957

    Related Papers:

    [1] Victor Zhenyu Guo . Almost primes in Piatetski-Shapiro sequences. AIMS Mathematics, 2021, 6(9): 9536-9546. doi: 10.3934/math.2021554
    [2] Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143
    [3] Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780
    [4] Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681
    [5] Xiaoqing Zhao, Yuan Yi . High-dimensional Lehmer problem on Beatty sequences. AIMS Mathematics, 2023, 8(6): 13492-13502. doi: 10.3934/math.2023684
    [6] Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196
    [7] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [8] Rui Wang, Jiangtao Peng . On the inverse problems associated with subsequence sums of zero-sum free sequences over finite abelian groups Ⅱ. AIMS Mathematics, 2021, 6(2): 1706-1714. doi: 10.3934/math.2021101
    [9] Jinyan He, Jiagui Luo, Shuanglin Fei . On the exponential Diophantine equation (a(al)m2+1)x+(alm21)y=(am)z. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401
    [10] Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy, Rashad A. R. Bantan, Mohammed Elgarhy . Analysis of information measures using generalized type-Ⅰ hybrid censored data. AIMS Mathematics, 2023, 8(9): 20283-20304. doi: 10.3934/math.20231034
  • Based on the Michaelis-Menten reaction model with catalytic effects, a more comprehensive one-dimensional stochastic Langevin equation with immune surveillance for a tumor cell growth system is obtained by considering the fluctuations in growth rate and mortality rate. To explore the impact of environmental fluctuations on the growth of tumor cells, the analytical solution of the steady-state probability distribution function of the system is derived using the Liouville equation and Novikov theory, and the influence of noise intensity and correlation intensity on the steady-state probability distributional function are discussed. The results show that the three extreme values of the steady-state probability distribution function exhibit a structure of two peaks and one valley. Variations of the noise intensity, cross-correlation intensity and correlation time can modulate the probability distribution of the number of tumor cells, which provides theoretical guidance for determining treatment plans in clinical treatment. Furthermore, the increase of noise intensity will inhibit the growth of tumor cells when the number of tumor cells is relatively small, while the increase in noise intensity will further promote the growth of tumor cells when the number of tumor cells is relatively large. The color cross-correlated strength and cross-correlated time between noise also have a certain impact on tumor cell proliferation. The results help people understand the growth kinetics of tumor cells, which can a provide theoretical basis for clinical research on tumor cell growth.



    Let q be an integer. For each integer a with

    1a<q,  (a,q)=1,

    we know that [1] there exists one and only one ˉa with

    1ˉa<q

    such that

    aˉa1(q).

    Define

    R(q):={a:1aq,(a,q)=1,2a+ˉa},
    r(q):=#R(q).

    The work [2] posed the problem of investigating a nontrivial estimation for r(q) when q is an odd prime. Zhang [3,4] gave several asymptotic formulas for r(q), one of which is:

    r(q)=12ϕ(q)+O(q12d2(q)log2q),

    where ϕ(q) is the Euler function and d(q) is the divisor function. Lu and Yi [5] studied a generalization of the Lehmer problem over short intervals. Let n2 be a fixed positive integer, q3 and c be integers with

    (nc,q)=1.

    They defined

    rn(θ1,θ2,c;q)=#{(a,b)[1,θ1q]×[1,θ2q]abc( mod q),na+b},

    where 0<θ1,θ21, and obtained

    rn(θ1,θ2,c;q)=(11n)θ1θ2φ(q)+O(q1/2τ6(q)log2q),

    where the O constant depends only on n. In addition, Xi and Yi [6] considered generalized Lehmer problem over short intervals. Han and Liu [7] gave an upper bound estimation for another generalization of the Lehmer problem over incomplete interval.

    Guo and Yi [8] also found the Lehmer problem has good distribution properties on Beatty sequences. For fixed real numbers α and β, defined by

    Bα,β:=(αn+β)n=1.

    Beatty sequences are linear sequences. Based on the results obtained, we conjecture the Lehmer problem also has good distribution properties in some non-linear sequences.

    The Piatetski-Shapiro sequence is a non-linear sequence, defined by

    Nc={nc:nN},

    where cR is non-integer with c>1 and zR. This sequence was first introduced by Piatetski-Shapiro [9] to study prime numbers in sequences of the form f(n), where f(n) is a polynomial. A positive integer is called square-free if it is a product of distinct primes. The distribution of square-free numbers in the Piatetski-Shapiro sequence has been studied extensively. Stux [10] found that, as x tends to infinity,

    nxnc is square-free 1=(6π2+o(1))x, for  1<c<43. (1.1)

    In 1978, Rieger [11] improved the range to 1<c<3/2 and obtained

    6xπ2+O(x(2c+1)/4+ε), for  1<c<32

    Considering the results obtained, we develop this problem by investigating

    R(c;q):=nNcR(q)n is square-free 1

    and range of c when q tends to infinity. By methods of exponential sum and Kloosterman sums and fairly detailed calculations, we get the following result, which is significant for understanding the distribution properties of the Lehmer problem.

    Theorem 1.1. Let q be an odd integer and large enough,

    γ:=1/candc(1,43),

    we obtain

    R(c;q)=3π2pq(1+p1)1qγ+O(pq(1p12)1qγ12)+O(q713γ+413pq(1p12)1logq)+O(q34d3(q)logq)+O(qγ16d2(q)log3q),

    where the O constant only depends on c.

    This paper consists of three main sections. Introduction covers the origins and developments of the Lehmer problem, along with several interesting results. It also presents relevant findings related to the Piatetski-Shapiro sequences. The second section includes some definitions and lemmas throughout the paper. The third section outlines the calculation process, where we use additive characteristics to convert the congruence equations into exponential sum problems. We then employ the Kloosterman sums and exponential sums methods to derive an interesting asymptotic formula.

