As one of the critical branches of medical image processing, the task of segmentation of breast cancer tumors is of great importance for planning surgical interventions, radiotherapy and chemotherapy. Breast cancer tumor segmentation faces several challenges, including the inherent complexity and heterogeneity of breast tissue, the presence of various imaging artifacts and noise in medical images, low contrast between the tumor region and healthy tissue, and inconsistent size of the tumor region. Furthermore, the existing segmentation methods may not fully capture the rich spatial and contextual information in small-sized regions in breast images, leading to suboptimal performance. In this paper, we propose a novel breast tumor segmentation method, called the transformer and graph convolutional neural (TS-GCN) network, for medical imaging analysis. Specifically, we designed a feature aggregation network to fuse the features extracted from the transformer, GCN and convolutional neural network (CNN) networks. The CNN extract network is designed for the image's local deep feature, and the transformer and GCN networks can better capture the spatial and context dependencies among pixels in images. By leveraging the strengths of three feature extraction networks, our method achieved superior segmentation performance on the BUSI dataset and dataset B. The TS-GCN showed the best performance on several indexes, with Acc of 0.9373, Dice of 0.9058, IoU of 0.7634, F1 score of 0.9338, and AUC of 0.9692, which outperforms other state-of-the-art methods. The research of this segmentation method provides a promising future for medical image analysis and diagnosis of other diseases.
Citation: Haiyan Song, Cuihong Liu, Shengnan Li, Peixiao Zhang. TS-GCN: A novel tumor segmentation method integrating transformer and GCN[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18173-18190. doi: 10.3934/mbe.2023807
[1] | Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523 |
[2] | Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453 |
[3] | Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55 |
[4] | Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005 |
[5] | Giuseppe Maria Coclite, Lorenzo di Ruvo . H1 solutions for a modified Korteweg-de Vries-Burgers type equation. Networks and Heterogeneous Media, 2024, 19(2): 724-739. doi: 10.3934/nhm.2024032 |
[6] | Kota Kumazaki, Adrian Muntean . Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018 |
[7] | Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar . On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14(3): 471-487. doi: 10.3934/nhm.2019019 |
[8] | Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99 |
[9] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[10] | Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639 |
As one of the critical branches of medical image processing, the task of segmentation of breast cancer tumors is of great importance for planning surgical interventions, radiotherapy and chemotherapy. Breast cancer tumor segmentation faces several challenges, including the inherent complexity and heterogeneity of breast tissue, the presence of various imaging artifacts and noise in medical images, low contrast between the tumor region and healthy tissue, and inconsistent size of the tumor region. Furthermore, the existing segmentation methods may not fully capture the rich spatial and contextual information in small-sized regions in breast images, leading to suboptimal performance. In this paper, we propose a novel breast tumor segmentation method, called the transformer and graph convolutional neural (TS-GCN) network, for medical imaging analysis. Specifically, we designed a feature aggregation network to fuse the features extracted from the transformer, GCN and convolutional neural network (CNN) networks. The CNN extract network is designed for the image's local deep feature, and the transformer and GCN networks can better capture the spatial and context dependencies among pixels in images. By leveraging the strengths of three feature extraction networks, our method achieved superior segmentation performance on the BUSI dataset and dataset B. The TS-GCN showed the best performance on several indexes, with Acc of 0.9373, Dice of 0.9058, IoU of 0.7634, F1 score of 0.9338, and AUC of 0.9692, which outperforms other state-of-the-art methods. The research of this segmentation method provides a promising future for medical image analysis and diagnosis of other diseases.
The 3D incompressible resistive Hall-Magnetohydrodynamics system (Hall-MHD in short) is the following system of PDEs for
ut+u⋅∇u−B⋅∇B+∇p−μΔu=0, | (1a) |
Bt+u⋅∇B−B⋅∇u+curl((curlB)×B)−νΔB=0, | (1b) |
divu=0,divB=0, | (1c) |
where
The Hall-MHD recently has been studied intensively. The Hall-MHD can be derived from either two fluids model or kinetic models in a mathematically rigorous way [1]. Global weak solution, local classical solution, global solution for small data, and decay rates are established in [4,5,6]. There have been many follow-up results of these papers; see [7,8,12,13,14,15,16,18,29,30,31,32,34,35] and references therein.
We note that the Hall term
Bt+curl((curlB)×B)+ΛβB=0,divB=0, | (2) |
where we take
Bt+curl((curlB)×B)+ΛB=0,divB=0. | (3) |
However, we can show the existence of solutions globally in time if initial data is sufficiently small.
Theorem 1.1. Let
‖B(t)‖2Hk+(1−Cϵ0)∫t0‖Λ12B(s)‖2Hkds≤‖B0‖2Hkforallt>0. |
Moreover,
‖ΛlB(t)‖L2≤C0(1+t)l,0<l≤k, | (4) |
where
Remark 1. The decay rate (4) is consistent with the decay rates of the linear part of (3).
Remark 2. After this work was completed, the referee pointed out that the same result is proved in [37,Theorem 1.1]. Compared to the proof in [37] where they use the Littlewood-Paley decomposition, we use the standard energy energy estimates and classical commutator estimates.