    To complete the proof of the theorem, we need the following several definitions and lemmas.

    In this paper, we denote by t and {t} the integral part and the fractional part of t, respectively. As is customary, we put

    e(t):=e2πitand{t}:=tt.

    The notation t is used to denote the distance from the real number t to the nearest integer; that is,

    t:=minnZ|tn|.

    And indicates that the variable summed over takes values coprime to the number q. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O,, and may depend (where obvious) on the parameters c and ε, but are absolute otherwise. For given functions F and G, the notations

    FG,   GF   andF=O(G)

    are all equivalent to the statement that the inequality

    |F|C|G|

    holds with some constant C>0.

    Lemma 2.1. Let 1c(m) denote the characteristic function of numbers in a Piatetski-Shapiro sequence, then

    1c(m)=γmγ1+O(mγ2)+ψ((m+1)γ)ψ(mγ),

    where

    ψ(t)=tt12   andγ=1/c.

    Proof. Note that an integer m has the form

    m=nc

    for some integer n if and only if

    mnc<m+1,(m+1)γ<nmγ.

    So

    1c(m)=mγ(m+1)γ=mγψ(mγ)+(m+1)γ+ψ((m+1)γ)=γmγ1+O(mγ2)+ψ((m+1)γ)ψ(mγ).

    Thie completes the proof.

    Lemma 2.2. Let H1 be an integer, ah,bh be real numbers, we have

    |ψ(t)0<|h|Hahe(th)||h|Hbhe(th),ah1|h|,bh1H.

    Proof. In 1985, Vaaler showed how Beurling's function could be used to construct a trigonometric polynomial approximation to ψ(x). For each positive integer N, Vaaler's construction yields a trigonometric polynomial ψ of degree N which satisfies

    |ψ(x)ψ(x)|12N+2|n|N(1|n|N+1)e(nx),

    where

    ψ(x)=1|n|N(2πin)1ˆJN+1(n)e(nx),H(z)=sin2πzπ2{n=sgn(n)(zn)2+2z},J(z)=12H(z),HN(z)=sin2πzπ2{|n|Nsgn(n)(zn)2+2z},JN(z)=12HN(z),

    and sgn(n) is the sign of n. The Fourier transform ˆJ(t) satisfies

    ˆJ(t)={1,t=0;πt(1|t|)cotπt+|t|,0<|t|<1;0,t1.

    To be short, we denote

    ah=(2πih)1ˆJH+1(h)1|h|,bh=12H+2(1|h|H+1)1H.

    There are more details in Appendix Theorem A.6. of [12].

    Lemma 2.3. Denote

    Kl(m,n;q)=qa=1qb=1ab1(modq)e(ma+nbq),

    then

    Kl(m,n;q)(m,n,q)12q12d(q),

    where (m,n,q) is the greatest common divisor of m,n and q and d(q) is the number of positive divisors of q.

    Proof. The proof is given in [13].

    Lemma 2.4. (Korobov [14]) Let α be a real number, Q be an integer, and P be a positive integer, then

    |Q+Px=Q+1e(αx)|min(P,12α).

    Lemma 2.5. (Karatsuba [15]) For any number b, U<0, K1, let

    a=sr+θr2,(r,s)=1,   r1,   |θ|1,

    then

    kKmin(U,1ak+b)(Kr+1)(U+rlogr).

    Lemma 2.6. Suppose f is continuously differentiable, f(n) is monotonic, and

    f(n)λ1>0

    on I, then

    nIe(f(n))λ11.

    Proof. See [12, Theorem 2.1].

    Lemma 2.7. Let k be a positive integer, k2. Suppose that f(n) is a real-valued function with k continuous derivatives on [N,2N], Further suppose that

    0<Ff(k)(n)hF.

    Then

    |N<x2Ne(f(n))|FκNλ+F1,

    where the implied constant is absolute.

    Proof. See [12, Chapter 3].

    By the definition of Mobius function

    μ(n)={(1)ω(n),p|n,p2n,0,p2|n,

    it is clear that n is square-free if and only if

    μ2(n)=1,

    where ω(n) is the number of prime divisor of n. So

    R(c;q)=12qn=1(1(1)n+ˉn)μ2(n)1c(n)=12(R1R2), (3.1)

    where

    R1=qn=1μ2(n)1c(n)

    and

    R2=qn=1(1)n+ˉnμ2(n)1c(n).

    From Lemma 2.1, we have

    R1=qn=1μ2(n)1c(n)=qn=1μ2(n)(γnγ1+O(nγ2)+ψ((n+1)γ)ψ(nγ))=R11+R12, (3.2)

    where

    R11:=qn=1μ2(n)(γnγ1+O(nγ2))=qn=1μ2(n)γnγ1+O(qn=1μ2(n)nγ2).

    Let

    D={d:p|dp|q}

    and λ(n) is Liouville function. When nR(q),

    μ2(n)={dm=n,dDλ(d)μ2(m),(n,q)=1,0,(n,q)>1. (3.3)

    We just consider the first term of R11. Applying Euler summuation [1],

    qn=1μ2(n)γnγ1=qn=1dm=ndDλ(d)μ2(m)γ(dm)γ1=dDλ(d)dγ1mqdμ2(m)γmγ1=dDλ(d)dγ1mqd(l2mμ(l))γmγ1=dDλ(d)dγ1l(qd)12μ(l)l2γ2mqdl2γmγ1=dDλ(d)dγ1l(qd)12μ(l)l2γ2((qdl2)γ+O((qdl2)γ1))=qγdDλ(d)d1l(qd)12μ(l)l2+O(dDl(qd)12qγ1)=qγdDλ(d)d1(lμ(l)l2+O((qd)12))+O(pq(1p12)1qγ12)=6π2pq(1+p1)1qγ+O(pq(1p12)1qγ12),

    thus

    R11=6π2pq(1+p1)1qγ+O(pq(1p12)1qγ12). (3.4)

    For R12, by Lemma 2.2, we have

    R12:=qn=1μ2(n)(ψ((n+1)γ)ψ(nγ))=R121+O(R122), (3.5)

    where

    R121:=qn=1μ2(n)(0<|h|Hah(e((n+1)γh)e(nγh)))

    and

    R122:=qn=1μ2(n)(|h|Hbh(e((n+1)γh)+e(nγh))).