As one of a minimal modification of (3) to show the existence of unique local in time solutions, we now take a logarithmic correction of (3):
Bt+curl((curlB)×B)+ln(2+Λ)ΛB=0, | (5) |
where the Fourier symbol of
Theorem 1.2. Let
‖B(t)‖Hk≤ln(1e−‖B0‖Hk−Ct),0<t<T∗=exp(−‖B0‖Hk)C. | (6) |
In this paper, we also deal with 2D models closely related to the
B(t,x,y)=(−ψy(t,x,y),ψx(t,x,y),Z(t,x,y)), | (7) |
we can rewrite (3) as
ψt+Λψ=[ψ,Z], | (8a) |
Zt+ΛZ=[Δψ,ψ], | (8b) |
where
Although (8) is defined in 2D and has nice cancellation properties (18), the local well-posedness seems unreachable. But, suppose that we redistribute the power of the fractional Laplacians in (8) in such a way that (8b) has the full Laplacian and (8a) is inviscid:
ψt=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. | (9) |
(9) has no direct link to (2), but we may interpret (9) as the
E(t)=‖ψ(t)‖2H4+‖Z(t)‖2H3,E0=‖ψ0‖2H4+‖Z0‖2H3. | (10) |
Theorem 1.3. There exists
E(t)≤E011−CtE0forall 0<t≤T∗<1CE0. |
Moreover, we have the following blow-up criterion:
E(t)+∫t0‖∇Z(s)‖2H2ds<∞⟺∫t0(‖∇2Z(s)‖L∞+‖∇2ψ(s)‖2L∞)ds<∞. |
Since there is no dissipative effect in the equation of
ψt+ψ=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. | (11) |
In this case, we can show the existence of global in time solutions with small initial data having regularity one higher than the regularity in Theorem 1.3. Moreover, we can find decay rates of
F(t)=‖ψ(t)‖2H5+‖Z(t)‖2H4,F0=‖ψ0‖2H5+‖Z0‖2H4,N1(t)=‖∇ψ(t)‖2H4+‖∇Z(t)‖2H4. |
Theorem 1.4. There exists a constant
F(t)+(1−Cϵ0)∫t0N1(s)ds≤F0forallt>0. |
Moreover,
‖ψ(t)‖L2≤‖ψ0‖L2e−t,‖Λkψ(t)‖L2≤Fk−180‖∇ψ0‖5−k4L2e−(5−k)(1−Cϵ0)4t |
with
As another way to redistribute the derivatives in (8), we also deal with
ψt−Δψ=[ψ,Z],Zt=[Δψ,ψ]. | (12) |
Let
Theorem 1.5. There exists
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. |
Moreover, we have the following blow-up criterion
E(t)+∫t0‖∇ψ‖2H4ds<∞⟺∫t0‖∇2ψ‖2L∞ds. |
We now add a damping term to the equation of
ψt−Δψ=[ψ,Z],Zt+Z=[Δψ,ψ]. | (13) |
In this case, we can use the same regularity used in Theorem 1.5 because the dissipative effect in
Theorem 1.6. There exists a constant
E(t)+(1−Cϵ0)∫t0N2(s)ds≤E0forallt>0. |
Remark 3. Compared to Theorem 1.3, we only need one term in the blow-up criterion in Theorem 1.5 which is due to the dissipative effect in the equation of
All constants will be denoted by
The fractional Laplacian
^Λβf(ξ)=|ξ|βˆf(ξ). |
For
‖f‖Hs=‖f‖L2+‖f‖˙Hs,‖f‖˙Hs=‖Λsf‖L2. |
In the energy spaces, we have the following interpolations: for
‖f‖˙Hs≤‖f‖θ˙Hs0‖f‖1−θ˙Hs1,s=θs0+(1−θ)s1. | (14) |
We begin with two inequalities in 3D:
‖f‖L∞≤C‖f‖Hs,s>32, | (15a) |
‖f‖Lp≤C‖f‖˙Hs,1p=12−s3. | (15b) |
We also provide the following inequalities in 2D
‖f‖L4≤C‖f‖12L2‖∇f‖12L2,‖f‖L∞≤C‖f‖12L2‖Δf‖12L2 |
which will be used repeatedly in the proof of Theorem 1.3, Theorem 1.4, Theorem 1.5, and Theorem 1.6. We also recall
‖∇2f‖L2=‖Δf‖L2 |
which holds in any dimension.
We finally provide the Kato-Ponce commutator cstimate [22]
‖[Λk,f]g‖L2=‖Λk(fg)−fΛkg‖L2≤C‖∇f‖L∞‖Λk−1g‖L2+C‖g‖L∞‖Λkf‖L2 | (16) |
and the fractional Leibniz rule [11]: for
‖Λs(fg)‖Lp≤C‖Λsf‖Lp1‖g‖Lq1+C‖f‖Lp2‖Λsg‖Lq2,1p=1p1+1q1=1p2+1q2. | (17) |
We recall the commutator