    Define

    f(t)=e(((dt)γ(dt+1)γ)h)1,

    then

    f(t) |h|(dt)γ1,f(t)t|h|dγ1tγ2.

    By Lemma 2.2 and Eq (3.3),

    R121=0<|h|HahdDλ(d)(1<mqdμ2(m)e((dm)γh)f(m))0<|h|H|h|1dD|qd0f(t)d(1<mtμ2(m)e((dm)γh))|0<|h|H|h|1dD|f(qd)(1<mqdμ2(m)e((dm)γh))|+0<|h|H|h|1dD|qd0f(t)t1<mtμ2(m)e((dm)γh)dt|.

    Let

    (κ,λ)=(16,23)

    be an exponential pair. Applying Lemma 2.7, it's easy to see

    1<mtμ2(m)e((dm)γh)=mt(l2mμ(l))e((dm)γh)lt12|mtl2e((dl2m)γh)|lt12logq(((dl2)γ|h|(tl2)γ1)16(tl2)23+((dl2)γ|h|(tl2)γ1)1)logqlt12((dγ|h|)16t16γ+12l1+(dγ|h|)1t1γl2)(dγ|h|)16t16γ+12log2q+(dγ|h|)1t1γlogq(dγ|h|)16t16γ+12log2q,

    thus

    R1210<|h|H|h|1dD|h|qγ1(dγ|h|)16(qd)16γ+12log2q+0<|h|H|h|1dDqd0|h|dγ1tγ2(dγ|h|)16t16γ+12log2qdt0<|h|H|h|16dDd12q76γ12log2q+0<|h|H|h|16dDd76γ1log2qqd0t76γ32dtH76pq(1p12)1q76γ12log2q. (3.6)

    For R122, the contribution from h0 can be bounded by similar methods of Eq (3.6). Taking

    H=q913713γ1,

    we obtain

    R122=b0qn=1μ2(n)+0<|h|Hbhqn=1μ2(n)(e((n+1)γh)+e(nγh))H1q+H76pq(1p12)1q76γ12logqq713γ+413pq(1p12)1log2q. (3.7)

    It follows from Eqs (3.5)–(3.7),

    R12q713γ+413pq(1p12)1log2q.

    Hence

    R1=6π2pq(1+p1)1qγ+O(pq(1p12)1qγ12)+O(q713γ+413pq(1p12)1log2q). (3.8)

    Similarly,

    R2=qn=1(1)n+ˉnμ2(n)1c(n)=RP21+RP22, (3.9)

    where

    R21=qn=1(1)n+ˉnμ2(n)(γnγ1+O(nγ2))

    and

    R22=qn=1(1)n+ˉnμ2(n)(ψ((n+1)γ)ψ(nγ)).

    We also just consider the first term of R21.

    qn=1(1)n+ˉnμ2(n)γnγ1=qn=1(1)n+ˉn(d2nμ(d))γnγ1=qn=1(1)n+ˉnd2ndq14μ(d)γnγ1+qn=1(1)n+ˉnd2nq14<dq12μ(d)γnγ1. (3.10)

    It is easy to see

    qn=1(1)n+ˉnd2nq14<dq12μ(d)γnγ1qn=1d2nq14<dq12γnγ1qγ14. (3.11)

    Since for integers m and a, one has

    1qqs=1e(s(ma)q)={1,ma( mod q);0,ma( mod q).

    This gives

    qn=1(1)n+ˉnd2ndq14μ(d)γnγ1=qn=1qm=1nm1(modq)(1)n+md2ndq14μ(d)γnγ1q1a=1a=mq1b=1b=n1=qn=1qm=1nm1(modq)q1a=1a=mq1b=1b=n(1)a+bd2bdq14μ(d)γbγ1=qn=1qm=1nm1(modq)q1a=1am(modq)q1b=1bn(modq)(1)a+bd2bdq14μ(d)γbγ1=qn=1qm=1nm1(modq)q1a=1q1b=1(1)a+bd2bdq14μ(d)γbγ1×(1qqs=1e(s(ma)q))(1qqt=1e(t(nb)q))=1q2qs=1qt=1(nm1(modq)e(sm+tnq))×(q1a=1(1)ae(saq))(q1b=1(1)be(tbq)d2bdq14μ(d)γbγ1). (3.12)

    From Lemma 2.3,

    nm1(modq)e(sm+tnq)=Kl(s,t;q)(s,t,q)12q12d(q). (3.13)

    Note the estimate

    |q1a=1(1)ae(saq)|1|e(12sq)1|1|cossqπ| (3.14)

    holds. By Abel summation and Lemma 2.4, we have

    q1b=1(1)be(tbq)d2bdq14μ(d)γbγ1=dq14μ(d)q1d2b=1(1)d2be(td2bq)γ(d2b)γ1dq14d2(γ1)|q1d2b=1(1)d2be(td2bq)γbγ1|dq14d2(γ1)γ(qd2)γ1max1βq1d2|βb=1(1)d2be(td2bq)|dq142dγqγ1max1βq1d2|βb=1e(td2bq)|+dq142dγqγ1max1βq1d2|βb=1(1)be(td2bq)|dq142dqγ1min(q1d2,12d2qt)+dq142dqγ1min(q1d2,1212d2qt). (3.15)