Δ[f,g]=[Δf,g]+[f,Δg]+2[fx,gx]+2[fy,gy], | (18a) |
∫f[f,g]=0, | (18b) |
∫f[g,h]=∫g[h,f]. | (18c) |
We recall (3):
Bt+curl((curlB)×B)+ΛB=0. | (19) |
We first approximate (19) by putting
Bt+curl((curlB)×B)+ΛB=ϵΔB. | (20) |
We then mollify (20) as follows
∂tB(ϵ)+curl(Jϵ(curlJϵB(ϵ))×JϵB(ϵ))+ΛJ2ϵB(ϵ)=ϵJ2ϵΔB(ϵ),B(ϵ)0=JϵB0, | (21) |
where
We begin with the
12ddt‖B‖2L2+‖Λ12B‖2L2=0. | (22) |
We now take
12ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2=−∫Λkcurl((curlB)×B)⋅ΛkB=∫([Λ12+k,B]×curlB)⋅Λk−12curlB≤‖[Λ12+k,B]×curlB‖L2‖Λ12+kB‖L2. |
By (16) and (15a) with
‖[Λ12+k,B]×curlB‖L2≤C‖∇B‖L∞‖Λk−12curlB‖L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (23) |
So, we obtain
ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (24) |
By (22) and (24),
ddt‖B‖2Hk+‖Λ12B‖2Hk≤C‖B‖Hk‖Λ12+kB‖2L2. |
If
‖B(t)‖2Hk+(1−Cϵ0)∫t0‖Λ12B(s)‖2Hkds≤‖B0‖2Hkforallt>0. | (25) |
Let
Bt+ΛB+curl((curlB1)×B)−curl((curlB)×B2)=0 | (26) |
with
12ddt‖B‖2L2+‖Λ12B‖2L2=−∫(curl((curlB1)×B))⋅B=−∫Λ12(((curlB1)×B))⋅Λ−12curlB≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖∇Λ12B1‖L6‖B‖L3‖Λ12B‖L2≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖Λ52B1‖L2‖Λ12B‖2L2≤C‖B1‖Hk‖Λ12B‖2L2, |
where we use (15b) to control
By (14), it is enough to derive the decay rate with
‖ΛkB‖2k+1kL2≤‖B‖1kL2‖Λ12+kB‖2L2≤‖B0‖1kL2‖Λ12+kB‖2L2 |
by (14) and (22), we create the following ODE from (24)
ddt‖ΛkB‖2L2+1−Cϵ0‖B0‖1kL2‖ΛkB‖2k+1kL2≤0. |
By solving this ODE, we find the following decay rate
‖ΛkB(t)‖L2≤((2k)k‖B0‖L2‖ΛkB0‖L2)(2k‖B0‖1kL2+(1−Cϵ0)‖ΛkB0‖1kL2t)k. | (27) |
We recall (5):
Bt+curl((curlB)×B)+ln(2+Λ)ΛB=0, |
The the uniqueness part of Theorem 1.2 is the same as that of Theorem 1.1 and we only derive a priori bounds. Let
‖√ln(2+Λ)Λsf‖2L2=∫(ln(2+|ξ|))|ξ|2s|ˆf(ξ)|2dξ. |
We begin with the
12ddt‖B‖2L2+‖√ln(2+Λ)Λ12B‖2L2=0. | (28) |
Following the computations in the proof of Theorem 1.1, we also have
ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (29) |
For each
‖Λ12+kB‖2L2=∫|ξ|≤2N|ξ|2k+1|ˆB(ξ)|2dξ+∫|ξ|≥2N|ξ|2k+1|ˆB(ξ)|2dξ≤2N∫|ξ|≤2N|ξ|2k|ˆB(ξ)|2dξ+1ln(2+2N)∫|ξ|≥2Nln(2+|ξ|)|ξ|2k+1|ˆB(ξ)|2dξ≤2N‖ΛkB‖2L2+1ln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. |
So, (29) is replaced by
ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C2N‖ΛkB‖2L2‖B‖Hk+C‖B‖Hkln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. |
We now choose
12ln(2+2N)<C‖B‖Hk<ln(2+2N) |
and so
ddt‖ΛkB‖2L2≤Cexp(‖B‖Hk)‖B‖Hk‖ΛkB‖L2. | (30) |
By (28) and (30), we obtain
ddt‖B‖2Hk≤Cexp(‖B‖Hk)‖B‖2Hk |
and so we have
ddt‖B‖Hk≤Cexp(‖B‖Hk)‖B‖Hk≤Cexp(‖B‖Hk). |
By solving this ODE, we can derive (6).
We recall (9):
ψt=[ψ,Z], | (31a) |
Zt−ΔZ=[Δψ,ψ]. | (31b) |
We first approximate (31a) by putting
∂tψ(ϵ)=Jϵ[Jϵψ(ϵ),JϵZ(ϵ)]+ϵJ2ϵΔψ(ϵ),∂tZ(ϵ)−ΔJ2ϵZ(ϵ)=Jϵ[ΔJϵψ(ϵ),Jϵψ(ϵ)] | (32) |
with
We first note that
12ddt‖ψ‖2L2=∫ψ[ψ,Z]=0. | (33) |
We next multiply (31a) by
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=∫(−Δψ[ψ,Z]+Z[Δψ,ψ])=0. | (34) |
We also multiply (31a) by
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R. | (35) |
We now compute the right-hand side of (35). By (18a), (18b), and (18c),
R=2∫Δ2ψ[Δψ,ΔZ]+4∫Δ2ψ[ψx,ΔZx]+4∫Δ2ψ[ψy,ΔZy]+4∫Δ2ψ[Δψx,Zx]+4∫Δ2ψ[Δψy,Zy]+4∫Δ2ψ[ψxx,Zxx]+8∫Δ2ψ[ψxy,Zxy]+4∫Δ2ψ[ψyy,Zyy]−2∫Δ2Z[Δψx,ψx]−2∫Δ2Z[Δψy,ψy]. | (36) |