    To be short, combining Eqs (3.13)–(3.15), we denote

    R211:=q2qs=1qt=1(s,t,q)12d(q)q121|cossqπ|dq142dqγ1min(q1d2,12d2qt)qγ3qs=1qt=1(s,t,q)12d(q)q121|cossqπ|dq14min(q1d2,12d2qt)qγ3uqu12d(q)q12qus=11|cossuqπ|dq14qut=1min(q1d2,12d2qut)

    and

    R212:=q2qs=1qt=1(s,t,q)12d(q)q121|cossqπ|dq142dqγ1min(q1d2,1212d2qt).

    Let

    (d2,qu)=r,   (d2r,qur)=1,

    making use of Lemma 2.5, we have

    qut=1min(q1d2,12d2qut)(ququr+1)(q1d2+qurlogq)qrd2+qulogq.

    Insert it to R211, then

    R211qγ3uqu12d(q)q12qus=11|12suq|dq14(d2,qu)=r(qrd2+qulogq)qγ3uqu12d(q)q12qulogqdq14r|d2r|qu(qrd2+qulogq)qγ3uqu12d(q)q12qulogqr|qudq14r12(qd2+qulogq)qγ3uqu12d(q)q12qulogq(qd(q)+q54ud(q)logq)qγ14d3(q)log3q.

    By the same method of R211,

    R212qγ14d3(q)log3q.

    Following from Eqs (3.10) and (3.11), estimations of R211 and R212,

    R21qγ14+RP211+RP212qγ14d3(q)log3q. (3.16)

    By the similar method of R12 and R21,

    R22=R221+O(R222), (3.17)

    where

    R221:=qn=1(1)n+ˉnμ2(n)(0<|h|Hah(e((n+1)γh)e(nγh)))

    and

    R222:=qn=1(1)n+ˉnμ2(n)(|h|Hbh(e((n+1)γh)+e(nγh))).

    It is obvious that

    R221=qn=1(1)n+ˉn(d2nμ(d))(0<|h|Hah(e((n+1)γh)e(nγh)))=qn=1(1)n+ˉnd2ndq16μ(d)(0<|h|Hah(e((n+1)γh)e(nγh)))+qn=1(1)n+ˉnd2nq16<dq12μ(d)(0<|h|Hah(e((n+1)γh)e(nγh))). (3.18)

    From the estimate

    e(nγh(n+1)γh)1(nγ(n+1)γ)hγnγ1h,

    by partial summation,

    qn=1(1)n+ˉnd2nq16<dq12μ(d)(0<|h|Hah(e((n+1)γh)e(nγh)))qn=1d2nq16<dq12|0<|h|Hahe(nγh)(e(nγh(n+1)γh)1)|qn=1d2nq16<dq12γnγ1HlogHqγ16HlogH. (3.19)

    For another term of R221,

    qn=1(1)n+ˉnd2ndq16μ(d)(0<|h|Hah(e((n+1)γh)e(nγh)))=qn=1(1)n+ˉnd2ndq16μ(d)(0<|h|Hah(e((n+1)γh)e(nγh)))×(1qqa=1qs=1e(s(ma)q))(1qqb=1qt=1e(t(nb)q))=1q2qs=1qt=1(nm1(modq)e(sm+tnq))(q1a=1(1)ae(saq))×(q1b=1(1)be(tbq)d2bdq16μ(d)0<|h|Hah(e((b+1)γh)e(bγh))). (3.20)

    We just need to give an estimation of the last part in (3.20). Similarly, let

    g(x)=e(((d2x)γ(d2x+1)γ)h)1,

    then

    g(x) |h|(d2x)γ1,g(x)x|h|d2γ2xγ2.

    By partial summation,

    q1b=1(1)be(tbq)d2bdq16μ(d)0<|h|Hah(e((b+1)γh)e(bγh))=0<|h|Hahdq16μ(d)1bq1d2e((d22td2q)b(d2b)γh)g(b),0<|h|H|h|1dq16|q1d21g(x)d(1<bxe((d22td2q)b(d2b)γh))|0<|h|H|h|1dq16|g(q1d2)1bq1d2e((d22td2q)b(d2b)γh)|+0<|h|H|h|1dq16|q1d21g(x)x1bxe((d22td2q)b(d2b)γh)dx|,

    where

    g(q1d2)|h|qγ1

    and

    1bq1d2e((d22td2q)b(d2b)γh)=1bq16e((d22td2q)b(d2b)γh)+q16<bq1d2e((d22td2q)b(d2b)γh).

    It is obvious that

    1bq16e((d22td2q)b(d2b)γh)q16.

    Suppose q be large enough and for b>q16, when 2d or qtd2,

    (d22td2q)γd2γbγ1h112(12tq)d21>0,

    and applying Lemma 2.6, we have

    q16<bq1d2e((d22td2q)b(d2b)γh)(d22td2q)γd2γbγ1h1(12tq)d21.

    So

    1bq1d2e((d22td2q)b(d2b)γh){q16+(12tq)d21,2d or qtd2;qd2,2d and qtd2;

    which means

    q1b=1(1)be(tbq)d2bdq16μ(d)0<|h|Hah(e((b+1)γh)e(bγh))0<|h|H|h|1dq162d or qtd2|h|qγ1(q16+(12tq)d21)+0<|h|H|h|1dq162d and qtd2|h|qγd2Hqγ1(q13+dq162d or qtd2(12tq)d21)+Hqγdq162d and qtd2d2.

    We denote

    \begin{align} T(c)&: = \sum\limits_{d\leqslant q^{\frac{1}{6} }} \# \left\{ (\frac{q}{u}-2t)d^{2} \equiv c (\bmod 2\frac{q}{u}), t\leqslant \frac{q}{u}\right\} \\ &\ll \sum\limits_{d\leqslant q^{\frac{1}{6} }} (\frac{q}{u}, d^{2}) \\ &\ll q^{\frac{1}{3} }d(q), \end{align}

    thus,

    \begin{align} &\mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mathop{\sum\limits_{d^{2} \mid n}}_{d \leqslant q^{\frac{1}{6}} }\mu(d) \left( \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(n+1)^{\gamma}h\right)-\mathbf{e}(-n^{\gamma}h)\right)\right)\\ & \ll q^{-2}\sum\limits_{s = 1}^{q}\sum\limits_{t = 1}^{q}(s,t,q)^{\frac{1}{2}}d(q)q^{\frac{1}{2}}\frac{H q^{ \gamma- 1}}{|\cos\frac{s}{q}\pi|}\left(q^{\frac{1}{ 3}}+ \mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \nmid d \text{ or } q \nmid td^2} \left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1}\right) \\ &\quad+q^{-2}\sum\limits_{s = 1}^{q}\sum\limits_{t = 1}^{q}(s,t,q)^{\frac{1}{2}}d(q)q^{\frac{1}{2}}\frac{H q^{ \gamma}}{|\cos\frac{s}{q}\pi|}\mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \mid d \text{ and } q \mid td^2}d^{-2} \\ & \ll Hq^{ \gamma-\frac{5}{2}}\sum\limits_{u\mid q}u^{\frac{1}{2}} d(q) \sum\limits_{s = 1}^{\frac{q}{u}}\frac{1}{|1-2 \frac{su}{q} |} \sum\limits_{t = 1}^{\frac{q}{u}} \left(q^{\frac{1}{3}}+ \sum\limits_{d \leqslant q^{\frac{1}{6} }} \left\| (\frac{1}{2}-\frac{ut }{q})d^{2}\right\|^{-1} \right) \\ &\quad+Hq^{ \gamma-\frac{3}{2}} \sum\limits_{u\mid q}u^{\frac{1}{2}} d(q) \sum\limits_{s = 1}^{\frac{q}{u}}\frac{1}{|1-2 \frac{su}{q} |} \sum\limits_{d \leqslant q^{ \frac{1}{6} }}\mathop{\sum\limits_{t = 1}^{\frac{q}{u}}}_{ q \mid td^2}d^{-2} \\ & \ll H q^{ \gamma-\frac{1}{6}} d^2(q) \log q+ Hq^{ \gamma-\frac{1}{3}}d^2(q) \log q \\ &\quad+ Hq^{ \gamma- \frac{3}{2}}\sum\limits_{u\mid q}u^{-\frac{1}{2}} d(q) \log^{2}q \max\limits_{C} \sum\limits_{C < c\leqslant2C} \|\frac{C}{2\frac{q}{u}}\|^{-1} T(c) \\ &\ll Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q. \end{align} (3.21)

    With Eqs (3.18) and (3.19), we have

    \begin{align} R_{221}&\ll Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q+H q^{ \gamma -\frac{1}{6}} \log H. \end{align} (3.22)

    For R_{222} , the contribution from h = 0 can be bounded by similar methods of R_{21} , and the contribution from h \neq 0 can be bounded by similar methods of R_{221} . Taking

    H = \log q ,

    we obtain

    \begin{align} R_{222}& = b_{0} \mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mu^{2}(n) +\mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}}\mu^{2}(n)\left(\sum\limits_{0 < |h|\leqslant H}b_{h} \left(e\left(-(n+1)^{\gamma}h\right)+e\left(-n^{\gamma}h\right)\right)\right) \\ &\ll H^{-1}q^{\frac{3}{4}}d^{3}(q)\log^2 q +Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q\\ &\ll q^{\frac{3}{4}}d^{3}(q)\log q+ q^{ \gamma -\frac{1}{6}}d^{2}(q) \log^3 q . \end{align} (3.23)

    Following from Eqs (3.16), (3.22), and (3.23),

    \begin{align} R_{2}\ll q^{\gamma-\frac{1}{6}} d^{2}(q) \log^3 q+ q^{\frac{3}{4}}d^{3}(q)\log q . \end{align} (3.24)

    Hence, from Eqs (3.1), (3.8), and (3.24), we derive that

    \begin{align} R(c;q) = &\frac{3}{\pi^{2}}\prod\limits_{p\mid q}(1+p^{-1})^{-1}q^{\gamma}+O\left( \sum\limits_{p\mid q}(1-p^{-\frac{1}{2}}) ^{-1} q^{\gamma-\frac{1}{2}}\right)\\ &+O\left(q^{\frac{7}{13}\gamma+\frac{4}{13}}\prod\limits_{p\mid q}(1-p^{-\frac{1}{2}})^{-1}\log q\right)+O\left( q^{\frac{3}{4}}d^{3}(q)\log q \right)+O(q^{ \gamma -\frac{1}{6}} d^{2}(q)\log^3 q). \end{align}

    We need the error terms to be smaller than the main term, so

    \begin{cases} \frac{7}{13}\gamma+\frac{4}{13} < \gamma ,\\ \frac{3}{4} < \gamma ,\end{cases}

    which means the range of c is (1, \frac{4}{3}) . The reason why the range of c is changed is that R(c; q) requires q large enough.