So, we find that the number of derivatives acting on
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C∫|∇4ψ||∇4ψ||∇2Z|+C∫|∇3ψ||∇4ψ||∇3Z|+C∫|∇4ψ||∇2ψ||∇4Z|≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖∇3ψ‖L4‖Δ2ψ‖L2‖∇3Z‖L4+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖Δ2ψ‖32L2‖∇Δψ‖12L2‖Δ2Z‖L2+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤CE2+14‖Δ2Z‖2L2+δ‖∇2Z‖2L∞≤CE2+12‖Δ2Z‖2L2+14‖∇Z‖2L2, |
where we use
‖∇2Z‖2L∞≤C‖ΔZ‖L2‖Δ2Z‖L2≤C‖∇Z‖23L2‖Δ2Z‖43L2≤C‖∇Z‖2L2+C‖Δ2Z‖2L2 |
with
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤CE2+12‖∇Z‖2L2. | (37) |
By (33), (34), and (37), we derive
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. | (38) |
Let
ψt=[ψ,Z1]+[ψ2,Z],Zt−ΔZ=[Δψ,ψ1]+[Δψ2,ψ] |
with
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=−∫Δψ[ψ,Z1]−∫Δψ[ψ2,Z]+∫Z[Δψ,ψ1]+∫Z[Δψ2,ψ]=(I)+(II)+(III)+(IV). |
The first term is bounded using the definition of
(I)=∫(∇⊥Z1⋅∇ψ)Δψ=−∫(∇⊥∂lZ1⋅∇ψ)∂lψ≤C‖∇2Z1‖L∞‖∇ψ‖2L2. |
We next bound
(II)+(III)=−∫Z[Δψ,ψ]≤C‖∇2ψ‖L∞‖∇ψ‖L2‖∇Z‖L2≤C(‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)‖∇ψ‖2L2+14‖∇Z‖2L2. |
The last term is bounded as
(IV)≤C‖∇2ψ2‖L∞‖∇ψ‖L2‖∇Z‖L2≤C‖∇2ψ2‖2L∞‖∇ψ‖2L2+14‖∇Z‖2L2. |
So, we have
ddt(‖∇ψ‖2L2+‖Z‖2L2)≤C(‖∇2Z1‖L∞+‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)(‖∇ψ‖2L2+‖Z‖2L2). | (39) |
By (38),
∫t0(‖∇Z(s)‖2L2+‖Δ2Z(s)‖2L2)ds<∞for0<t≤T∗2 |
which gives the integrability of the first term in the parentheses on the right-hand side of (39). By repeating the same argument one more time, we have the uniqueness up to
Let
B(s)=‖∇2Z(s)‖L∞+‖∇2ψ(s)‖2L∞. |
We first deal with
12ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖ΔZ‖2L2=∫Δ2ψ[ψ,Z]−∫ΔZ[Δψ,ψ]=2∫Δψ[ψx,Zx]+2∫Δψ[ψy,Zy]≤C‖∇2Z‖L∞‖Δψ‖2L2 |
and so we have
ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖ΔZ‖2L2≤C‖∇2Z‖L∞‖Δψ‖2L2. |
This implies
‖Δψ(t)‖2L+‖∇Z(t)‖2L2+∫t0‖ΔZ(s)‖2L2ds<∞⟺∫t0‖∇2Z(s)‖L∞ds<∞. | (40) |
We also deal with
12ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖∇ΔZ‖2L2=−∫Δ3ψ[ψ,Z]+∫Δ2Z[Δψ,ψ]=−∫Δ2ψ[Δψ,Z]−2∫Δ2ψ([ψx,Zx]+[ψy,Zy])−2∫Δψ([ψx,ΔZx]+[ψy,ΔZy])=(I)+(II)+(III). |
As in Section 4.1.3,
(I)=∫(∇∇⊥Z⋅∇Δψ)⋅∇Δψ≤C‖∇2Z‖L∞‖∇Δψ‖2L2. | (41) |
We next estimate
(II)+(III)=−4∫Δψ([Δψy,Zy]+[ψy,ΔZy]+[ψxy,Zxy]+[ψyy,Zyy])≤C∫|∇2Z||∇3ψ|2+C∫|∇2ψ||∇3ψ||∇3Z|≤C‖∇2Z‖L∞‖∇Δψ‖2L2+C‖∇2ψ‖2L∞‖∇Δψ‖2L2+12‖∇ΔZ‖2L2. | (42) |
By (41) and (42), we have
ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖∇ΔZ‖2L2≤C(‖∇2Z‖L∞+‖∇2ψ‖2L∞)‖∇Δψ‖2L2 |
which implies
‖∇Δψ(t)‖2L2+‖ΔZ(t)‖2L2+∫t0‖∇ΔZ(s)‖2L2ds<∞⟺∫t0B(s)ds<∞. | (43) |
We finally deal with
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R |
with the same
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C‖∇2Z‖L∞‖Δ2ψ‖2L2+C‖∇2ψ‖L∞‖Δ2Z‖L2‖Δ2ψ‖L2+C‖∇ΔZ‖L4‖∇Δψ‖L4‖Δ2ψ‖L2≤C(‖∇2Z‖L∞+‖∇2ψ‖2L∞+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2+12‖Δ2Z‖2L2 |
which gives
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C(B(s)+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2. | (44) |
By (40) and (43), (44) implies
‖Δ2ψ(t)‖2L2+‖∇ΔZ(t)‖2L2+∫t0‖Δ2Z(s)‖2L2ds<∞⟺∫t0B(s)ds<∞. |
We recall (11):
ψt+ψ=[ψ,Z],Zt−ΔZ=[Δψ,ψ] |
Since the uniqueness is already proved in Section 4.1.3 even without the damping term, we only focus on the a priori bounds and the decay rates.
We first have
12ddt‖ψ‖2L2+‖ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇ψ‖2L2+‖∇Z‖2L2=0. | (45) |
We now consider the highest order part:
12ddt(‖∇Δ2ψ‖2L2+‖Δ2Z‖2L2)+‖∇Δ2ψ‖2L2+‖∇Δ2Z‖2L2=−∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]. |
We compute the right-hand side of this. By (18a), (18b), and (18c),
−∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]=2∫Δ3Z[Δψx,ψx]+2∫Δ3Z[Δψy,ψy]+2∫Δ2Z[Δ2ψx,ψx]+2∫Δ2Z[Δ2ψy,ψy]+2∫ΔZ[Δ2ψx,Δψx]+2∫ΔZ[Δ2ψy,Δψy]−∫Δ3ψ[Δψ,ΔZ]−2∫Δ3ψ[Δψx,Zx]−2∫Δ3ψ[Δψy,Zy]−2∫Δ3ψ[ψx,ΔZx]−2∫Δ3ψ[ψy,ΔZy]−2∫Δ4ψ[ψx,Zx]−2∫Δ4ψ[ψy,Zy]−∫Δ3ψ[Δ2ψ,Z]. | (46) |
We now count the number of derivatives hitting on
(6,2,4)↦(5,2,5), (5,3,4)(4,2,6)↦(5,5,2), (4,3,5)(2,2,8)↦(3,2,7)↦(4,2,6), (3,3,6)↦(5,5,2), (4,3,5)(2,4,6)↦(2,5,5), (3,4,5). |
The last integral is
∫(∇⊥Z⋅∇Δ2ψ)Δ3ψ=−∫(∇⊥∂lZ⋅∇Δ2ψ)∂lΔ2ψ |
and so this gives
(2,5,5), (3,4,5), (4,3,5), (5,2,5), (5,3,4). |
The first and the fourth cases are bounded by
C‖∇2Z‖L∞‖∇Δ2ψ‖2L2≤C‖∇2Z‖2L∞‖∇Δ2ψ‖2L2+16‖∇Δ2ψ‖2L2,C‖∇2ψ‖L∞‖∇Δ2Z‖2L2≤C‖∇2ψ‖L∞‖∇Δ2Z‖2L2+14‖∇Δ2Z‖2L2. |
The second case is bounded by
C‖∇3Z‖L4‖∇4ψ‖L4‖∇Δ2ψ‖L2≤C‖ΔZ‖12L2‖∇Δ2Z‖12L2‖Δ2ψ‖12L2‖∇Δ2ψ‖32L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2‖∇Δ2Z‖2L2+16‖∇Δ2ψ‖2L2. |
The third case is bounded by
C‖∇4Z‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤C‖Δ2Z‖12L2‖∇Δ2Z‖12L2‖Δψ‖12L2‖∇Δ2ψ‖32L2≤C‖Δψ‖2L2‖Δ2Z‖2L2‖∇Δ2Z‖2L2+16‖∇Δ2ψ‖2L2. |
The last one is bounded by
C‖∇3ψ‖L4‖∇4ψ‖L4‖∇Δ2Z‖L2≤C‖∇Δψ‖12L2‖Δ2ψ‖L2‖∇Δ2ψ‖12L2‖∇Δ2Z‖L2≤C‖∇Δψ‖L2‖∇Δ2ψ‖L2‖∇Δ2Z‖L2≤C‖∇Δψ‖2L2‖∇Δ2ψ‖2L2+14‖∇Δ2Z‖2L2. |
So, we obtain
ddt(‖∇Δ2ψ‖2L2+‖Δ2Z‖2L2)+‖∇Δ2ψ‖2L2+‖∇Δ2Z‖2L2≤C‖∇2Z‖2L∞‖∇Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇Δ2Z‖2L2+C‖∇Δψ‖2L2‖∇Δ2ψ‖2L2+C‖ΔZ‖2L2‖Δ2ψ‖2L2‖∇Δ2Z‖2L2+C‖Δψ‖2L2‖Δ2Z‖2L2‖∇Δ2Z‖2L2 | (47) |
By (45) and (47),
F′(t)+N1(t)≤C(F(t)+F2(t))N1(t). |
So, if
F(t)+(1−Cϵ0)∫t0N1(s)ds≤F0forallt>0. |
From (45),
12ddt‖∇ψ‖2L2+‖∇ψ‖2L2=−∫Δψ[ψ,Z]=∫(∇⊥Z⋅∇ψ)Δψ=−∫(∂l∇⊥Z⋅∇ψ)∂lψ≤‖∇2Z‖L∞‖∇ψ‖2L2≤Cϵ0‖∇ψ‖2L2, |
we have
‖∇ψ(t)‖L2≤‖∇ψ0‖L2e−(1−Cϵ0)t. |
By using (14), we also obtain
‖Λkψ(t)‖L2≤Fk−180‖∇ψ0‖5−k4L2e−(5−k)(1−Cϵ0)4t,1≤k<5. |
We recall (12):
ψt−Δψ=[ψ,Z],Zt=[Δψ,ψ]. |
By applying the same approximation and mollification methods in Section 4.1.1, we can show the existence of smooth solutions locally in time when
We first have
12ddt‖ψ‖2L2+‖∇ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2=0. | (48) |
We next deal with
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R |
with the same
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C‖∇2Z‖L2‖Δ2ψ‖2L4+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤CE21+12‖∇Δ2ψ‖2L2 |
and so we have the following bound
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤CE2. | (49) |
By (48) and (49), we derive
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. | (50) |
Let
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2=−∫Δψ[ψ,Z1]−∫Δψ[ψ2,Z]+∫Z[Δψ,ψ1]+∫Z[Δψ2,ψ]=(I)+(II)+(III)+(IV). |
The first term three terms are bounded as
(I)≤‖∇Z1‖L∞‖∇ψ‖L2‖Δψ‖L2≤C‖∇Z1‖2L∞‖∇ψ‖2L2+13‖Δψ‖2L2,(II)+(III)=−∫Z[Δψ,ψ]≤C‖∇Z‖L∞‖∇ψ‖L2‖Δψ‖L2≤C(‖∇Z1‖2L∞+‖∇Z2‖2L∞)‖∇ψ‖2L2+13‖Δψ‖2L2 |