    In this paper, we generalize the Lehmer problem by considering the count of square-free numbers in the intersection of the Lehmer set and Piatetski-Shapiro sequence when q is an odd integer and large enough. By methods of exponential sum and Kloosterman sum, we study its asymptotic properties and give a sharp asymptotic formula as q tends to infinity.

    Based on this result, we will consider some distribution problems similar to the Lehmer problem with more special sequences, which is significant for understanding the distribution properties of those problems.

    Xiaoqing Zhao: calculations, writing and editing; Yuan Yi: methodology and reviewing. All authors have read and agreed to the published version of the manuscript.

    In preparing this manuscript, we employed the language model ChatGPT-4 for the purpose of grammatical corrections. It did not influence the calculations and conclusion in this paper.

    This work is supported by Natural Science Foundation No.12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] L. B. Han, Influences of time delay on logistic growth process driven by colored correlated noises, Acta Phys. Sin., 57 (2008), 2699–2703. https://doi.org/10.7498/aps.57.2699 doi: 10.7498/aps.57.2699
    [2] Z. L. Jia, Influences of noise correlation and time delay on stochastic resonance induced by multiplicative signal in a cancer growth system, Chin. Phys. B, 19 (2010), 020504. https://doi.org/10.1088/1674-1056/19/2/020504 doi: 10.1088/1674-1056/19/2/020504
    [3] C. J. Wang, Q. Wei, B. B. Zheng, D. C. Mei, Transient properties of a tumor cell growth system driven by color Gaussian noises: Mean first-passage time, Acta Phys. Sin., 57 (2008), 1375–1380. https://doi.org/10.1016/S1872-2075(08)60042-4 doi: 10.1016/S1872-2075(08)60042-4
    [4] M. J. Bie, W. R. Zhong, D. H. Chen, L. Li, Y. Z. Shao, Influence of correlated white noises on the immunity of an anti-tumor system, Acta Phys. Sin., 58 (2009), 97–101. https://doi.org/10.3969/j.issn.1674-697X.2014.07.219 doi: 10.3969/j.issn.1674-697X.2014.07.219
    [5] W. Xu, M. Hao, X. Gu, G. Yang, Stochastic resonance induced by Lévy noise in a tumor growth model with periodic treatment, Mod. Phys. Lett. B, 28 (2014), 1450085. https://doi.org/10.1142/S0217984914500857 doi: 10.1142/S0217984914500857
    [6] T. Yang, Q. Han, C. Zeng, H. Wang, Y. Fu, C. Zhang, Delay-induced state transition and resonance in periodically driven tumor model with immune surveillance, Cent. Eur. J. Phys., 12 (2014), 383–391. https://doi.org/10.2478/s11534-014-0460-0 doi: 10.2478/s11534-014-0460-0
    [7] D. Li, W. Xu, Y. Guo, Y. Xu, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment, Phys. Lett. A, 375 (2011), 886–890. https://doi.org/10.1016/j.physleta.2010.12.066 doi: 10.1016/j.physleta.2010.12.066
    [8] P. Han, W. Xu, L. Wang, H. Zhang, S. Ma, Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises, Physica A, 547 (2020), 123833. https://doi.org/10.1016/j.physa.2019.123833 doi: 10.1016/j.physa.2019.123833
    [9] W. R. Zhong, Y. Z. Shao, Z. H. He, Stochastic resonance in the growth of a tumor induced by correlated noises, Chin. Sci. Bull., 50 (2005), 2273–2275. https://doi.org/10.1007/BF03183733 doi: 10.1007/BF03183733
    [10] A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo, E. Gudowska-Nowak, Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment, Eur. Phys. J. B, 65 (2008), 435–442. https://doi.org/10.1140/epjb/e2008-00246-2 doi: 10.1140/epjb/e2008-00246-2
    [11] C. J. Fang, Moment Lyapunov exponent of three-dimensional system under bounded noise excitation, Appl. Math. Mech., 33 (2012), 553–566. https://doi.org/10.1007/sl0483-012-1570-9 doi: 10.1007/sl0483-012-1570-9
    [12] B. Q. Ai, X. J. Wang, G. T. Liu, L. G. Liu, Correlated noise in a logistic growth model, Phys. Rev. E, 67 (2003), 022903. https://doi.org/10.1103/PhysRevE.67.022903 doi: 10.1103/PhysRevE.67.022903
    [13] M. Hua, Y. Wu, Transition in a delayed tumor growth model with non-Gaussian colored noise, Nonlinear Dyn. 111 (2023), 6727–6743. https://doi.org/10.1007/s11071-022-08153-4 doi: 10.1007/s11071-022-08153-4
    [14] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaib, Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem, Math. Biosci. Eng., 20 (2023), 19270–19299. https://doi.org/10.3934/mbe.2023852 doi: 10.3934/mbe.2023852
    [15] F. A. Rihan, H. J. Alsakaji, S. Kundu, O. Mohamed, Dynamics of a time-delay differential model for tumour-immune interactions with random noise, Alexandria Eng. J., 12 (2022), 11913–11923. https://doi.org/10.1016/j.aej.2022.05.027 doi: 10.1016/j.aej.2022.05.027
    [16] G. Song, T. H. Tian, X. N. Zhang, A mathematical model of cell-mediated immune response to tumor, Math. Biosci. Eng., 18 (2021), 373–385. https://doi.org/10.3934/mbe.2021020 doi: 10.3934/mbe.2021020