The last term is bounded as
(IV)≤C‖∇3ψ2‖L4‖∇ψ‖L4‖Z‖L2≤C‖∇3ψ2‖L4‖∇ψ‖12L2‖Δψ‖12L2‖Z‖L2≤C‖∇3ψ2‖43L4‖∇ψ‖23L2‖Z‖43L2+13‖Δψ‖2L2≤C‖∇3ψ2‖4L4‖∇ψ‖2L2+C‖Z‖2L2+13‖Δψ‖2L2≤C‖∇Δψ2‖2L2‖Δ2ψ2‖2L2‖∇ψ‖2L2+C‖Z‖2L2+13‖Δψ‖2L2. |
So, we have
ddt(‖∇ψ‖2L2+‖Z‖2L2)≤C(‖∇Z1‖2L∞+‖∇Z2‖2L∞+‖∇Δψ2‖2L2‖Δ2ψ2‖2L2)(‖∇ψ‖2L2+‖Z‖2L2). |
By (50), the terms in the parentheses are integrable up to
To derive the blow-up criterion, we first bound
12ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖∇Δψ‖2L2=∫Δ2ψ[ψ,Z]−∫ΔZ[Δψ,ψ]=2∫Δψ[ψx,Zx]+2∫Δψ[ψy,Zy]≤C‖∇2ψ‖L∞‖∇Z‖L2‖∇Δψ‖L2≤C‖∇2ψ‖2L∞‖∇Z‖2L2+12‖∇Δψ‖2L2 |
and so we have
ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖∇Δψ‖2L2≤C‖∇2ψ‖2L∞‖∇Z‖2L2. |
This implies
‖Δψ(t)‖2L+‖∇Z(t)‖2L2+∫t0‖∇Δψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞ | (51) |
We also take
12ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖Δ2ψ‖2L2=−∫Δ3ψ[ψ,Z]+∫Δ2Z[Δψ,ψ]=−∫Δ2ψ[Δψ,Z]−2∫Δ2ψ([ψx,Zx]+[ψy,Zy])−2∫Δψ([ψx,ΔZx]+[ψy,ΔZy])=(I)+(II)+(III). |
By using the computation in (41),
(I)=∫(∇∇⊥Z⋅∇Δψ)⋅∇Δψ≤C‖∇2Z‖L2‖∇3ψ‖2L4≤C‖∇2Z‖2L2‖∇Δψ‖2L2+16‖Δ2ψ‖2L2. |
We next estimate
(II)+(III)≤C∫|∇2Z||∇3ψ|2+C∫|∇2ψ||∇4ψ||∇2Z|≤C‖ΔZ‖2L2‖∇Δψ‖2L2+C‖∇2ψ‖2L∞‖ΔZ‖2L2+13‖Δ2ψ‖2L2 |
So, we have
ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖Δ2ψ‖2L2≤C(‖∇Δψ‖2L2+‖∇2ψ‖2L∞)‖ΔZ‖2L2. | (52) |
By (51), (52) implies
‖∇Δψ(t)‖2L2+‖ΔZ(t)‖2L2+∫‖Δ2ψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞. | (53) |
We finally deal with
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ] |
where we count the number of derivatives acting on
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇ΔZ‖2L2+C‖ΔZ‖2L4‖∇3ψ‖2L4+12‖∇Δ2ψ‖2L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇ΔZ‖2L2+C‖ΔZ‖2L2‖∇ΔZ‖2L2+C‖∇Δψ‖2L2‖Δ2ψ‖2L2+12‖∇Δ2ψ‖2L2 |
and so we have
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C(‖∇2ψ‖2L∞+‖ΔZ‖2L2)‖∇ΔZ‖2L2+C(‖∇Δψ‖2L2+‖ΔZ‖2L2)‖Δ2ψ‖2L2 | (54) |
By (51) and (53), (54) implies
‖Δ2ψ(t)‖2L2+‖∇ΔZ(t)‖2L2+∫t0‖∇Δ2ψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞. |
We recall (13):
ψt−Δψ=[ψ,Z],Zt+Z=[Δψ,ψ]. |
Since the uniqueness is already proved in Section 5.1.2 even without the damping term, we only focus on the a priori bounds.
We first have
12ddt‖ψ‖2L2+‖∇ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2+‖Z‖2L2=0. | (55) |
We also have
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R |
with the same
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2≤C‖∇2Z‖L2‖Δ2ψ‖2L4+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤C‖∇Z‖12L2‖∇ΔZ‖12L2‖∇Δψ‖12L2‖∇Δ2ψ‖32L2+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖12L2‖∇ΔZ‖12L2‖Δψ‖12L2‖∇Δ2ψ‖32L2≤C(‖∇Z‖2L2‖∇Δψ‖2L2+‖ΔZ‖2L2‖Δψ‖2L2+‖∇2ψ‖2L∞)‖∇ΔZ‖2L2+12‖∇Δ2ψ‖L2. |
So, we obtain
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2≤C(‖∇Z‖2L2‖∇Δψ‖2L2+‖ΔZ‖2L2‖Δψ‖2L2+‖∇2ψ‖2L∞)‖∇ΔZ‖2L2 | (56) |
By (55) and (56),
E′(t)+N2(t)≤C(E(t)+E2(t))N2(t). |
So, if
E(t)+(1−Cϵ0)∫t0N2(s)ds≤E0forallt>0. |
H.B. was supported by NRF-2018R1D1A1B07049015. H. B. acknowledges the Referee for his/her valuable comments that highly improve the manuscript.
[1] |
M. H. Yap, G. Pons, J. Marti, S. Ganau, M. Sentis, R. Zwiggelaar, et al., Automated breast ultrasound lesions detection using convolutional neural networks, IEEE J. Biomed. Health Inf., 22 (2018), 1218–1226. https://doi.org/10.1109/JBHI.2017.2731873 doi: 10.1109/JBHI.2017.2731873
![]() |
[2] |
J. Gao, Q. Jiang, B. Zhou, D. Chen, Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview, Math. Biosci. Eng., 16 (2019), 6536–6561. https://doi.org/10.3934/mbe.2019326 doi: 10.3934/mbe.2019326
![]() |
[3] |
C. Xu, Y. Qi, Y. Wang, M. Lou, J. Pi, Y. Ma, ARF-Net: An adaptive receptive gield network for breast mass segmentation in whole mammograms and ultrasound images, Biomed. Signal Process. Control, 71 (2022), 103178. https://doi.org/10.1016/j.bspc.2021.103178 doi: 10.1016/j.bspc.2021.103178
![]() |
[4] |
Y. Wang, N. Wang, M. Xu, J. Yu, C. Qin, X. Luo, et al., Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound, IEEE Trans. Med. Imaging, 39 (2019), 866–876. https://doi.org/10.1109/TMI.2019.2936500 doi: 10.1109/TMI.2019.2936500
![]() |
[5] |
S. Jiang, J. Li, Z. Hua, Transformer with progressive sampling for medical cellular image segmentation, Math. Biosci. Eng., 19 (2022), 12104–12126. https://doi.org/10.3934/mbe.2022563 doi: 10.3934/mbe.2022563
![]() |
[6] |
A. Iqbal, M. Sharif, MDA-Net: Multiscale dual attention-based network for breast lesion segmentation using ultrasound images, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 7283–7299. http://dx.doi.org/10.1016/j.jksuci.2021.10.002 doi: 10.1016/j.jksuci.2021.10.002
![]() |
[7] |
R. Bi, C. Ji, Z. Yang, M. Qiao, P. Lv, H. Wang, Residual-based attention-Unet combing DAC and RMP modules for automatic liver tumor segmentation in CT, Math. Biosci. Eng., 19 (2022), 4703–4718. https://doi.org/10.3934/mbe.2022219 doi: 10.3934/mbe.2022219
![]() |
[8] |
B. Lei, S. Huang, R. Li, C. Bian, H. Li, Y. H. Chou, et al., Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder-decoder network, Neurocomputing, 321 (2018), 178–186. https://doi.org/10.1016/j.neucom.2018.09.043 doi: 10.1016/j.neucom.2018.09.043
![]() |
[9] |
Y. Ouyang, Z. Zhou, W. Wu, J. Tian, F. Xu, S. Wu, et al., A review of ultrasound detection methods for breast microcalcification, Math. Biosci. Eng., 16 (2019), 1761–1785. https://doi.org/10.3934/mbe.2019085 doi: 10.3934/mbe.2019085
![]() |
[10] |
M. N. S. K. B. Soulami, N. Kaabouch, A. Tamtaoui, Breast cancer: One-stage automated detection, segmentation, and classification of digital mammograms using U-net model based semantic segmentation, Biomed. Signal Process. Control, 2021 (2021), 102481. https://doi.org/10.1016/j.bspc.2021.102481 doi: 10.1016/j.bspc.2021.102481
![]() |
[11] |
Y. Wang, N. Wang, M. Xu, J. Yu, C. Qin, X. Luo, et al., Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound, IEEE Trans. Med. Imaging, 39 (2019), 866–876. https://doi.org/10.1109/TMI.2019.2936500 doi: 10.1109/TMI.2019.2936500
![]() |
[12] |
E. H. Houssein, M. M. Emam, A. A. Ali, P. N. Suganthan, Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review, Exp. Syst. Appl., 167 (2021), 114161. https://doi.org/10.1016/j.eswa.2020.114161 doi: 10.1016/j.eswa.2020.114161
![]() |
[13] |
M. Xian, Y. Zhang, H. D. Cheng, F. Xu, B. Zhang, J. Ding, Automatic breast ultrasound image segmentation: A survey, Pattern Recognit., 79 (2018), 340–355. https://doi.org/10.1016/j.patcog.2018.02.012 doi: 10.1016/j.patcog.2018.02.012
![]() |
[14] |
Y. Tong, Y. Liu, M. Zhao, L. Meng, J. Zhang, Improved U-net MALF model for lesion segmentation in breast ultrasound images, Biomed. Signal Process. Control, 68 (2021), 102721. https://doi.org/10.1016/j.bspc.2021.102721 doi: 10.1016/j.bspc.2021.102721
![]() |
[15] |
D. Mishra, S. Chaudhury, M. Sarkar, A. S. Soin, Ultrasound image segmentation: A deeply supervised network with attention to boundaries, IEEE Trans. Biomed. Eng., 66 (2018), 1637–1648. https://doi.org/10.1109/TBME.2018.2877577 doi: 10.1109/TBME.2018.2877577
![]() |
[16] |
G. Chen, Y. Dai, J. Zhang, C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation, Comput. Methods Programs Biomed., 2022 (2022), 107086. https://doi.org/10.1016/j.cmpb.2022.107086 doi: 10.1016/j.cmpb.2022.107086
![]() |
[17] |
N. K. Tomar, D. Jha, M. A. Riegler, H. D. Johansen, D. Johansen, J. Rittscher, et al., Fanet: A feedback attention network for improved biomedical image segmentation, Trans. Neural Networks Learn. Syst., 2022 (2022). https://doi.org/10.1109/TNNLS.2022.3159394 doi: 10.1109/TNNLS.2022.3159394
![]() |
[18] |
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, Trans. Pattern Anal. Mach. Intell., 2018 (2018), 834–848. https://doi.org/10.1109/TPAMI.2017.2699184 doi: 10.1109/TPAMI.2017.2699184
![]() |
[19] | Y. Xie, J. Zhang, C. Shen, Y. Xia, Cotr: Efficiently bridging CNN and Transformer for 3d medical image segmentation, in Medical Image Computing and Computer Assisted Intervention MICCAI, (2021), 171–180. https://doi.org/10.1007/978-3-030-87199-4_16 |
[20] |
N. S. Punn, S. Agarwal, RCA-IUnet: A residual cross-spatial attention-guided inception U-Net model for tumor segmentation in breast ultrasound imaging, Mach. Vision Appl., 33 (2022), 1–10. ttps://doi.org/10.1007/s00138-022-01280-3 doi: 10.1007/s00138-021-01257-8
![]() |
[21] |