    [17] G. W. Wang, D. H. Xu, Q. H. Cheng, Influences of correlated colored-noises on logistic model for tree growth, Acta Phys. Sin., 62 (2013), 224208. https://doi.org/10.7498/aps.62.224208 doi: 10.7498/aps.62.224208
    [18] Z. Jackiewicz, B. Zubik-Kowal, B. Basse, Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics, Math. Biosci. Eng., 6 (2009), 561–572. https://doi.org/10.3934/mbe.2009.6.561 doi: 10.3934/mbe.2009.6.561
    [19] I. K. Elena, M. A. de Quesada, C. M. Pérez-Amor, M. L. Texeira, J. M. Nieto-Villar, The dynamics of tumorgrowth and cells pattern morphology, Math. Biosci. Eng., 6 (2009), 547–559. https://doi.org/10.3934/mbe.2009.6.547 doi: 10.3934/mbe.2009.6.547
    [20] Y. F. Guo, T. Yao, L. J. Wang, Lévy noise-induced transition and stochastic resonance in a tumor growth model, Appl. Math. Model., 94 (2021), 506–515. https://doi.org/10.1016/j.apm.2021.01.024 doi: 10.1016/j.apm.2021.01.024
    [21] S. L. Elliott, E. Kose, A. L. Lewis, A. E. Steinfeld, E. A. Zollinger, Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF-β on tumor growth, Math. Biosci. Eng., 16 (2019), 7177–7194. https://doi.org/10.3934/mbe.2019360 doi: 10.3934/mbe.2019360
    [22] P. Han, W. Xu, L. Wang, H. Zhang, S. Ma, Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises, Physica A, 547 (2020), 123833. https://doi.org/10.1016/j.physa.2019.123833 doi: 10.1016/j.physa.2019.123833
    [23] A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak, Co-occurrence of resonant activation and noise enhanced stability in a model of cancer growth in the presence of immune response, Phys. Rev. E, 74 (2006), 041904. https://doi.org/10.1103/PhysRevE.74.041904 doi: 10.1103/PhysRevE.74.041904
    [24] X. Chen, T. D. Li, W. Cao, Optimizing cancer therapy for individuals based on tumor-immune-drug system interaction, Math. Biosci. Eng., 20 (2023), 17589–17607. https://doi.org/10.3934/mbe.2023781 doi: 10.3934/mbe.2023781
    [25] M. Assaf, E. Roberts, Z. Luthey-Schulten, Determining the stability of genetic switches, explicitly accounting for mRNA noise, Phys. Rev. Lett., 106 (2011), 248102. https://doi.org/10.1103/PhysRevLett.106.248102 doi: 10.1103/PhysRevLett.106.248102
    [26] G. W. Wang, M. Y. Ge, L. L. Lu, Y. Jia, Y. Zhao, Study on propagation efficiency and fidelity of subthreshold signal in feed-forward hybrid neural network under electromagnetic radiation, Nonlinear Dyn., 103 (2021), 2627–2643. https://doi.org/10.1007/s11071-021-06247-z doi: 10.1007/s11071-021-06247-z
    [27] X. Zhao, Q. Ouyang, H. Wang, Designing a stochastic genetic switch by coupling chaos and bistability, Chaos, 25 (2015), 113112. https://doi.org/10.1063/1.4936087 doi: 10.1063/1.4936087
    [28] M. J. Bie, W. R. Zhong, H. D. Chen, L. Li, Y. Z. Shao, Effect of the associated white noise against the immune effect of the tumor system, Acta Phys. Sin., 58 (2009), 97–101. https://doi.org/10.7498/aps.58.97 doi: 10.7498/aps.58.97
    [29] A. I. Reppas, J. C. L. Alfonso, H. Hatzikirou, In silico tumor control induced via alternating immunostimulating and immunosuppressive phases, Virulence, 7 (2016), 174–186. https://doi.org/10.1080/21505594.2015.1076614 doi: 10.1080/21505594.2015.1076614
    [30] Y. Jia, J. R. Li, Steady-state analysis of a bistable system with additive and multiplicative noises, Phys. Rev. E, 53 (1996), 5786–5792. https://doi.org/10.1103/PhysRevE.53.5786 doi: 10.1103/PhysRevE.53.5786
    [31] Q. Liu, Y. Jia, Fluctuations-induced switch in the gene transcriptional regulatory system, Phys. Rev. E, 70 (2004), 041907. https://doi.org/10.1103/PhysRevE.70.041907 doi: 10.1103/PhysRevE.70.041907
    [32] Y. Li, M. Yi, X. Zou, The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast, Sci. Rep., 4 (2014), 1–13. https://doi.org/10.1038/srep05764 doi: 10.1038/srep05764
    [33] Y. Xu, J. Feng, J. Li, H. Zhang, Lévy noise induced switch in the gene transcriptional regulatory system, Chaos, 23 (2013), 013110. https://doi.org/10.1063/1.4775758 doi: 10.1063/1.4775758
    [34] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, et al., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer, Nature, 449 (2007), 1044–1048. https://doi.org/10.1038/nature06199 doi: 10.1038/nature06199
    [35] C. Wang, M. Yi, K. Yang, L. Yang, Time delay induced transition of gene switch and stochastic resonance in a genetic transcriptional regulatory model, BMC Syst. Biol., 6 (2012), 1–16. https://doi.org/10.1186/1752-0509-6-S1-S9 doi: 10.1186/1752-0509-6-S1-S9
    [36] G. W. Wang, Y. Fu, Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels, Math. Biosci. Eng., 20 (2023), 3944–3969. https://doi.org/10.3934/mbe.2023184 doi: 10.3934/mbe.2023184
    [37] H. C. Wei, Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line, Math. Biosci. Eng., 16 (2019), 6512–6535. https://doi.org/10.3934/mbe.2019325 doi: 10.3934/mbe.2019325