N. Abraham, N. M. B. T. Khan, A novel focal tversky loss function with improved attention U-Net for lesion segmentation, Int. Symp. Biomed. Imaging, 2019 (2019), 683–687. https://doi.org/10.1109/ISBI.2019.8759329 doi: 10.1109/ISBI.2019.8759329
![]() |
[22] | W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, J. Tang, Node similarity preserving graph convolutional networks, in Proceedings of the 14th ACM International Conference on Web Search and Data Mining, (2021), 148–156. https://doi.org/10.1145/3437963.3441735 |
[23] | B. Wu, X. Liang, X. Zheng, Y. Guo, H. Tang, Improving dynamic graph convolutional network with fine-grained attention mechanism, in ICASSP International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2022), 3938–3942. https://doi.org/10.1109/ICASSP43922.2022.9746009 |
[24] | Y. Lu, Y. Chen, D. Zhao, J. Chen, Graph-FCN for image semantic segmentation, in Advances in Neural Networks–ISNN 2019: 16th International Symposium on Neural Networks, (2019), 97–105. https://doi.org/10.1007/978-3-030-22796-8_11 |
[25] | Y. Huang, Y. Sugano, Y. Sato, Improving action segmentation via graph-based temporal reasoning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 14024–14034. https://doi.org/10.1109/CVPR42600.2020.01404 |
[26] |
W. Al-Dhabyani, M. Gomaa, H. Khaled, A. Fahmy, Dataset of breast ultrasound images, Data Brief, 28 (2020), 104863. https://doi.org/10.1016/j.dib.2019.104863 doi: 10.1016/j.dib.2019.104863
![]() |
[27] |
Z. Fu, J. Zhang, R. Luo, Y. Sun, D. Deng, L. Xia, TF-Unet: An automatic cardiac MRI image segmentation method, Math. Biosci. Eng., 19 (2022), 5207–5222. https://doi.org/10.3934/mbe.2022244 doi: 10.3934/mbe.2022244
![]() |
[28] |
X. Xu, M. Zhao, P. Shi, R. Ren, X. He, X. Wei, et al., Crack detection and comparison study based on faster R-CNN and mask R-CNN, Sensors, 22 (2022), 1215. https://doi.org/10.3390/s22031215 doi: 10.3390/s22031215
![]() |
[29] | L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 801–818. |
[30] |
R. Huang, M. Lin, H. Dou, Z. Lin, Q. Ying, X. Jia, et al., Boundary-rendering network for breast lesion segmentation in ultrasound images, Med. Image Anal., 80 (2022), 102478. https://doi.org/10.1016/j.media.2022.102478 doi: 10.1016/j.media.2022.102478
![]() |
[31] | Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, J. Liang, UNet++: A nested U-net architecture for medical image segmentation, in Lecture Notes in Computer Science, (2018), 3–11. http: /dx.doi.org/10.1007/ 978-3-030-00889-51 |
[32] | E. Sanderson, B. J. Matuszewski, FCN-Transformer feature fusion for polyp segmentation, in Medical Image Understanding and Analysis: 26th Annual Conference, Springer International Publishing, (2022), 892–907. https://doi.org/10.1007/978-3-031-12053-4_65 |
[33] |
X. Feng, T. Wang, X. Yang, M. Zhang, W. Guo, W. Wang, ConvWin-UNet: UNet-like hierarchical vision transformer combined with convolution for medical image segmentation, Math. Biosci. Eng., 20 (2023), 128–144. https://doi.org/10.3934/mbe.2023007 doi: 10.3934/mbe.2023007
![]() |
[34] | O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, et al., Attention U-Net: learning where to look for the pancreas, preprint, arXiv: 1804.03999. https://doi.org/10.48550/arXiv.1804.03999 |
[35] |
X. Zhang, K. Liu, K. Zhang, X. Li, Z. Sun, B. Wei, SAMS-Net: Fusion of attention mechanism and multi-scale features network for tumor infiltrating lymphocytes segmentation, Math. Biosci. Eng., 20 (2023), 2964–2979. https://doi.org/10.3934/mbe.2023140 doi: 10.3934/mbe.2023140
![]() |
[36] |
R. K. Meleppat, P. Zhang, M. J. Ju, S. K. K. Manna, Y. Jian, E. N. Pugh, et al., Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium, J. Biomed. Optics, 24 (2019), 066011. https://doi.org/10.1117/1.JBO.24.6.066011 doi: 10.1117/1.JBO.24.6.066011
![]() |
[37] |
R. K. Meleppat, C. R. Fortenbach, Y. Jian, E. S. Martinez, K. Wagner, B. S. Modjtahedi, et al., In Vivo imaging of retinal and choroidal morphology and vascular plexuses of vertebrates using swept-source optical coherence tomography, Trans. Vis. Sci. Tech., 11 (2022), 11. https://doi.org/10.1167/tvst.11.8.11 doi: 10.1167/tvst.11.8.11
![]() |
[38] |
R. K. Meleppat, K. E. Ronning, S. J. Karlen, K. K. Kothandath, M. E. Burns, E. N. Pugh, et al., In situ morphologic and spectral characterization of retinal pigment epithelium organelles in mice using multicolor confocal fluorescence imaging, Invest. Ophthalmol. Vis. Sci., 61 (2020), 1. https://doi.org/10.1167/iovs.61.13.1 doi: 10.1167/iovs.61.13.1
![]() |
[39] |
J. He, Q. Zhu, K. Zhang, P. Yu, J. Tang, An evolvable adversarial network with gradient penalty for COVID-19 infection segmentation, Appl. Soft Comput., 113 (2021), 107947. https://doi.org/10.1016/j.asoc.2021.107947 doi: 10.1016/j.asoc.2021.107947
![]() |
[40] |
X. Liu, D. Zhang, J. Yao, J. Tang, Transformer and convolutional based dual branch network for retinal vessel segmentation in OCTA images, Biomed. Signal Process. Control, 83 (2023), 104604. https://doi.org/10.1016/j.bspc.2023.104604 doi: 10.1016/j.bspc.2023.104604
![]() |
[41] |
C. Zhao, A. Vij, S. Malhotra, J. Tang, H. Tang, D. Pienta, et al., Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms, Comput. Biol. Med., 136 (2021), 104667. https://doi.org/10.1016/j.compbiomed.2021.104667 doi: 10.1016/j.compbiomed.2021.104667
![]() |