    [38] G. W. Wang, Y. Fu, Modes transition and network synchronization in extended Hindmarsh–Rose model driven by mutation of adaptation current under effects of electric field, Indian J. Phys., 97 (2023), 2327–2337. https://doi.org/10.1007/s12648-023-02613-2 doi: 10.1007/s12648-023-02613-2
    [39] C. H. Zeng, H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response, J. Stat. Phys., 141 (2010), 889–908. https://doi.org/10.1007/s10955-010-0068-8 doi: 10.1007/s10955-010-0068-8
    [40] A. Ochab-Marcinek, A. Fiasconaro, E. Gudowska-Nowak, B. Spagnolo, Coexistence of resonant activation and noise enhanced stability in a model of tumor-host interaction Statistics of extinction times, Acta Phys. Pol. B, 37 (2006), 1651–1666. https://doi.org/10.1051/esomat/200905011 doi: 10.1051/esomat/200905011
    [41] B. Spagnolo, A. Fiasconaro, N. Pizzolato, D. Valenti, D. P. Adorno, P. Caldara, et al., Cancer growth dynamics: stochastic models and noise induced effects, AIP Conf. Proc., 1129 (2009), 539–544. https://doi.org/10.1063/1.3140529 doi: 10.1063/1.3140529
    [42] T. Y. Li, G. W. Wang, D. Yu, Q. Ding, Y. Jia, Synchronization mode transitions induced by chaos in modified Morris-Lecar neural systems with weak coupling, Nonlinear Dyn., 108 (2022), 2611–2625. https://doi.org/10.1007/s11071-022-07318-5 doi: 10.1007/s11071-022-07318-5
    [43] T. Tashiro, K. Imamura, Y. Tomita, D. Tamanoi, A. Takaki, K. Sugahara, et al., Heterogeneous tumor-immune microenvironments between primary and metastatic tumors in a patient with ALK rearrangement-positive large cell neuroendocrine carcinoma, Int. J. Mol. Sci., 21 (2020), 9705. https://doi.org/10.3390/ijms21249705 doi: 10.3390/ijms21249705
    [44] D. Liu, S. Ruan, D. Zhu, Bifurcation analysis in models of tumor and immune system interactions, Discrete Contin. Dyn. Syst., 12 (2012), 151–168. https://doi.org/10.3934/dcdsb.2009.12.151 doi: 10.3934/dcdsb.2009.12.151
    [45] G. W. Wang, L. J. Yang, X. Zhan, A. Li, Y. Jia, Chaotic resonance in Izhikevich neural network motifs under electromagnetic induction, Nonlinear Dyn., 107 (2022), 3945–3962. https://doi.org/10.1007/s11071-021-07150-3 doi: 10.1007/s11071-021-07150-3
    [46] H. Mayer, K. S. Zaenker, U. A. D. Heiden, A basic mathematical model of the immune response, Chaos, 5 (1995), 155–161. https://doi.org/10.1063/1.166098 doi: 10.1063/1.166098
    [47] N. Burić, M. Mudrinic, N. Vasovićet, Time delay in a basic model of the immune response, Chaos, Solitons Fractals, 12 (2001), 483–489. https://doi.org/10.1016/S0960-0779(99)00205-2 doi: 10.1016/S0960-0779(99)00205-2
    [48] C. Yu, J. Wei, Stability and bifurcation analysis in a basic model of the immune response with delays, Chaos, Solitons Fractals, 41 (2009), 1223–1234. https://doi.org/10.1016/j.chaos.2008.05.007 doi: 10.1016/j.chaos.2008.05.007
    [49] H. Wang, X. Tian, Asymptotic properties and stability switch of a delayed-within-host-dengue infection model with mitosis and immune response, Int. J. Bifurcation Chaos, 8 (2022), 32. https://doi.org/10.1142/S0218127422501188 doi: 10.1142/S0218127422501188
    [50] D. Yu, G. W. Wang, T. Y. Li, Q. Ding, Y. Jia, Filtering properties of Hodgkin-Huxley neuron on different time-scale signals, Commun. Nonlinear Sci., 117 (2023), 106894. https://doi.org/10.1016/j.cnsns.2022.106894 doi: 10.1016/j.cnsns.2022.106894
    [51] G. W. Wang, D. Yu, Q. M. Ding, T. Li, Y. Jia, Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems, Chaos, Solitons Fractals, 150 (2021), 111210. https://doi.org/10.1016/j.chaos.2021.111210 doi: 10.1016/j.chaos.2021.111210
    [52] S. Asserda, A. Bernoussi, M. E. Fatini, A. Kaddar, A. Laaribi, On the dynamics of a delayed tumor-immune model, Int. J. Ecol. Econ. Stat., 33 (2014), 20–30.
    [53] A. Kaddar, H. T. Alaoui, Global existence of periodic solutions in a delayed tumor-immune model, Math. Model. Nat. Phenom., 5 (2010), 29–34. https://doi.org/10.1051/mmnp/20105705 doi: 10.1051/mmnp/20105705
    [54] G. W. Wang, Y. Wu, F. L. Xiao, Z. Ye, Y. Jia, Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction, Physica A, 598 (2022), 127274. https://doi.org/10.1016/j.physa.2022.12727 doi: 10.1016/j.physa.2022.12727
    [55] K. Wang, Y. Jin, A. Fan, The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst., 19 (2017), 3379–3396. https://doi.org/10.1007/s00285-010-0397-x doi: 10.1007/s00285-010-0397-x
    [56] A. Bukkuri, A mathematical model showing the potential of Vitamin-C to boost the innate immune response, Open J. Math. Sci., 3 (2019), 245–255. https://doi.org/10.30538/oms2019.0067 doi: 10.30538/oms2019.0067
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1763) PDF downloads(76) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog